6误差分析与标定要点
第二章 误差分析
1.57 1.64 1.69 1.62 1.55 1.53 1.62 1.54 1.68
1.60 1.63 1.70 1.60 1.52 1.59 1.65 1.61 1.69
1.63 1.67 1.58 1.57 1.54 1.62 1.65
1.66 1.60 1.60
频率分布表和绘制出频率分布直方图 1. 算出极差: R=1.74-1.49=0.25
三.标准正态分布由于μ, 不同就有不同的 正态分布,曲线也就随之变化,为使用方便, 作如下变换:
1 y f(x) e 2 dx du
u
xm
(x m )2 2
2
1 y f ( x) e 2 u2 1 2 f ( x)dx e du (u) du 2
x
sx s n n (n )
6.极差:R=xmax-xmin
三. 准确度与精密度的关系
系统误差 准确度 随机误差
甲 乙 丙
精密度
T
x
精密度高、准确度低 精密度高、准确度高
精密度低 精密度低、准确度低
丁
结 论:
① 高精密度是获得高准确度的前提条件,准确 度高一定要求精密度高 ② 精密度高,准确度不一定就高,只有消除了 系统误差,高精密度才能保证高的准确度
Xi 10.0 10.1 9.3 10.2 9.9 9.8 10.5 9.8 10.3 9.9
第二批数据 X i- X (Xi-X)2 0.00 ± 0.0 +0.1 0.01 -0.7* 0.49 +0.2 0.04 -0.1 0.01 -0.2 0.04 +0.5* 0.25 -0.2 0.04 +0.3 0.09
分析仪现场标定,全程标定,盲标,误差计算,粉尘仪校准方法及步骤
CEMS系统主要监测的污染物和烟气参数如下 污染物主要有:二氧化硫(SO2)、氮氧化物
(NOX)、颗粒物 烟气参数主要有:氧含量(O2)、烟气流速(流
量)、烟气湿度、温度和压力等 根据燃料的不同及燃烧工艺的不同可能还要监测:一 氧化碳(CO)、氯化氢(HCL)等
聚合点滴 创生无限 Going Green, Investing Green
c.低于50μmol/mol(SO2、NO和NO2分别为143 mg/m3、67 mg/m3和103 mg/m3)时,参比方法和CEMS测定结果平均值之差的绝对值应不大于15μ mol/mol(SO2、NO和NO2分别为43 mg/m3、20 mg/m3和31 mg/m3)。
相对准确度的计算
a.当零点漂移、量程漂移和线性误差检测通过并且生产设施达到最 大生产能力50%以上时,可进行相对准确度检测。 b.CEMS与参比方法同步,由数据采集器每分钟记录1个累积平均值, 连续记录至参比方法测试结束,取与参比方法同时间区间值的平均 值。 c.取参比方法与CEMS同时间区间测定值组合一个数据对,确保参比 方法与CEMS测量值在同一条件下(温度、压力、湿度和含氧量), 每天获取9个以上数据对,至少取 9对数据用于相对准确度计算, 但必须报告所有的数据,包括舍去的数据对,连续进行7天。 按下式计算相对准确度记录于附表中。
气态污染物CEMS准确度检验记录表:
测试人员: 测试地点: 测试位置: 参比方法仪器生产厂: 测试日期:
样品编号 时间 (时、分)
CEMS生产厂:
CEM型号、编号:
CEMS原理:
型号、编号:
污染物名称:
参比方法 (RM)A
CEMS法 B
原理: 计量单位:
数据对差
AOI系统定位偏差分析与标定算法
中图分类 号 : H1 ,2 6 文献标 识码 : T 6P8 A
J —
பைடு நூலகம்
£ ——L—
1 日 吾 【 J
在表面贴装技术 (ufc o nig eh ooyS )生产 Sr e u t c nl 。MT a M nT g 中, 自动光学检测技术 ( uo aiO t aIset n, O ) A t t pi lnpci A I已得到 m c c o 广泛应用。 然而 S T生产线人员流动性大 、 M 非周期性变动频率高 等特点 , A I 对 O 程序的通用性提出了更高的要求 。A I O 程序设计 要添加检测元件 , 以指定检测 区域 ( 焊点 ) 并设定检查参数 _所添 1 ] 。 加的元件定位准确对于检测过程是非常重要的。 电阻元件检测 区 域结构图, 如图1 所示。
25
一
8 0
2元件坐标偏差分析
21检测程 序元件坐标 偏差 .
A I O 图像采集系统包括镜头 、 工业相机、 滚珠丝杠 、 直线导轨 、
串联机器人误差建模与精度标定方法研究
2023-10-29CATALOGUE 目录•引言•串联机器人误差建模•精度标定方法研究•实验与分析•结论与展望01引言串联机器人作为自动化生产中的重要组成部分,其精度和稳定性对生产过程具有重要影响。
目前,串联机器人在实际应用中存在不同程度的误差问题,这使得研究误差建模和精度标定方法具有重要意义。
研究背景与意义当前,针对串联机器人的误差建模和精度标定方法研究已取得一定成果。
然而,现有方法在精度、稳定性、实用性等方面仍存在不足,难以满足实际生产中对串联机器人精度的需求。
研究现状与问题研究内容与方法最后,对实验结果进行分析和讨论,提出改进措施以提高串联机器人的精度和稳定性。
然后,设计实验验证误差模型的准确性和精度标定方法的可行性。
其次,建立串联机器人的误差模型,包括几何误差模型和运动学误差模型。
本研究旨在开发一种高效、准确的串联机器人误差建模与精度标定方法。
首先,对串联机器人的结构和工作原理进行详细分析,为误差建模提供基础。
02串联机器人误差建模串联机器人误差来源分析由于制造过程中各种因素的影响,如材料、工艺、设备等,导致机器人各部件存在制造误差。
制造误差装配误差运动学误差环境因素机器人在组装过程中,由于零件之间的配合关系不准确,产生装配误差。
由于机器人运动学参数的不准确,如关节角度、关节偏移等,导致的运动学误差。
如温度、湿度、气压等环境因素的变化,对机器人的精度产生影响。
03误差传递矩阵通过建立误差传递矩阵,可以描述机器人各部件误差对末端执行器误差的影响程度。
基于多体系统理论的误差建模01多体系统理论多体系统理论是研究多个刚体或柔性体相互运动的力学理论,可用于串联机器人的误差建模。
02基于多体系统理论的误差建模方法利用多体系统理论建立机器人的误差模型,考虑了各部件之间的相互运动关系,能够更准确地描述机器人的误差行为。
通过实验验证误差模型的准确性和精度,对比分析实际运动轨迹与理论运动轨迹的差异。
实验验证参数优化自适应算法根据实验结果对误差模型进行参数优化,提高模型的预测精度和鲁棒性。
检验偏差的规定
6、总结有效数字运用的弊病,归纳如下:6.1 实验数据的初始计录,即有效数字的位数与实验仪器的精度不一致。
