定义与命题PPT课件
合集下载
定义与命题PPT课件(北师大版)
《本来》问世之前,世界上还没有一本数学书籍像《本来》 这样编排.因此,《本来》是一部具有划时代意义的著作.
•新知探 九条基究本事实:
1.两点确定一条直线. 2.两点之间线段最短. 3.同一平面内,过一点有且只有一条直线与已知直 线垂直. 4.两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行(即:同位角相等,两直线平行). 5.过直线外一点有且只有一条直线与这条直线平行. 6.两边及其夹角分别相等的两个三角形全等. 7.两角及其夹边分别相等的两个三角形全等. 8.三边分别相等的两个三角形全等. 另外一条基本事实我们将在后面的学习中认识它.
是质数; √(4)如果两条直线都和第三条直线平行,那么这两
条直线也互相平行; (5)你喜欢数学吗? (6)作线段AB=CD.
命题的定义:判断一件事情的句子.
(1)(2)(3)(4)都是命题.你能再举几个例子吗?
•新知探 下面的究语句中,哪些语句是命题?
(1)你喜欢数学吗? (2)作线段AB=a. (3)平行用符号“∥”表示.
·指出上述命题的条件和结论.
·上述命题哪些是正确的?哪些是不正确的?
•新知探 究
真假命题的定义: 正确的命题称为真命题; 不正确的命题称为假命题.
注意: 要说明一个命题是假命题,只需举一个反例.反例
是指具备命题的条件,而不具有命题的结论的例子.
•新知探 究
Ø随堂练习
1.(1)你能分别举出一些学过的定义吗? (2)分别举出一些是命题和不是命题的语句.
定理:对顶角相等.
探究新知
Ø随堂练习
请你完成定理“三角形的任意两边之和大于第三边”的证明.
已知:如图,△ABC. 求证:AB+BC>AC,BC+CA>AB, CA+AB>BC. 证明:∵AC是以点A、点C为端点的线段(已知), ∴AB+BC>AC(两点之间,线段最短). ∵AB是以点A、点B为端点的线段(已知),
•新知探 九条基究本事实:
1.两点确定一条直线. 2.两点之间线段最短. 3.同一平面内,过一点有且只有一条直线与已知直 线垂直. 4.两条直线被第三条直线所截,如果同位角相等, 那么这两条直线平行(即:同位角相等,两直线平行). 5.过直线外一点有且只有一条直线与这条直线平行. 6.两边及其夹角分别相等的两个三角形全等. 7.两角及其夹边分别相等的两个三角形全等. 8.三边分别相等的两个三角形全等. 另外一条基本事实我们将在后面的学习中认识它.
是质数; √(4)如果两条直线都和第三条直线平行,那么这两
条直线也互相平行; (5)你喜欢数学吗? (6)作线段AB=CD.
命题的定义:判断一件事情的句子.
(1)(2)(3)(4)都是命题.你能再举几个例子吗?
•新知探 下面的究语句中,哪些语句是命题?
(1)你喜欢数学吗? (2)作线段AB=a. (3)平行用符号“∥”表示.
·指出上述命题的条件和结论.
·上述命题哪些是正确的?哪些是不正确的?
•新知探 究
真假命题的定义: 正确的命题称为真命题; 不正确的命题称为假命题.
注意: 要说明一个命题是假命题,只需举一个反例.反例
是指具备命题的条件,而不具有命题的结论的例子.
•新知探 究
Ø随堂练习
1.(1)你能分别举出一些学过的定义吗? (2)分别举出一些是命题和不是命题的语句.
定理:对顶角相等.
探究新知
Ø随堂练习
请你完成定理“三角形的任意两边之和大于第三边”的证明.
已知:如图,△ABC. 求证:AB+BC>AC,BC+CA>AB, CA+AB>BC. 证明:∵AC是以点A、点C为端点的线段(已知), ∴AB+BC>AC(两点之间,线段最短). ∵AB是以点A、点B为端点的线段(已知),
定义与命题PPT教学课件
链
接
出来,通过写作,或者聊天,或者涂涂画画,
随便哪种看来合适的方式都行。可见,富尔格
姆重视生活,尤其重视生活中的细节,《信条》
是这种思想的一种体现。
栏 目 链 接
预
习检 测
1.注音
杯皿.(mǐn )
茎.叶( jīng)
追溯.( sù )
稍.纵即逝(shāo)
栏
目
蒙.蔽(ménɡ)
牲畜.(mēnɡ)
目
察了所谓人的本性以及世界、人生、社会、历
链 接
史、哲学知识、宗教信仰等多方面的理论问题,
写成《思想录》,《人是一根能思想的苇草》
是其中的一篇。
课 文导 读
生活在当代美国的富尔格姆说,当有人问
他,“你是干什么的?”他通常都回答说自己
是个哲学家,然后又解释说,他喜欢干的事,
栏
目
是多多地想些平常琐事,再把他所想到的表达
的
定义
.
