γ射线的简介

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Kr—常数,32.9×10-16C·m3(Kg·h·Bq)

—5.42×10-7 C/(Kg·h)

N

X

δ—透明厚度,单位:mm

h—半价层(8.78)

Rx—安全防护距离,单位:m

当源活度为16 Ci,透明厚度为18mm时,由上述公式计算得,安全防护距离为29m。

3)放射性活度:放射性活度是表示放射性核素特征的物理量,它的定义为处于特定能态的一定量的放射性核素,在dt时间内发生核跃迁数的期望值除以dt。放射性活度用A表示,单位用贝克(勒尔),符号为Bq.1贝克一个物质的放射性强度的大小通常不用体积或质量的大小来衡量,而是用放射性活度来表示。放射性物质在单位时间内发生衰变的原子核数称为它的放射性活度。在1975年国际计量大会上,规定了放射性活度的国际单位是秒的倒数(s-1),1Bq就是放射性物质在1秒内有1个原子核发生衰变。2.5MBq/L就是在1升样品中每秒有2.5M个原子发生衰变。放射性强度是放射性物质的固有属性,只和放射性物质的多少(浓度)有关,而这和温度、压强等外界条件无关。

1居里=3.7×1010贝克

居里的符号是Ci。

2.不可见光

当人类观察太空时,看到的为“可见光”,然而电磁波谱的大部分是由不同辐射组成,当中的辐射的波长有较可见光长,亦有较短,大部分单靠肉眼并不能看到。通过探测伽马射线能提供肉眼所看不到的太空影像。2008年,美国发射的费米太空望远镜,就是通过伽马射线探查宇宙的。

太空中的伽马射线

在太空中产生的伽马射线是由恒星核心的核聚变产生的,因为无法穿透地球大气层,因此无法到达地球的低层大气层,只能在太空中被探测到。太空中的伽马射线是在1967年由一颗名为“维拉斯”的人造卫星首次观测到。从20世纪70年代初由不同人造卫星所探测到的伽马射线图片,提供了关于几百颗此前并未发现到的恒星及可能的黑洞。于90年代发射的人造卫星(康普顿伽马射线观测台),提供了关于超新星、年轻星团、类星体等不同的天文信息。

伽马射线的波长与形成

γ射线是一种强电磁波,它的波长比X射线还要短。一般波长<0.001纳米。

在原子核反应中,当原子核发生α、β衰变后,往往衰变到某个激发态,处于激

发态的原子核仍是不稳定的,并且会通过释放一系列能量使其跃迁到稳定的状态,而这些能量的释放是通过射线辐射来实现的,这种射线就是γ射线。

伽马射线对人体的影响

γ射线具有极强的穿透本领。人体受到γ射线照射后,γ射线可以进入到人体的内部,并与体内细胞发生电离作用,电离产生的离子能侵蚀复杂的有机分子,如蛋白质、核酸和酶,它们都是构成活细胞组织的主要成份,一旦它们遭到破坏,就会导致人体内的正常化学过程受到干扰,严重的可以使细胞死亡。

3.核爆炸

一般来说:核爆炸(比如原子弹、氢弹的爆炸)的杀伤力量由四个因素构成:冲击波、光辐射、放射性沾染和贯穿辐射。其中贯穿辐射则主要由强γ射线和中子流组成。由此可见,核爆炸本身就是一个γ射线光源。通过结构的巧妙设计,可以缩小核爆炸的其他硬杀伤因素,使爆炸的能量主要以γ射线的形式释放,并尽可能地延长γ射线的作用时间(可以为普通核爆炸的三倍),这种核弹就是γ射线弹。

与其他核武器相比,γ射线的威力主要表现在以下两个方面:一是γ射线的能量大。由于γ射线的波长非常短,频率高,因此具有非常大的能量。高能量的γ射线对人体的破坏作用是相当大的,当人体受到γ射线的辐射剂量达到200-600雷姆时,人体造血器官如骨髓将遭到损坏,白血球严重地减少,内出血、头发脱落,在两个月内死亡的概率为—80%;当辐射剂量为600-1000雷姆时,在两个月内死亡的概率为80-100%;当辐射剂量为1000-1500雷姆时,人体肠胃系统将遭到破坏,发生腹泻、发烧、内分泌失调,在两周内死亡概率几乎为100%;

当辐射剂量为5000雷姆以上时,可导致中枢神经系统受到破坏,发生痉挛、震颤、失调、嗜睡,在两天内死亡的概率为100%。二是γ射线的穿透本领极强。

γ射线是一种杀人武器,它比中子弹的威力大得多。中子弹是以中子流作为攻击的手段,但是中子的产额较少,只占核爆炸放出能量的很小一部分,所以杀伤范围只有500-700米,一般作为战术武器来使用。γ射线的杀伤范围,据说为方圆100万平方公里,这相当于以阿尔卑斯山为中心的整个南欧。因此,它是一种极具威慑力的战略武器。

4.无声

辐射警示标示

γ射线弹除杀伤力大外,还有两个突出的特点:一是γ射线弹无需炸药引爆。

一般的核弹都装有高爆炸药和雷管,所以贮存时易发生事故。而γ射线弹则没有引爆炸药,所以平时贮存安全得多。二是γ射线弹没有爆炸效应。进行这种核试验不易不测量到,即使在敌方上空爆炸也不易被察觉。因此γ射线弹是很难防御的,正如美国国防部长科恩在接受德国《世界报》的采访时说,“这种武器是无声的、具有瞬时效应”。可见,一旦这个“悄无声息”的杀手闯入战场,将成为影响战场格局的重要因素。

5.作用

γ射线与物质的相互作用机制属于全或无相互作用,不同于α、β射线的多次小相互作用,γ射线穿透物质后强度减少但能量几乎不降低,α、β射线穿透物质后强度减少,能量也降低。

(1)光电效应

γ光子与介质的原子相互作用时,整个光子被原子吸收,其所有能量传递给原子中的一个电子(多发生于内层电子)。该电子获得能量后就离开原子而被发射出来,称为光电子。光电子的能量等于入射γ光子的能量减去电子的结合能。光电子与普通电子一样,能继续与介质产生激发、电离等作用。由于电子壳层出现空位,外层电子补空位并发射特征X射线。但该光人眼不可见,频率最高,波长最短(波在真空中v=c光速,c=λf,λ波长,f频率)

(2)康普顿效应

1923年美国物理学家康普顿发现X光与电子散射时波长会发生移动,称为康普顿效应。

γ光子与原子外层电子(可视为自由电子)发生弹性碰撞,γ光子只将部分能量传递给原子中外层电子,使该电子脱离核的束缚从原子中射出。光子本身改变运动方向。被发射出的电子称为康普顿电子,能继续与介质发生相互作用。散射光子与入射光子的方向间夹角称为散射角,一般记为θ。反冲电子反冲方向与入射光子的方向间夹角称为反冲角,一般记为φ。当散射角θ=0°,散射光子的能量为最大值,这时反冲电子的能量为0,光子能量没有损失;当散射角θ=180°时,入射光子和电子对头碰撞,沿相反方向散射回来,而反冲电子沿入射射光子方向飞出,这种情况称反散射,此时散射光子的能量最小。

(3)电子对效应

相关文档
最新文档