例如:万分之一的分析天平,其性能只能保留小数点后第四位,即精确到万分位,往往不假思索地保留到小数点后第五位即十万分位。
又如,滴定管上读取的体积是18毫升时,应记录成18.00毫升,不要记录成18毫升或18.06.2在结果的表示中,出现一些不妥当的表示。
例如,某物质的分析结毫升,这是一种不良习惯。
ﻫ果“0.54±0.023%”,此处应该是“0.54±0.02%”。
6.3常数的有效位数是根据需要而取,例如π,可取3.14、3.1416、3.14159等,不能在计算式用了π=3.142,而最后得出的答案却有四、五位数的数值。
ﻫ6.4药物分析计算题中,条件的数据与答案(或要求的结果)在有效位数上不相适,例如,标准状态下,测得某气体为2.0升,换算成物质的量,习惯地用2.0升除以气体摩尔体积22.4 mol-1,即=0.0893 mol,或更多位数,事实上此处答6.5本来是二位或三位数的乘除计算,但用了对数或计算机做工具,出现了更多位数案应是0.089mol ﻫ的数据,便不假思索地全收,也这是一种不良习惯。
例如:[H+]=2.8×10-4pH=3.5528,是否就6.6在单位转换时,前后有效数字的位数不一致,例如,测量的质量5.0kg,换成g表提高了准确度。
ﻫ示时,应为5.0×103g,不能随便地写成5000g。
ﻫ通过以上实例,有效数字与药物分析工作是如此密切,每一位数都有实际意义,不能随意取舍。
正确地运用有效数字,是提高可信度、准确性的保证,因此,这就要求我们在处理数据时,不能随随便便,要认真对待。
ﻫ7、药品分析检验结果,误差可接受的限度范围7.1容量分析法最大允许相对偏差不得过0.3%;ﻫ7.2重量法最大允许相对偏差不得过0.5%ﻫ7.3一般仪器分析法最大允许相对偏差不得过2%7.4滴定液标定:标定、复标各3份最大允许相对偏差不得过0.1%,标定和复标平均值的相对偏差不得过0.1%7.5氮测定法最大允许相对偏差半微量法不得超过1%;常量法不得过0.5%;其中空白二份的极差不得大于0.05ml7.6氧瓶燃烧法最大允许相对偏差不得过0.5%7.7乙醇量测定法2次测定的标准偏差不得过±1.5%(n=3)ﻫ7.8碘值、羟值、皂化值平行二份,相对偏差不得过0.3%,酸值、过氧化值是限度检查只做一份。
利用摄像机变换矩阵的标定方法
摄像机变换矩阵的标定方法摄像机的标定是计算机视觉和计算机图形学领域中的重要任务之一。
摄像机变换矩阵的标定方法是一种常用的摄像机标定技术,通过该方法可以准确地估计出摄像机的内参和外参,从而实现对摄像机成像过程的准确建模,对后续的图像处理和分析任务具有重要价值。
1. 摄像机标定概述摄像机标定是指在计算机视觉中,通过对摄像机内部参数和外部参数的估计,建立从摄像机坐标系到图像坐标系的映射关系。
摄像机内部参数包括焦距、主点坐标等,表示了摄像机自身的特性;摄像机外部参数包括旋转矩阵和平移向量,表示了摄像机相对于世界坐标系的位置姿态。
摄像机标定的目的是通过标定图像,建立图像坐标和世界坐标之间的数学映射关系。
这个关系可以用摄像机变换矩阵来表示,摄像机变换矩阵包括内参矩阵和外参矩阵。
2. 摄像机内参标定摄像机内参是指描述了摄像机自身的内部特性,主要包括焦距、主点坐标、径向畸变等参数。
摄像机内参标定的目的是通过一系列已知3D空间点对应的图像点,估计出摄像机内参矩阵。
内参标定方法常用的有基于图像平面到摄像机坐标系的映射关系、基于棋盘格图像等。
•图像平面到摄像机坐标系的映射关系:该方法是通过求解摄像机内参矩阵的元素,构建了从图像平面到摄像机坐标系的映射关系。
通过使用至少6个已知3D-2D点对的图像进行计算,可以得到摄像机内参矩阵。
•棋盘格方法:该方法中,棋盘格提供了一种可重复的、准确的标定对象。
通过在各个已知3D-2D点对之间匹配,可以得到摄像机内参矩阵。
摄像机内参标定的结果可以用于后续图像处理任务中,如恢复真实尺度、物体测量、图像叠加等。
3. 摄像机外参标定摄像机外参是指描述了摄像机相对于世界坐标系的位置和姿态信息,主要包括旋转矩阵和平移向量。
摄像机外参标定的目的是通过已知3D空间点对应的图像点,估计出摄像机的外参矩阵。
摄像机外参标定方法常用的有基于独立点对的方法、基于单应性的方法等。
•独立点对的方法:该方法需要至少6个已知3D-2D点对的图像。
坐标测量的误差分析及校正
三坐标测量的误差分析及校正(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--三坐标测量的误差分析及校正摘要:三坐标测量机的测头是坐标测量机的关键部件,主要用来触测工件表面。
精度是三坐标测量机的一项重要技术指标。
文中系统地对三坐标测量机的误差来源进行分类,针对几何误差总结了现存的检测方法,最后给出了有利于实现低成本精度升级的误差修正方法。
关键词:三坐标测量,误差,修正,精度1.背景概况三坐标测量机(Coordinate Measuring Machine,CMM)是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三次元。
三坐标测量机就是在三个相互垂直的方向上有导向机构、测长元件、数显装置,有一个能够放置工件的工作台(大型和巨型不一定有),测头可以以手动或机动方式轻快地移动到被测点上,由读数设备和数显装置把被测点的坐标值显示出来的一种测量设备。
显然这是最简单、最原始的测量机。
有了这种测量机后,在测量容积里任意一点的坐标值都可通过读数装置和数显装置显示出来。
测量机的采点发讯装置是测头,在沿X、Y、Z三个轴的方向装有光栅尺和读数头。
其测量过程就是当测头接触工件并发出采点信号时,由控制系统去采集当前机床三轴坐标相对于机床原点的坐标值,再由计算机系统对数据进行处理和输出。
因此测量机可以用来测量直接尺寸,也可以获得间接尺寸和形位公差及各种相关关系,也可以实现全面扫描和一定的数据处理功能,为加工提供数据和测量结果。
自动型还可以进行自动测量,实现批量零件的自动检测。
一下是两种三坐标测量机的实图。
2.关键问题TP是接触式结构三维测头,由测头体、测杆、导线组成。
测头体内部结构如下图所示,这是一个弹簧结构,弹力大小即测力。
由3个小铁棒分别枕放在2个球上,在运动位置上形成6点接触。
在接触工件后产生触发信号,并用于停止测头的运动。
定量分析误差和数据处理
定量分析误差和数据处理第四章定量分析概述一、知识目标本章要求熟悉误差的来源及减小误差的方法;理解准确度、精密度的概念,准确度与精密度的关系;掌握有效数字的概念及运算方法,掌握误差的表示方法;了解系统误差特点和偶然误差的分布规律,了解误差及偏差的计算方法,了解可疑值的取舍方法。