2. 判断一件事情
的句子,叫做命题.
3.一般地,每个命题都是由 条件 和 结论 两部分组成,
条件 是已知的事项, 结论 是由已知事项推断出的事项.命题通
常可以写成“如果……那么……”的形式,其中“如果”引出的部分
是
,“条那件么”引出的部分是 结论 .
4.命题“非负数的绝对值等于它本身”的条件是 一个数是非负数 ,结论
是 它的绝对值等于它本身 .
5.正确的命题称为真命题,不正确的命题称为 假命题 .具备命题的条件,而
不具有命题的结论的例子称为 反例 .
1.下列语句是命题的是( ) A.作线段AB=a B.1比2大 C.锐角小于90°吗? D.延长线段AB至C
B
5.1《定义与命题》教学课件(共24张PPT)
随堂练习
1.下列句子中,哪些是命题?哪些不是命题? ⑴对顶角相等; 是 ⑵画一个角等于已知角;不是 ⑶两直线平行,同位角相等;是 ⑷a、b两条直线平行吗?不是 ⑸温柔的李明明。不是 ⑹玫瑰花是动物。是 ⑺若a2=4,求a的值。不是 ⑻若a2= b2,则a=b。是
随堂练习
2.将下列命题,改写成 “如果……那么……”的 形式.
若一个语句不能对某一件事情做出判断,那 它就不是命题.
新知探究
下列的句子哪些是命题?哪些不是命题?
(1)美丽的天空。 (2)熊猫没有翅膀。 (3)你的作业做完了吗? (4)请关上窗户。 (5)过直线AB外一点作AB的平行线。 (6)不相交的两条直线叫做平行线。 (7)无论n为怎样的自然数,则(2n+1)的值都是奇数.
例1 指出下列命题的条件和结论
例题精讲
(3)两条直线被第三条直线所截,如果同位角 相等,那么这两条直线平行;
解 条件:两条直线被第三条直线所截,同位
角相等; 结论:这两条直线平行.
例1 指出下列命题的条件和结论 (4)等腰三角形两底角相等.
例题精讲
解 条件:一个三角形是等腰三角形;
结论:这个三角形的两个底角相等.
5.1 定义与命题
学习目标
1.了解定义的概念、叙述形式、特点、 意义;
2.掌握命题的概念、叙述形式、组成; 3.知道命题的分类,会举反例; 4.怎样将命题改写成“如果……那么 ……”的形式.
新知探究
用来说明一个概念含义的语句叫做这个概念的
定义.
角 有公共端点的两条射线所组成的图 形叫做角。
能够完全重合的两个平面图形叫做 全等形
(1)内错角相等,两直线平行. (2)线段垂直平分线上的一点到线段两端点的距 离相等. (3)同角的余角相等.