熟悉滴定分析基本概念,理解滴定分析法对化学反应的要求,理解常见的滴定分析的方式;掌握滴定分析的标准溶液的配制方法,标准溶液浓度的表示方法和基准物质应具备的条件;了解滴定度的概念,ip[物质的量浓度与滴定度之间的换算关系。
二、能力目标通过对本章的学习,能根据误差特点判别误差类别和进行误差的减免,能正确表示误差;能熟练地运用有效数字进行数据记录和运算,树立“量”的概念;能对分析数据进行简单处理,能用Q值检验法和四倍法对分析数据中的可疑值进行取舍;初步具备评价数据的能力。
通过对本章的理论知识和实验技能学习,能根据滴定分析要求选择滴定反应、滴定方式;能根据测定要求正确选择滴定分析仪器;能较熟练使用容量瓶、移液管、吸量管、滴定管等常用仪器;能熟练运用直接法和间接法配制标准溶液;能正确表示滴定分析标准溶液的浓度;能熟练进行滴定分析的有关计算。
三、本章小结定量分析的任务是在已知物质组成的基础上准确测定试样中有关组分的含量测定,就不可避免地会产生误差。
欲对定量分析数据的可靠性和准确程度做出判断,以准确表达定量分析的结果,就要了解分析测定中误差产生的原因及误差出现的规律,并采取相应措施,减少测量误差,使测定值尽量接近其真值。
(一)定量分析的误差及减免方法1、误差的分类及产生原因:(1) 系统误差、偶然误差的定义。
26方法误差仪器误差(2)系统误差产生的主要原因试剂误差操作误差对照实验空白实验(3)系统误差减小或校正的措施标准仪器校正方法 2、误差的表示方法:(1)准确度与误差、精密度与偏差的关系,(2)准确度与精密度的关系,(3)提高分析准确度的方法(二)有效数字及分析数据的处理1、有效数字的意义2、有效数字的修约规则:四舍六入五留双加减运算3、有效数字的运算规则乘除运算4、定量分析数据处理及分析结果的表示方法4d检验法 5、可疑值的取舍 Q检验法以元素表示6、定量分析结果的表示方法以离子表示以氧化物表示以特殊形式表示(三)滴定分析的基本概念:滴定分析法;标准溶液;滴定;化学计量点;滴定终点;终点误差。
分析误差限度范围
分析误差限度范围分析误差限度范围,出处:中国药品标准检验操作规范。
● 容量分析法最大允许相对偏差不得超过0.3%;● 重量法最大允许相对偏差不得超过0.5%;● 氮测定法最大允许相对偏差不得超过1%;● 氧瓶燃烧法最大允许相对偏差不得超过0.5%;● 仪器分析法最大允许相对偏差不得超过2%;● 标定和复标各3份平行试验结果的相对平均偏差,不得超过0.1%,标定和复标平均值的相对偏差不得超过0.1%;● 恒重前后两次称重不超过0.3mg;● 干燥失重最大允许相对偏差不超过2%;药审中心:含量测定分析方法验证的可接受标准简介审评四部黄晓龙摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受标准,以利于判断该分析方法的可行性。
关键词:含量测定分析方法验证可接收标准在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。
为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则。
该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。
但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。
另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。
本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考。
1.准确度该指标主要是通过回收率来反映。
验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。
可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。
误差及其表示方法
误差及其表示方法部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑误差及其表示方法误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负>一. 误差的分类1. 系统误差<systermaticerror )——可定误差<determinateerror)<1)方法误差:拟定的分析方法本身不十分完善所造成;如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。
<2)仪器误差:主要是仪器本身不够准确或未经校准引起的;如:量器<容量平、滴定管等)和仪表刻度不准。
<3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起;<4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。
如滴定管读数总是偏高或偏低。
特性:重复出现、恒定不变<一定条件下)、单向性、大小可测出并校正,故有称为可定误差。
可以用对照实验、空白实验、校正仪器等办法加以校正。
2. 随机误差(randomerror>——不可定误差<indeterminateerror)产生原因与系统误差不同,它是由于某些偶然的因素所引起的。
如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。
特性:有时正、有时负,有时大、有时小,难控制<方向大小不固定,似无规律)但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律<统计学正态分布),可用统计学方法来处理系统误差——可检定和校正偶然误差——可控制只有校正了系统误差和控制了偶然误差,测定结果才可靠。
二. 准确度与精密度<一)准确度与误差<accuracy and error)准确度:测量值<x)与公认真值<m)之间的符合程度。
它说明测定结果的可靠性,用误差值来量度:绝对误差 = 个别测得值 - 真实值(1>但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。
第3章 误差分析和数据处理
射击误差示意图
现代测试技术第3章误差分析和数据处理
x A | | | |
测量值
x4
是粗大误差
现代测试技术第3章误差分析和数据处理
3.3 系统误差
现代测试技术第3章误差分析和数据处理