北师大版八年级上册7.2定义与命题课件(共23张)
命题的否定
讲解了如何对一个命题进 行否定,以及否定后命题 的真假性变化。
学习方法和技巧的总结
理解概念
强调了理解定义和命题的 概念对于后续学习的重要 性,建议学生深入理解概 念的本质和内涵。
掌握判断方法
总结了判断一个语句是否 为命题的方法,建议学生 多做练习,提高判断的准 确性和速度。
善于总结和归纳
整个析取命题为假。
命题推理的方法和技巧
方法一
直接推理。根据已知命题,通过逻辑 联结词的含义直接推导出结论。
方法二
间接推理。通过假设一个或多个命题 为真,然后推导出结论,最后再对假 设进行验证或反驳。
技巧一
简化复杂命题。将复杂命题分解为更 简单的命题,便于理解和推理。
技巧二
使用真值表。通过真值表可以确定命 题的真假关系,从而推导出正确的结 论。
目标
通过本节课的学习,学生能够理 解定义与命题的概念,掌握如何 判断一个语句是否为命题,以及 命题的真假关系。
课程安排
1. 定义与命题的基本概念 3. 命题的判断方法
2. 命题的逻辑结构 4. 命题的真假关系
PART 02
定义与命题的基本概念
定义的定义和作用
定义
明确地表示出事物的基本属性和特征 的陈述。
PART 04
命题的证明与反驳
命题证明的方法和步骤
01
02
03
04
演绎推理
从一般到特殊的推理方法,根 据已知的一般原理,推导出关
于个别事物的特殊结论。
归纳推理
从特殊到一般的推理方法,通 过对个别事物的观察和实验,
概括出一般原理或结论。
反证法
通过否定命题的结论,进而否 定命题的条件的推理方法。
7.定义与命题PPT课件(北师大版)
知3-讲
•1.正确的命题称为真命题,不正确的命题称为假命题. •2.要说明一个命题是假命题,常常可以举出一个例子 , • 使它具备命题的条件,而不具有命题的结论,这种 • 例子称为反例.
知3-讲
•
例4 指出下列命题的条件和结论,并判断是真命
题还是
•
假命题.
•
(1)互为补角的两个角相等;
•
(2)若a=b,则a+c=b+c;
知识点 1 定 义
知1-讲
•1.对名称和术语的含义加以描述,作出明确的规定 , • 也就是给出它们的定义. •2.定义是今后证明的重要根据,它既可作为性质应 • 用,也可作为判定方法应用.
知1-讲
例1 下列语句属于定义的是( D ) A.两点确定一条直线 B.两直线平行,同位角相等 C.等角的补角相等 D.三条边都相等的三角形叫做等边三边形
1 ②如果b∥a,c∥a,那么b∥c; 2 ③如果b⊥a,c⊥a,那么b⊥c; 3 ④如果b⊥a,c⊥a,那么b∥c. 4 其中真命题是①_②__④_____.(填写所有真命题的序
号)
知3-练
2 (中考·漳州)下列命题中,是假命题的是( B ) A.对顶角相等 B.同旁内角互补 C.两点确定一条直线 D.角平分线上的点到这个角的两边的距离相等
知2-讲
•
例3 把下列命题改写成“如果……那么……”的情势:
•
(1)对顶角相等;
•
(2)垂直于同一条直线的两条直线平行;
•
(3)同角或等角的余角相等.
•
导引:紧扣命题的结构情势进行改写.
•
解:(1)如果两个角是对顶角,那么这两个角相等.
•
(2)如果两条直线垂直于同一条直线,那么这两条直线
青岛版(六三制)数学八年级上册 5.1 定义与命题 课件(共16张PPT)
3、“非典”是不可以战胜的。
对事情作了判断的句子: 没有对事情作了判断的句子:
(1)(3) (2)
强调:表示判断的语句叫做命题。
下列句子中,哪些是命题?哪些不是命题?
⑴对顶角相等; 是 ⑵画一个角等于已知角;
对某一件事情作出 正确或不正确的判
不是 断的句子叫做命题。
⑶两直线平行,同位角相等; 是
⑷a、b两条直线平行吗? 不是
(1)两直线平行,同位角相等。 如果两直线平行,那么同位角相等。
(2)若a2= b2,则a=b。
如果a2= b2,那么a=b。
例 把下列命题改写成“如果……那么……” 的形式,并指出条件和结论。
⑴三条边对应相等的两个三角形全等;
如果两个三角形有三条边对应相等,那么这两个三角形全等。 条件
⑵在同一个三角形中,等角对等边;
(7)会飞的动物是鸟吗? (8)美丽的天空 ( 9)禁止吸烟,禁止烟火!
谢谢
请说出下列名词的定义: (1)有理数 (2)直角三角形 (3)压强
(1)整数与分数统称(叫做)有理数 (2)有一个角是直角的三角形是直角三角形 (3)单位面积所受的压力叫做压强
比较下列句子在表述形式上,哪些对事情作了判断?
哪些没有对事情作了判断?
1、父母是我们人生的第一位教师。
2、延长线段AB。
5.1 定义与命题
5•1 定义与命题
预习提纲
阅读课本本节的内容,思考下列问题:
1、你能说出定义的含义吗?
2、你能说出定义的叙述方式吗? 3、定义有什么作用
4、举例说明什么是命题? 5、命题有___和___组成。命题常写成“如果……,那 么……”的形式,“如果”部分是命题的____,“那么”部 分是命题的_____. 6、______叫做假命题,_____叫做真命题。 7、举例说明什么是反例?怎样判断一个命题的真假?
湘教版数学八上2.定义与命题课件(共18张)
注意:疑问句、 祈使句、命令性 语句都不是命题
(4)相等的两个角,一定是对顶角. 解:(3)(4)是命题,(1)(2)不是命题.
理由如下:(1)是问句,故不是命题;(2)是做一件事情,
也不是命题.
3、命题的结构 视察下列命题,你能发现这些命题有什么共同点? (1)如果一个三角形的三条边相等,那么这个三角形是等 边三角形; (2)如果两个角的和是90°,那么这两个角互为余角.
如果两个角是对顶角,那么它们就相等.
(3)平行于同一条直线的两条直线平行. 如果两条直线都和第三条直线平行,那么这两条直线也互 相平行.
注意:添加“如果”“那么”后,命题的意义不能 改变,改写的句子要完整,语句要通顺,使命题的 题设和结论更明朗,改写过程中要适当增加词语, 不可生搬硬套.
4、互逆命题
从上我们可以看出,只要将一个命题的条件和结论互换, 就可得到它的逆命题,所以每个命题都有逆命题.
随堂练习
1. 下列句子中,不是命题的是( C )
A.三角形的内角和等于180度 B.对顶角相等
C.过一点作已知直线的垂线 D.两点确定一条直线
2. 下列句子中,是命题的是(
)
A.今天的天气好吗
B.作线段AB∥CD
你能说出这些句子有什么共同特征吗?
知识讲授
1、定义
对一个概念的含义加以描述说明或作出明确规定的语句 叫作这个概念的定义.
例如:“把数与表示数的字母用运算符号连接而成的 式子叫作代数式”是“代数式”的定义.
“同一平面内没有公共点的两条直线叫作平行线”是 “平行线”的定义.
上面“思考”中给出的就是“三角形”“三角形的外 角”“三角形的高”的定义
指出下列命题的条件和结论,并改写成“如果……,那 么……”的情势:
定义和命题PPT教学课件
3x+y-5=0 或 x+3y-
(3)过点P且直线l夹角为45°的直线方7=程0为________;
(4)点P到直线L的距离为_53__5_,
5
(5)直线L与直线4x+2y-3=0的距离为1_0 ________
2. 若 直 线 l1 : mx+2y+6=0 和 直 线 l2:x+(m-1)y+m21=0平行但不重合,-则1 m的值是______.
列四种改法:
①a,b是实数,若a>b>0,则a2>b2; ②a,b是实数,若a>b,且a+b>0,
则a2>b2; ③a,b是实数,若a<b<0,则a2>b2; ④a,b是实数,若a<b,则a+b<0,则a2>b2.
以上哪几个是真命题?请说明理由.
两直线的位置关系
直线与直线的位置关系:
( 1 ) 有 斜 率 的 两 直 线 l1:y=k1x+b1;l2:
绝【对布值置、作点在业线】上、最小值等内容。
优化设计P105、P106
y1-y2=0
y1-
y由2〖=上5可思知维,点直线拨l的〗倾;斜角要为求00直或9线00方, 程只要有:点和
又斜由率直(线l可过点有P倾(3斜,角1)算,故,所也求可l的以方程先为找x=两3点或y)=1。。
对称问题
例3 、点P(4, 0) 关于直线5x 4 y 21 0
的对称点是 ( D )
常依据上面结论去操作.
类型之二 两条直线所成的角及交点
例2、已知直线l经过点P(3,1),且被两平行
直 线 l1:x+y+1=0 和 l2:x+y+6=0 截 得 的 线
定义与命题PPT课件
知识要点
真命题、假命题
定义:也就是说,如果条件成立,那么结论成立.像这样的命题 叫做真命题.当条件成立时,不能保证结论总是正确的,也就是说结 论不成立,这样的命题叫做假命题.