3.3.1 削弱系统误差的方法举例 一、概述 系统误差定义:在相同条件下多次测量同一 量时,误差的绝对值和符号保持恒定,或在条件 改变时按某种确定规律而变化的误差称为系统误 差。 系统误差特点: ① 是一个非随机变量。即系统误差出现不 服从统计规律,而服从确定的函数规律。 ② 重复测量时误差具有重现性。 ③ 可修正性。由于系统误差的重现性,确 定了具有可以修正的特点。
结论:
1、γ
时,γ
实 、 γ 示 定义不同。但当误差值较小
实≈γ 示。 实与γ 示
2 、当误差值较大时, γ 要求进行。
相差较大。
因此在计算时两者不能混用。要严格按规定的
现代测试技术第3章误差分析和数据处理
3.2 误差的来源和分类
现代测试技术第3章误差分析和数据处理
3.2.1 测量误差的来源
一般的测量过程都是条件受限的测量,必
A x 100% AX
现代测试技术第3章误差分析和数据处理
3.1.2 仪表的误差表示法 满度相对误差,也即引用误差。定义为绝
A m 100% Am
(3-1-4)
式中γ m 为满度相对误差, Δ A 为绝对误差,
Am为仪器的满度值。 如果已知仪器的满度相对误差 γ γ m×A m ≤ Δ A m
现代测试技术第3章误差分析和数据处理
3. 粗大误差是指明显超出规定条件下能预期 的误差。产生粗大误差的原因主要有: (1) 测量方法不当或错误。
光学测量系统的标定与精度分析
光学测量系统的标定与精度分析1. 背景光学测量技术是一种重要的非接触式测量手段,广泛应用于精密工程、制造业、质量控制等领域光学测量系统通过测量被测物体表面的光学特性来获取其几何信息,具有高精度、高分辨率、快速测量等优点然而,为了确保光学测量结果的准确性和可靠性,必须对光学测量系统进行严格的标定和精度分析本文将介绍光学测量系统的标定方法和精度分析过程2. 光学测量系统的组成及原理光学测量系统主要由光源、光学传感器、光学系统、数据采集与处理系统等组成光学测量原理示意图如下:光源–> 光学系统–> 被测物体–> 光学传感器–> 数据采集与处理系统光学系统将光源发出的光线投射到被测物体表面,物体表面反射的光线进入光学传感器,传感器将光信号转换为电信号,经过数据采集与处理系统处理后,得到被测物体的几何信息3. 光学测量系统的标定光学测量系统的标定是为了确定光学系统的参数,以及消除系统误差,提高测量精度标定过程主要包括以下几个步骤:3.1 选择标定对象标定对象应具有明显的几何特征,如棋盘格、圆点等本文以棋盘格为例进行标定3.2 采集标定图像将被测物体(棋盘格)放置在光学测量系统的测量范围内,调整光学系统,使被测物体在传感器上获得清晰的图像3.3 特征提取与匹配通过图像处理算法,提取标定对象的特征点,如角点、边缘点等然后,利用特征点匹配算法,将不同图像的特征点进行匹配,得到特征点之间的对应关系3.4 参数估计与优化利用对应关系,采用最小二乘法等优化算法,求解光学系统的参数,如内参、外参等同时,通过迭代优化算法,进一步提高参数估计的精度3.5 误差评估与补偿分析标定结果的误差,如镜头畸变、光强不均匀等针对这些误差,采用相应的补偿算法,提高光学测量系统的测量精度4. 光学测量系统的精度分析光学测量系统的精度分析主要涉及以下几个方面:4.1 系统分辨率光学测量系统的分辨率取决于光学传感器的像素尺寸像素尺寸越小,系统的分辨率越高此外,光学系统的光学畸变也会影响系统分辨率4.2 系统误差系统误差主要包括镜头畸变、光强不均匀等通过标定过程,可以消除或减小这些误差此外,光学测量系统的稳定性也是影响精度的关键因素4.3 环境因素光学测量系统的精度受到环境因素的影响,如温度、湿度、振动等在实际测量过程中,应尽量控制环境条件,减小环境因素对测量精度的影响4.4 测量方法与算法光学测量方法与算法的选择也会影响系统的精度针对不同的测量对象和需求,选择合适的测量方法与算法,可以提高光学测量系统的精度5. 总结光学测量系统的标定与精度分析是确保测量结果准确可靠的关键环节通过对光学测量系统的组成、原理、标定方法和精度分析进行详细介绍,有助于深入理解和应用光学测量技术在实际应用中,还需根据具体情况,优化系统参数、改进测量方法,以提高光学测量系统的性能光学测量系统的标定与精度提升1. 背景光学测量技术是一种基于光学原理的非接触式测量方法,被广泛应用于精密工程、制造业、质量控制等领域光学测量系统通过捕捉被测物体表面的光学信息来获取其几何特性,具有高精度、高分辨率、快速测量等优点然而,为了确保光学测量结果的准确性和可靠性,必须对光学测量系统进行严格的标定和精度分析本文将重点讨论光学测量系统的标定方法和精度提升策略2. 光学测量系统的组成及原理光学测量系统主要由光源、光学传感器、光学系统、数据采集与处理系统等组成光学测量原理示意图如下:光源–> 光学系统–> 被测物体–> 光学传感器–> 数据采集与处理系统光学系统将光源发出的光线投射到被测物体表面,物体表面反射的光线进入光学传感器,传感器将光信号转换为电信号,经过数据采集与处理系统处理后,得到被测物体的几何信息3. 光学测量系统的标定光学测量系统的标定是为了确定光学系统的参数,以及消除系统误差,提高测量精度标定过程主要包括以下几个步骤:3.1 选择标定对象标定对象应具有明显的几何特征,如棋盘格、圆点等本文以圆点为例进行标定3.2 采集标定图像将被测物体(圆点)放置在光学测量系统的测量范围内,调整光学系统,使被测物体在传感器上获得清晰的图像3.3 特征提取与匹配通过图像处理算法,提取标定对象的特征点,如圆心、边缘点等然后,利用特征点匹配算法,将不同图像的特征点进行匹配,得到特征点之间的对应关系3.4 参数估计与优化利用对应关系,采用最小二乘法等优化算法,求解光学系统的参数,如内参、外参等同时,通过迭代优化算法,进一步提高参数估计的精度3.5 误差评估与补偿分析标定结果的误差,如镜头畸变、光强不均匀等针对这些误差,采用相应的补偿算法,提高光学测量系统的测量精度4. 光学测量系统的精度提升光学测量系统的精度提升主要涉及以下几个方面:4.1 系统分辨率光学测量系统的分辨率取决于光学传感器的像素尺寸像素尺寸越小,系统的分辨率越高此外,光学系统的光学畸变也会影响系统分辨率4.2 系统误差系统误差主要包括镜头畸变、光强不均匀等通过标定过程,可以消除或减小这些误差此外,光学测量系统的稳定性也是影响精度的关键因素4.3 环境因素光学测量系统的精度受到环境因素的影响,如温度、湿度、振动等在实际测量过程中,应尽量控制环境条件,减小环境因素对测量精度的影响4.4 测量方法与算法光学测量方法与算法的选择也会影响系统的精度针对不同的测量对象和需求,选择合适的测量方法与算法,可以提高光学测量系统的精度4.5 系统优化与调整根据实际测量需求,对光学测量系统进行优化与调整例如,通过调整光源亮度、改变光学系统参数等,使系统在最佳状态下工作,提高测量精度5. 总结光学测量系统的标定与精度提升是确保测量结果准确可靠的关键环节通过对光学测量系统的组成、原理、标定方法和精度提升策略进行详细介绍,有助于深入理解和应用光学测量技术在实际应用中,还需根据具体情况,优化系统参数、改进测量方法,以提高光学测量系统的性能应用场合光学测量系统的应用场合非常广泛,包括但不限于以下几个领域:1. 精密工程在精密工程领域,光学测量系统可用于零件加工、装配过程中的尺寸检测、形状误差测量等例如,在汽车、航空、电子等行业,光学测量系统可以帮助工程师准确地检测零部件的尺寸和形状,确保产品质量和性能2. 制造业在制造业中,光学测量系统可用于生产线的在线检测,实时监控产品尺寸、形状等几何特性,提高产品质量,减少废品率此外,光学测量系统还可以用于成品检验,确保产品符合设计要求3. 质量控制光学测量系统在质量控制领域具有重要作用通过定期对产品进行光学测量,可以及时发现质量问题,采取措施进行改进,保证产品质量4. 科研与教育在科研和教育领域,光学测量系统可用于各种实验和研究项目,如光学、物理、材料科学等同时,光学测量系统也是高校、研究所等教育机构进行实验教学的重要工具5. 医疗与生物工程在医疗和生物工程领域,光学测量系统可用于对人体组织、细胞等微小结构的尺寸、形状等进行精确测量,为疾病诊断、治疗和研究提供有力支持注意事项在使用光学测量系统时,需要注意以下几点:1. 环境条件光学测量系统对环境条件较为敏感,应尽量避免在温度、湿度、灰尘等条件变化较大的环境中使用如无法避免,需对环境进行控制,确保测量过程中环境条件稳定2. 设备维护与校准定期对光学测量系统进行维护和校准,确保设备性能稳定对于光学镜头、传感器等易损部件,需特别注意保护3. 操作规范操作光学测量系统时,应遵循操作规程,避免用力过猛、碰撞等可能导致设备损坏的行为同时,确保操作人员具备相关知识和技能4. 数据处理与分析光学测量系统获取的数据需经过专业软件进行处理和分析在数据处理过程中,应注意检查数据的一致性、有效性,避免因数据问题导致测量结果错误5. 标定与精度分析为确保光学测量系统的测量精度,需定期进行标定和精度分析在标定过程中,注意选择合适的标定对象和方法,确保标定结果的准确性6. 软件选择与更新选择适合光学测量系统的数据处理软件,并根据需要进行更新新版本的软件可能包含更多的功能和改进,有助于提高测量精度和效率7. 安全防护在使用光学测量系统时,应注意安全防护措施,避免激光、高温等对操作人员造成伤害为防止意外情况,可在设备周围设置防护罩、警示标志等8. 培训与交流定期对操作人员进行光学测量技术的培训,提高其技能水平同时,加强与其他领域专家的交流与合作,不断优化光学测量系统的应用光学测量系统在各种应用场合中具有重要作用为确保测量结果的准确性和可靠性,需注意以上几点,并根据实际情况进行调整和改进通过合理的操作和维护,光学测量系统将为各领域的研发和生产提供有力支持。
分析化学第六版第3章 分析化学中的误差与数据处理及答案
第三章分析化学中的误差与数据处理一、判断题(对的打√, 错的打×)1、滴定分析的相对误差一般要求为小于0.1%,滴定时消耗的标准溶液体积应控制在10~15mL。
(B)2、、分析测定结果的偶然误差可通过适当增加平行测定次数来减免。
(A)3、标准偏差可以使大偏差能更显著地反映出来。
(A)4、所谓终点误差是由于操作者终点判断失误或操作不熟练而引起的。
(B)5、测定的精密度好,但准确度不一定高,消除了系统误差后,精密度好,测定结果的准确度就高。
(A)6、置信区间的大小受置信度的影响,置信度越大,置信区间越小。
(B)二、选择题:1、下列论述中错误的是( D )A、方法误差属于系统误差B、系统误差具有单向性C、系统误差又称可测误差D、系统误差呈正态分布2、下列论述中不正确的是( C )A、偶然误差具有随机性B、偶然误差服从正态分布C、偶然误差具有单向性D、偶然误差是由不确定的因素引起的3、下列情况中引起偶然误差的是( A )A、读取滴定管读数时,最后一位数字估计不准B、使用腐蚀的砝码进行称量C、标定EDTA溶液时,所用金属锌不纯D、所用试剂中含有被测组分4、分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称(C)A、0.1000克以上B、0.1000克以下C、0.2克以上D、0.2克以下5、分析实验中由于试剂不纯而引起的误差是(A)A、系统误差B、过失误差C、偶然误差D、方法误差6、定量分析工作要求测定结果的误差( C)A、没有要求B、等于零C、在充许误差范围内D、略大于充许误差7、可减小偶然误差的方法是( D )A、进行仪器校正B、作对照试验C、作空白试验D、增加平行测定次数8、从精密度就可以判断分析结果可靠的前提是(B)A、偶然误差小B、系统误差小C、平均偏差小D、标准偏差小9、[0.1010×(25.00-18.80)]/1000结果应以几位有效数字报出(B)A、5B、4C、3D、210、用失去部分结晶水的Na2B4O7·10H2O标定HCl溶液的浓度时,测得的HCl浓度与实际浓度相比将(B)A、偏高B、偏低C、一致D、无法确定11、pH 4.230 有几位有效数字(B)A、4B、3C、2D、112、某人以差示光度法测定某药物中主成分含量时,称取此药物0.0250g,最后计算其主成分含量为98.25%,此结果是否正确;若不正确,正确值应为(D)A、正确B、不正确,98.0%C、不正确,98%D、不正确,98.2%13、一个样品分析结果的准确度不好,但精密度好,可能存在( C)A、操作失误B、记录有差错C、使用试剂不纯D、随机误差大14、某学生用4d法则判断异常值的取舍时,分以下四步进行,其中错误的步骤为( A )A、求出全部测量值的平均值B、求出不包括待检值(x)的平均偏差C、求出待检值与平均值之差的绝对值D、将平均偏差与上述绝对值进行比较15、有一组平行测定所得的分析数据,要判断其中是否有异常值,应采用( B)A、t检验B、格鲁布斯法C、F检验D、方差分析16、标定某标准溶液的浓度,其3次平行测定的结果为:0.1023,0.1020,0.1024 mol·L-1。
误差分析及解决办法
1) 细菌内毒素标准品种类
➢细菌内毒素国际标准品
➢细菌内毒素国家标准品
➢细菌内毒素工作标准品 细菌内毒素国家标准品系自大肠埃希菌提取
精制而成,用于标定、复核、仲裁鲎试剂灵敏度 和标定细菌内毒素工作标准品的效价。
细菌内毒素工作标准品系以细菌内毒素国家 标准品为基准标定其效价,用于试验中鲎试剂灵 敏度复核、干扰试验及各种阳性对照。
6、环境的影响
保温时间 保温温度
1)
将细菌内毒素工作标准品用细菌内毒素检查 用水稀释成2λ,进行鲎试验,然后分别放置于 25、28、31、34、37、41、43、46、49℃水浴保 温。实验中观察到凝胶形成的速度随着温度的升 高而加快,但到达49℃保温90min也未出现凝胶。