知识要点
真命题、假命题
练一练:判断下列命题的真假. (1) 两个直角相等. 真命题 (2)相等的两个角是锐角. 假命题 (3) 同角的余角相等. 真命题 (4) 两个锐角之和是钝角. 假命题 (5)同角的补角相等. 真命题
知识要点
命题的结构
归纳:一般地,命题都是由条件和结论两部分组成的. 命 题常写成“如果······那么······”的形式.“如果”引出的部 分是条件,“那么”引出的部分是结论.
知识要点
命题的结构
做一做:下列各语句中,哪些是命题,哪些不是命题?是命题的,请
你将先将它改写为“如果······那么······”的形式,再指出命 题的条件和结论.
1.正方形的对边相等. 是
2.连接a、b两点.
3.相等的两个角是锐角. 是
4.延长线段AB到点C,使得AC=2AB.
5.同角的补角相等.
是
6.-4大于-2吗?
知识要点
命题的结构
1.正方形的对边相等. 如果一个四边形是正方形,那么它的对边相等. 条件:一个四边形是正方形,结论:它的对边相等.
3.相等的两个角是锐角. 如果两个角相等,那么这两个角是锐角. 条件:两个角相等,结论:这两个角是锐角.
绝对值:数轴上表示一个数的点到原点的距离是这个数的绝对值.
方程的解:能使方程两边的值相等的未知数的值是方程的解.
知识要点
定义及命题
问题2 下面的语句中,哪些语句对事情作出了判断,哪些没有? 与同伴进行交流. (1)任何一个三角形一定有一个角是直角; (2)对顶角相等; (3)无论n为怎样的自然数,式子n2-n+11的值都是质数; (4)如果两条直线都和第三条直线平行,那么这两条直线也 互相平行; (5)你喜欢数学吗? (6)作线段AB=CD.
定义与命题PPT授课课件
2. 下列语句中不是命题的是( A ) A.延长线段AB B.自然数也是整数 C.两个锐角的和一定是直角 D.同角的余角相等
知2-练
感悟新知
知识点 3 命题的结构
知3-导
下列命题的表述形式有什么共同点?
(1)如果a=b且b=c,那么a=c;
(2)如果两个角的和等于90,那么这两个角互为余角.
它们的表述形式都是“如果.,那么….
1.[中考 ·四川宜宾]如图所示,小球在水平面上做直线运 动,每隔0.2 s记录一次小球的运动位置,则小球从D 点运动到F点的路程为________cm,该过程的平均速 度为________m/s。
基础巩固练
2.在“测量物体运动的平均速度”实验中,当小车自斜面 顶端滑下时开始计时,滑至斜面底端时停止计时。如 图所示,此过程中小车的平均速度是( B ) A.10 cm/s B.9 cm/s C.8 cm/s D.7 cm/s
感悟新知
知4-讲
解:(1)如果两条直线平行,那么这两条直线都和第 三条直线垂直. (2)若a>0,b>0,则a+b>0. (3)内错角相等,两直线平行.
感悟新知
总结
知4-讲
找出命题的条件与结论,只要将条件和结论 互换即可得到命题的逆命题.
感悟新知
知4-练
1.逆命题“两直线平行,同旁内角互补”的原命题是 (C) A.两直线平行,同位角相等 B.两直线平行,内错角相等 C.同旁内角互补,两直线平行 D.同位角相等,两直线平行
应注意表达条件与结论的语句要通顺.
知3-讲
感悟新知
知3-练
1.命题“平行于同一条直线的两条直线互相平行”的条 件是( D ) A.平行 B.两条直线 C.同一条直线 D.两条直线平行于同一条直线
知2-练
感悟新知
知识点 3 命题的结构
知3-导
下列命题的表述形式有什么共同点?
(1)如果a=b且b=c,那么a=c;
(2)如果两个角的和等于90,那么这两个角互为余角.
它们的表述形式都是“如果.,那么….
1.[中考 ·四川宜宾]如图所示,小球在水平面上做直线运 动,每隔0.2 s记录一次小球的运动位置,则小球从D 点运动到F点的路程为________cm,该过程的平均速 度为________m/s。
基础巩固练
2.在“测量物体运动的平均速度”实验中,当小车自斜面 顶端滑下时开始计时,滑至斜面底端时停止计时。如 图所示,此过程中小车的平均速度是( B ) A.10 cm/s B.9 cm/s C.8 cm/s D.7 cm/s
感悟新知
知4-讲
解:(1)如果两条直线平行,那么这两条直线都和第 三条直线垂直. (2)若a>0,b>0,则a+b>0. (3)内错角相等,两直线平行.
感悟新知
总结
知4-讲
找出命题的条件与结论,只要将条件和结论 互换即可得到命题的逆命题.
感悟新知
知4-练
1.逆命题“两直线平行,同旁内角互补”的原命题是 (C) A.两直线平行,同位角相等 B.两直线平行,内错角相等 C.同旁内角互补,两直线平行 D.同位角相等,两直线平行
应注意表达条件与结论的语句要通顺.
知3-讲
感悟新知
知3-练
1.命题“平行于同一条直线的两条直线互相平行”的条 件是( D ) A.平行 B.两条直线 C.同一条直线 D.两条直线平行于同一条直线
定义与命题PPT课件
线段垂直平分线上的点到线段两个端点的距离相等.
等式的有关性质和不等式的有关性质 都可以看作公理
在等式或不等式中,一个量可以用它的等量 来代替.例如,如果a=b,b=c,那么a=c,这一性质 也看作公理,称为“等量代换”.
课内练习:
1、请举两个命题,要求其中一个是真命题, 另一个是假命题.并说明你是用什么方法来 判别它们的真假的.
因为两条直线是平行线时同位角才相等。
(3)一个图形经过旋转变换,像和原图形全等。 (真命题)
因为旋转变换不改变图象的形状和大小。
炉火纯青 哪些是真命题,哪些是假命题?
1)若a∥b,b∥c,则a∥c 2)如果a是有理数,则 a2 +1>0 3)若a2>b2 则 a>b 4)若 ab=0 则a=0 5)如果两个角的两边互相平行,这两个角 一定相等。 6)绝对值等于它本身的数是正数。
2、下列几个命题哪些是真命题?哪些是假命题?
(1)如果两个角相等,那么它们是对顶角;假命题
(2)如果a>b,b>c,那么a=c; 假命题
(3)全等三角形的面积相等。 真命题
说明假命题的方法:
举反例
使之具有命题的条件,而不具有 命题的结论
3.判断下列命题的真假性?并说明为什么?
(1)是如假果命题x 2。5 因 3为3 x当那么x x5<4 3 x
a2
(2)两条直线被第三条直线所截,如果同位角相等,
那么这两条直线平行;
(3)对于任何实数 x, x2 <0.
上述命题中,哪些正确?哪些不正确?你的理由 是什么?
正确的是__(1_)_,(_2_)_ 不正确的是__(3_)___
学到新知: 据此可知,一个命题有正确的和不正确之分.
正确的命题叫做真命题,如命题(1),(2); 不正确的命题叫做 假命题,如命题(3).
等式的有关性质和不等式的有关性质 都可以看作公理
在等式或不等式中,一个量可以用它的等量 来代替.例如,如果a=b,b=c,那么a=c,这一性质 也看作公理,称为“等量代换”.
课内练习:
1、请举两个命题,要求其中一个是真命题, 另一个是假命题.并说明你是用什么方法来 判别它们的真假的.
因为两条直线是平行线时同位角才相等。
(3)一个图形经过旋转变换,像和原图形全等。 (真命题)
因为旋转变换不改变图象的形状和大小。
炉火纯青 哪些是真命题,哪些是假命题?
1)若a∥b,b∥c,则a∥c 2)如果a是有理数,则 a2 +1>0 3)若a2>b2 则 a>b 4)若 ab=0 则a=0 5)如果两个角的两边互相平行,这两个角 一定相等。 6)绝对值等于它本身的数是正数。
2、下列几个命题哪些是真命题?哪些是假命题?
(1)如果两个角相等,那么它们是对顶角;假命题
(2)如果a>b,b>c,那么a=c; 假命题
(3)全等三角形的面积相等。 真命题
说明假命题的方法:
举反例
使之具有命题的条件,而不具有 命题的结论
3.判断下列命题的真假性?并说明为什么?
(1)是如假果命题x 2。5 因 3为3 x当那么x x5<4 3 x
a2
(2)两条直线被第三条直线所截,如果同位角相等,
那么这两条直线平行;
(3)对于任何实数 x, x2 <0.
上述命题中,哪些正确?哪些不正确?你的理由 是什么?
正确的是__(1_)_,(_2_)_ 不正确的是__(3_)___
学到新知: 据此可知,一个命题有正确的和不正确之分.