从实验可以看出,温度对鲎试剂的灵敏度 影响很大,保温温度在25~41℃之间,随着温 度的升高,反应速度也升高,41℃尚未达到反 应速度峰值,25℃ 时反应速度已相当快;在 41~46℃之间,温度对鲎试剂的灵敏度无明显 影响;达到49℃或更高温度时,随温度升高而 使酶蛋白逐渐变性,则鲎试剂被破坏,反应速 度反而降低。
应该特别注意,该规程明确规定最后冲洗玻璃器皿 必须“用蒸馏水冲洗,禁用纯化水冲洗。”有的客 户使用反渗透制备的纯化水冲洗试验用玻璃器皿, 结果试验中所有的阳性对
照都为阴性,复核鲎试剂灵敏度时试验结果误差较 大,这主要是由于纯化水和蒸馏水的质量不同所造 成的。因纯化水中存在的阴阳离子经250℃高温干烤 不能完全被破坏,这时不同的离子就产生对鲎试剂 酶反应抑制或增强的反应,为了保证试验结果的准 确性和检验报告的权威性,我们应该严格遵守操作 规程,用多效蒸馏水冲洗鲎试验用玻璃器皿。
2) PH值对反应速度的影响 常见现象:样品阳性不成立。源自相 对7.0活
误差、故障分析
一、误差分析量热仪1、发热量测试中可能发生的误差及分析(1).同一编号不同瓶内煤样的不一致引起的误差;(2).同一瓶内煤样的不均匀性引起的误差;(3).测温传感器的测温精度不足引起的误差;(15~35)℃,非线性≤0.002℃(国标要求)(应选择测温精度更高的测温探头,传统的测温铂电阻为PT100,若使用PT1000测温探头,测温精度大大提高.)(4).煤样燃烧不完全引起的误差;(5).方法引起的误差:内外桶存在热交换,通过瑞方或国标公式校正,存在一定的偏差;(6).称量试样重量引起的误差;(7).试样水分引起的误差;(8).其它偶然因素引起的误差。
2、影响煤炭发热量准确测定的因素及对策:(1).热容量直接关系到发热量测定的准确性,应定时按规定进行标定。
(2).环境温度的影响。
由于环境温度的变化,往往难以保持测定时的环境温度与标定仪器时的环境温度相一致,经对比,采用瑞方公式受环境温度的变化和末期内外筒温差的变化影响较小。
(3).煤样燃烧稳定性的影响。
煤样在氧弹燃烧皿中燃烧时,试样一方面释放大量的热量,同时,又释放大量的气体,两过程产生的能量如不能及时释放,将会导致试样飞溅,测定易飞溅煤样的发热量可采用压饼并切成2~4mm的小块称取测试或包擦镜纸测试。
(4).高灰难燃煤样:对于该类低热值煤样,采用在坩埚底部垫酸洗石棉绒和包擦镜纸或掺苯甲酸包纸的方法测试热值。
(5).氧弹内加水量(10mL)应严格控制。
(6).使用自动量热仪时应注意以下几个方面:a.水温变化。
随着实验次数增加,系统水温逐渐升高,从而导致热容量发生变化。
选用能自动控制外桶或恒温桶水温的自动量热仪,不带控温装置的量热仪应控制每天设备测试的次数。
b.电磁阀故障。
c.测温元件故障。
d.对自动量热仪要做到定期检修维护,定期更换实验用水.(仪器配备水质净化装置更好.)(7).煤样燃烧情况检查:煤的发热量是指煤样在氧弹内充分燃烧后的热值,如果燃烧不充分就会影响其热值的准确测定,从而导致测得的试验数据不准确,因此每次试验结束,都必须要对氧弹内部进行检查,观察是否有煤样发生喷溅、是否有燃烧不完全的炭黑、燃烧皿内是否有没烧尽的煤样等现象发生。
完整版)分析化学知识点总结
完整版)分析化学知识点总结第二章:误差和数据分析处理-章节小结1.基本概念及术语准确度是指分析结果与真实值接近的程度,其大小可用误差表示。
精密度是指平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。
系统误差是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。
它包括方法误差、仪器或试剂误差及操作误差三种。
偶然误差是由某些偶然因素所引起的误差,其大小和正负均不固定。
有效数字是指在分析工作中实际上能测量到的数字。
通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。
t分布指少量测量数据平均值的概率误差分布。
可采用t分布对有限测量数据进行统计处理。
置信水平与显著性水平指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。
置信区间与置信限系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。
分为双侧置信区间与单侧置信区间。
显著性检验用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。
包括t检验和F检验。
2.重点和难点1)准确度与精密度的概念及相互关系准确度与精密度具有不同的概念。
当有真值(或标准值)作比较时,它们从不同侧面反映了分析结果的可靠性。
准确度表示测量结果的正确性,精密度表示测量结果的重复性或重现性。
虽然精密度是保证准确度的先决条件,但高的精密度不一定能保证高的准确度,因为可能存在系统误差。
只有在消除或校正了系统误差的前提下,精密度高的分析结果才是可取的,因为它最接近于真值(或标准值)。
在这种情况下,用于衡量精密度的偏差也反映了测量结果的准确程度。
系统误差可分为方法误差、仪器或试剂误差及操作误差。
这种误差由确定的原因引起,具有固定的方向和大小,会在重复测定时重复出现。
误差分析基础
要同时兼顾准确度和精密度才能成为精确的测量。 精度等级的确定包含了精确度和准确度在内的多
项技术指标。
2.3.误差原因分析
⑴被测物理模型的前提条件 与实际检测条件有出入
⑵测量器件的材料或工艺不 佳使特性随时间劣化
第二章 误差分析基础
要掌握的要点: 1.根据检测目的选择测量精度。 2.误差原因分析及误差的表示方法。 3.间接检测时误差的传递法则。 4.平均值误差的估计及粗大误差的检验。 5.用测量数据推导实验公式
2.0 基本误差分类
绝对误差dX = X(测量值) - A(真值) dX 数值真实,但无法进行实际有效的比较;
由测量范围内的最大绝对误差dXmax代替dX,并在限定的量程内,判断各 测量点的绝对误差dX1,dX2,…dXn, 选取最大值dXmax,
由此得到测量范围内的最大相对误差,即最大引用误差dZ 。 其意义在于: 保持分母量程不变,求取量程范围内的最大误差点,以此来确定该 表的准确度下限,可作为精度检验的基本判据。
相对误差dY = dX / A *100% dY 是相对值,与A的数值大小有很大影响;
例:dX = 0.5 , 当A分别为10和1时,dY分别为5%和50%,相差很大! 引用误差dz = dX / (Xmax – Xmin) *100% .
Xmax 测量上限, Xmin测量下限 , 最大引用误差dZ = dXmax /(Xmax – Xmin) *100%
⑷ p( x ) 的概率为1。
2.2.1.真值、测量值与误差的关系
X:误差 M测量值 A0真值 M A0 (2-1)
算术平均值 A 1 n Mi
分析误差限度范围
分析误差限度范围分析误差限度范围,出处:中国药品标准检验操作规范。
•容量分析法最大允许相对偏差不得超过0.3% ;•重量法最大允许相对偏差不得超过0.5% ;•氮测定法最大允许相对偏差不得超过1%;•氧瓶燃烧法最大允许相对偏差不得超过0.5% ;•仪器分析法最大允许相对偏差不得超过2%;•标定和复标各3份平行试验结果的相对平均偏差,不得超过0.1 %,标定和复标平均值的相对偏差不得超过0.1% ;•恒重前后两次称重不超过0.3mg ;•干燥失重最大允许相对偏差不超过2%;药审中心:含量测定分析方法验证的可接受标准简介审评四部黄晓龙摘要:本文介绍了在对含量测定所用的分析方法进行方法学验证时,各项指标的可接受标准,以利于判断该分析方法的可行性。
关键词:含量测定分析方法验证可接收标准在进行质量研究的过程中,一项重要的工作就是要对质量标准中所涉及到的分析方法进行方法学验证,以保证所用的分析方法确实能够用于在研药品的质量控制。
为规范对各种分析方法的验证要求,我国已于2005年颁布了分析方法验证的指导原则。
该指导原则对需要验证的分析方法及验证的具体指标做了比较详细的阐述。
但是文中未涉及各具体指标在验证时的可接受标准,国际上已颁布的指导原则中也未发现相关的要求。
另一方面,大多数药品研发单位在进行质量研究时,已逐步认识到分析方法验证的必要性与重要性,大都也在按照指导原则的要求进行分析方法验证,但验证完后却因没有一个明确的可接受标准,而难以判断该分析方法是否符合要求。
本文结合国外一些大型药品研发企业在此方面的要求,提出了在对含量测定方法进行验证时的可接受标准,供国内的药品研发单位在进行研究时参考。
1 •准确度该指标主要是通过回收率来反映。
验证时一般要求分别配制浓度为80 %、100 %和120 %的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。
可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0% 之间,9个回收率数据的相对标准差(RSD )应不大于2.0%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 MIMU 误差分析、标定-第六章 惯性测量组合误差分析及其标定技术微型速率捷联惯性测量组合(陀螺仪、加速度计 )性能的好坏直接影响惯性测量的精度。
因此,研究惯性测量组合误差源,建立误差模型方程,准确评价其性能精度,加强惯性器件的标定技术,利用软件通过误差补偿措施来进一步提高使用时的实际精度,已成为其使用过程中的重要环节,对惯性测量组合的误差分析和标定,有下列三种目的:(1)评价惯性测量组合性能、精度,考核是否满足规定的要求。
(2)建立惯性测量组合模型方程,利用计算机按使用条件计算出仪表的规律性误差,并给予补偿,来提高仪表的实际使用精度。
(3)确定仪表误差的随机散布规律,作为使用规范的依据。
6.1 误差分析惯性测量组合测量仪表的输出包含有对敏感的物理量的正确反映、由仪表本身制造缺陷引起的误差(标度因数误差和不对称性误差)、安装误差(交叉耦合误差)、漂移误差、随机误差以及由外界因素影响而产生的误差等。
用数学形式来表示输出、输入和误差间的关系称为仪表的误差模型方程。
影响惯性测量组合误差的外界因素很多,如电压、频率、温度、气压、周围的电场、载体的线运动、角运动及时间等。
对外界力学和电学环境造成的误差可以采取屏蔽、隔离的措施,使之难以影响到仪器的内部。
对于安装误差,来源于制造工艺上,采用精密测量仪器测试该小角度,其误差一般限制在一定的范围。
其它不能被抑制的外界因素就只剩下仪表本身缺陷误差、漂移误差、随机误差和飞行体的线运动、角运动引起的误差,它们之间是相关的,可通过误差标定或进行补偿可消除其影响。
1、误差模型方程的建立对于陀螺仪,有r t a f D D D D D D ++++=ω (6-1)对于加速度计,有r t a f A A A A A A ++++=ω (6-2) 式中 A D ,---分别为陀螺仪、加速度计输出;f f A D ,---分别为陀螺仪、加速度计输出中由于仪表本身缺陷所引起的误差,它不受外界因素的影响;a a A D ,---分别为陀螺仪、加速度计输出中随线加速度变化的部分。
对于陀螺仪是误差项,对于加速度计是输入加速度的正确反映和非线性误差;ωωA D ,---分别为陀螺仪、加速度计输出中随角速度变化的部分,对于陀螺仪是输入角速度的正确反映和非线性误差,对于加速度计是误差项; t t A D ,---分别为陀螺仪、加速度计输出中随时间变化的误差; r r A D ,---分别为陀螺仪、加速度计输出中的随机误差。
为了方便,模型方程可用矩阵形式列写如下:]][[][K X Y = (6-3)式中 ][Y ---惯测组合测试中的输出矢量;][X ---测试中输入状态矢量;][K ---模型方程系数矩阵。
2、标度因数静态误差在静止基座上的陀螺仪和在恒速转动中的加速度计的标度因数误差,称为标度因数静态误差。
陀螺仪干扰力矩的影响,在陀螺仪输出中不仅含有与输入角速度成比例的标度因数g E ,同时还有与加速度平方成比例的标度因数)2(g E ,陀螺仪的输出方程为2)2()1()(ωωδg g g E E f D ++= (6-4)式中,g E ------仪表的标度因数; g δ------标度因数误差的相对值;)2(g E ------与加速度平方成正比的标度因数;加速度输出方程为6 MIMU 误差分析、标定-2)2()1()(a K a K f A a a a ++=δ (6-5)式中,a K ------加速度计的标度因数; a δ------标度因数误差的相对值;)2(a K ------与加速度平方成正比的标度因数;纵向、法向、横向加速度计标度因数误差表示为z z y y x x K K K K K K /,/,/111δδδ;滚动、俯仰、偏航陀螺标度因数误差表示为z z y y x x E E E E E E /,/,/111δδδ,通过对传感器的标定,可以确定标度因数的误差分布,并且可以拟合标度因数曲线,确定标度因数值。