正确的命题叫做真命题,如命题(1),(2); 不正确的命题叫做 假命题,如命题(3).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)你喜欢数学吗? (2)作线段AB=CD.
随堂练习P192 ☞ 判断就是命题
你能举出一些命题吗?
举出一些不是命题的语句.
独立 作业
• 1.下列句子中哪些是命题?
• (1)动物都需要水; 是
• (2)猴子是动物的一种; 是
• (3)玫瑰花是动物; 是
• (4)美丽的天空; 不是
• (5)三个角对应相等的两个三角形一定全等; 是
2021/3/7
CHENLI
12
1、下列命题的条件是知什识么?应结用论是什么?
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
(3)两角和其中一角的对边对应相等的两
个三角形全等;
(4)菱形的四条边都相等;
(5)全等三角形的面积相等。
解两条结解个条四解一条相结论个件::四件条角 论件: 等(:三:(边 : 边解的 ::(4角两 这5解形 一 相))对两 这3:形两个:的 个 等)改改边两个的个三(四 四改(写写对个三面三角条边1写:2:)应三角积角形)结边形结:如如相角形条相形全条相是论如果论果等形的等的等件等菱果件:一两:,全两。面形:两个:它个那等角积a,个两四三=们么和a相结c三边>个角是这其等论角形形b角两中对,:形是b全相个一>顶这的菱等三角等c个角两形,角的,,四角,那形对边和那么全边形其么这等对的中这。应
• (6)负数都小于零; 是
• (7)你的作业做完了吗?
不是
• (8)所有的质数都是奇数; 是
• (9)过直线外l一点作直线l的平行线; 不是
• (10)如果a>b,a>c,那么b=c. 是 • 2.在解决“何处水流受到污染”的问题中,找
出几个命题.
补充:判断下列语句哪些是命题?哪些不是 命题?
(1)平角都相等. (2)等于同一个角的两个角相等 . (3)画两条相等的线段. (4)在射线OA上,任取两点B、C. (5)在空间里,不平行的两条直线一 定相交. (6) 一对邻补角的平分线互相垂直. (7)延长线段AB到C,使AC=2AB . (8)两条直线平行,内错角相等.
断的语句.判断一件事情的句子,叫做命题.
例如,下列句子都是命题
(1)熊猫没有翅膀; (2)任何一个三角形一定有直角; (3)对顶角相等; (4)无论n为怎样的自然数,式子n2-n+11的值都是质数;
(5)如果两条直线都和第三条直线平行,那么这 两条直线也互相平行. 命题一般都写成“如果……,那么……”的形式,你能把 上面的命题都写成“如果……,那么……”的形式吗? 反之,如果一个句子没有对某一事情作出任何判断, 那么它就不是命题.例如,下列句子都不是命题:
2021/3/7
CHENLI
9
情景引入
观察下列命题,猜测这些命题的共同的结构特征. 与你的同伴交流
(1)如果两个三角形的三条边对应相等,那么这两个三角 形全等; (2)如果一个四边形的一组对边平行且相等,那么这个四边形是平 行四边形; (3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相 等; (4)如果一个四边形的对角线相等,那么这个四边形是矩形; (5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱 形.
每个命题都由条件和结论两部分组成.条件是 已知事项,结论是由已事项推断出的事项.
2021/3/7
CHENLI
10
探索新知
1、如果两个三角形的三条边对应相等, 那么这三角形全等;
条件
结论
已知事项
由已知事项推断 出来的事项
命题都可以写成“如果……那么……”
的形式;其中“如果”引出的部分是
条件,“那么”引出的部分是结论。
义 “;两点之间 线段的长度,叫做这两点之间的距离” 是“两点之间的距离”的定义; “在一个方程中,只含有一个未知数,并且未知数的 指数是1,这样的方程叫做一元一次方程” 是“一 元一次方程”的定义;
“两组对边分别平行的四边形叫做平行四边形” 是“平行四边形”的定义;
你还能举出曾学过的“定义”吗?
的贼.
真正的含义
有一位田径教练向领导汇报训练成绩
小明的百米 成绩是9秒9.
继续努力, 争取达到10
秒.ቤተ መጻሕፍቲ ባይዱ
相传,阎锡山在观看士兵篮球赛,双方争
抢非常激烈.于是命令:
发给每个人一
个球,不要再抢
啦.