3、惯性仪表系统不对称误差陀螺仪回路和加速度计回路,各环节中输出-输入关系并不是理想的线性,某些环节的正反向不对称,可以造成输出-输入特性的正反向不对称,具有正、反向不对称的陀螺系统和加速度系统在测量载体按照简谐规律变化的角振动和线振动时,输出量产生整流误差,此误差为惯性仪表不对称误差。
)(K E图 6.1 正反向不对称性而造成的输出整流误差示意图在实际使用过程中,将两个同工艺下制造的惯性仪表反对称使用,即将其中一个传感器正向标度因数作为另外一个传感器反向标度因数使用,来减少其不对称误差。
4、惯性测量组合的交叉耦合误差惯性测量组合中,互相垂直三轴之间如果存在小角度(如制造工艺引起的不垂直),使得在第三轴上的角运动和线运动在其他两输出轴产生测量误差,称为交叉耦合误差。
纵向、法向、横向加速度计安装误差表示为z yz z xz y zy y xy x zx x yx K K K K K K K K K K K K /,/;/,/;/,/δδδδδδ,滚动、俯仰、偏航陀螺标度因数表示为z yz z xz y zy y xy x zx x yx E E E E E E E E E E E E /,/;/,/;/,/δδδδδδ,交叉耦合误差可通过速率标定试验确定。
5、惯性测量组合的漂移误差惯性测量组合的漂移误差来源于系统性漂移和随机性漂移,系统性漂移包括与加速度无关的漂移和与加速度一次方有关的漂移率,随机性漂移包括固定位置随机漂移率、多位置随机漂移率和时间随机漂移率。
滚动、俯仰、偏航陀螺漂移率表示为滚转通道3210,,,x x x x D D D D δδδδ;偏航通道3210,,,y y y y D D D D δδδδ;俯仰通道3210,,,z z z z D D D D δδδδ。
其中,0x D 为陀螺X 轴零次项漂移,0y D 为陀螺Y 轴零次项漂移,0z D 为陀螺Z 轴零次项漂移;1x D 为陀螺X 轴与X 方向的加速度有关的一次项漂移,2x D 为陀螺X 轴与Y 方向的加速度有关的一次项漂移,3x D 为陀螺X 轴与Z 方向的加速度有关的一次项漂移;1y D 为陀螺Y 轴与X 方向的加速度有关的一次项漂移,2y D 为陀螺Y 轴与Y 方向的加速度有关的一次项漂移,3y D 为陀螺Y 轴与Z 方向的加速度有关的一次项漂移;1z D 为陀螺Z 轴与X 方向的加速度有关的一次项漂移,2z D 为陀螺Z 轴与Y 方向的加速度有关的一次项漂移,3z D 为陀螺Z 轴与Z 方向的加速度有关的一次项漂移。
采用位置试验方法按照统计规律可以求得,计算周期每次间隔时间大于12小时,滚动、偏航和俯仰的随机漂移率为⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+++⨯=+++⨯=+++⨯=z z z z z z yy y y y y x x x x x x E D D D D E D D D D E D D D D 2322212023222120232221207.27.27.2δδδδδδδδδδδδδδδ (6-6) 6、加速度计零位稳定性当输入量为零时,加速度计输出量为零位偏值,纵向、法向、横向加速度计零位稳定性表示为z z y y x x K K K K K K /,/,/000δδδ。
6 MIMU 误差分析、标定-6.2 惯性测量组合的标定1、惯性测量组合单元标定的标准信息 (1)线运动的标准输入条件重力加速度矢量作为标定加速度计传递系数和标定以线加速度为自变量的模型方程各系数的标准输入量,也可以在系统测试时用作标定水平的基准。
以重力加速度矢量作为标准输入时,输入范围只限于土l 0g 。
在测试时,通常以改变仪表相对于重力加速度矢量的位置来改变仪表各轴的输入信息。
(2)角运动的标准输入条件地球转速是一恒速矢量,其值为15.04107°/h ,可以作为角运动输入的基准。
但在实际使用中,常采用突停台,可以设定输入角速度。
(3)时间基准常用的时间基准是恒星时间,为地球相对于惯性空间自转一周的时间,也称恒星时,其值为23h59min57.33s 。
2、惯性测量组合单元的标定(1)陀螺仪以角运动作为输入变量的速率标定试验MG100陀螺仪是敏感角速率运动的,以角速率作为输入的速率标定试验就是使惯性器件承受输入角速度i ω,测量其输出电压i F 的信息,以确定陀螺仪的传递系数K 。
用突停台作为提供角速率的设备。
给惯性测量组合标定轴分别施以土5°/s 、土12.5°/s 、土18°/s 、土27°/s 、土36°/s 、土45°/s 、土60°/s 的匀速率。
对于惯性测量组合速率标定有自测经验公式:εω+•+=i o i E E F (6-7)式中 i F ---速率各点的实测值,单位为V ;i ω---组合标定轴输入角速率,单位为º/s ;0E ---常值项系数,单位为电压;E ---组合标定轴传递函数,单位为(V /º/s )。
采用线性回归理论对(6—7)处理,求E E ,0,i i E E F ω+=0称为i F 对i ω的回归线,E称为陀螺仪传递系数。
将惯测组合安放在速率转台上,分别绕X s ,Y s ,Z s 轴作恒速试验,读取3个通道陀螺仪的输出,代入模型方程,即可求得陀螺仪的传递系数和安装误差。
当惯测组合X s 朝上时,以士10°/s 速率匀速旋转, Y s 轴输出为E Y1,Z s 轴输出为E z1;以-10°/s 速率转一周,Y s 轴输出为E Y2,Z ,轴输出为E z2。
当惯测组合Y,朝上时,以士10°/s 速率转一周,X s 轴输出为E x1,Z s 轴输出为E z3,;以-10°/s 速率转一周,X s 轴输出为,Z s 轴输出为E Y4。
当惯测组合Z s 朝上时,以士10°/s 速率转一周, X s 轴输出为E x3,Y s 轴输出为E Y3;以-10°/s 速率转一周,X s 轴输出为E x4,Y s 轴输出为E Y4。
安装误差表达式如下:yy y xy ME E E E 1212-=,z z z xz ME E E E 1212-=, xx x yx ME E E E 1212-=z z z yz ME E E E 1432-=,x x x zx ME E E E 1432-=, yy y zy ME E E E 1432-= (6-8)式中,M =360º,x E 1表示陀螺X 轴的标度因数,y E 1表示陀螺Y 轴的标度因数,zE 1表示陀螺Z 轴的标度因数。