可见,交流必须对某些名称和术语有共同的认识才能 进行。
为此,就要对名称和术语的含义加以描述,作出明 确的规定,也就是给出它们的定义 . 例如: “具有中华人民共和国国籍的人,叫做中华人民 共和国公民” 是“中华人民共和国公民”的定
七年级数学(下)第八章
8.1 定义与命题
泰安市黄前中学七年级数学组
小华与小刚正在津津有味地阅读《我们爱科学》.
哈!这个黑客 终于被逮住
了.
是的,现在的因特 网广泛运用于我 们的生活中,给我 们带来了方便,
但…….
坐在旁边的两个人一边听着他们的谈话,一 边也在悄悄地议论着。
这个黑客 是个小偷
吧?
可能是个喜 欢穿黑衣服
正确的命题称为真命题,不正确的 命题称为假命题
2021/3/7
下图表示某地的一个灌溉系统.
如果B处水流受到污染,那么 C,E,F,G 处水流便受到污染; 如果C处水流受到污染,那么 E 处水流便受到污染; 如果D处水流受到污染,那么 K 处水流便受到污染; ……
A
· B
· · · E
C
D
· · · · · · · H
J
K
FG
I
上面“如果……,那么……”都是对事情进行判
2021/3/7
CHENLI
13
2、这几个命题哪些是正确的?哪些不正确?你是怎么知 道它们是不正确的?
(1)如果两个角相等,那么它们是对顶角;不正确
(2)如果a>b,b>c,那么a=c; 不正确
(3)两角和其中一角的对边对应相等的两
个三角形全等;
正确
(4)菱形的四条边都相等;
正确
(5)全等三角形的面积相等。 正确
2021/3/7
CHENLI
11
有些命题没有写成“如果……那么……” 的形式,题设和结论不明显,要经过分析 才能找出题设和结论,也可以将它们改写 成“如果……那么……”的形式。
如“同角的余角相等”可以写成“如果两个 角是同一个角的余角,那么这两个角相等”。
注意:命题的条件(题设)部分有时 可用“已知……”或者“若……”等形 式表述,命题的结论部分有时可用 “求证……”或“则……”等形式表述。
随堂练习P192 ☞ 判断就是命题
你能举出一些命题吗?
举出一些不是命题的语句.
独立 作业
• 1.下列句子中哪些是命题?
• (1)动物都需要水; 是
• (2)猴子是动物的一种; 是
• (3)玫瑰花是动物; 是
• (4)美丽的天空; 不是
• (5)三个角对应相等的两个三角形一定全等; 是
2021/3/7
CHENLI
12
1、下列命题的条件是知什识么?应结用论是什么?
(1)如果两个角相等,那么它们是对顶角;
(2)如果a>b,b>c,那么a=c;
(3)两角和其中一角的对边对应相等的两
个三角形全等;
(4)菱形的四条边都相等;
(5)全等三角形的面积相等。
解两条结解个条四解一条相结论个件::四件条角 论件: 等(:三:(边 : 边解的 ::(4角两 这5解形 一 相))对两 这3:形两个:的 个 等)改改边两个的个三(四 四改(写写对个三面三角条边1写:2:)应三角积角形)结边形结:如如相角形条相形全条相是论如果论果等形的等的等件等菱果件:一两:,全两。面形:两个:它个那等角积a,个两四三=们么和a相结c三边>个角是这其等论角形形b角两中对,:形是b全相个一>顶这的菱等三角等c个角两形,角的,,四角,那形对边和那么全边形其么这等对的中这。应
• (6)负数都小于零; 是
• (7)你的作业做完了吗?
不是
• (8)所有的质数都是奇数; 是
• (9)过直线外l一点作直线l的平行线; 不是
• (10)如果a>b,a>c,那么b=c. 是 • 2.在解决“何处水流受到污染”的问题中,找
出几个命题.
补充:判断下列语句哪些是命题?哪些不是 命题?
(1)平角都相等. (2)等于同一个角的两个角相等 . (3)画两条相等的线段. (4)在射线OA上,任取两点B、C. (5)在空间里,不平行的两条直线一 定相交. (6) 一对邻补角的平分线互相垂直. (7)延长线段AB到C,使AC=2AB . (8)两条直线平行,内错角相等.
断的语句.判断一件事情的句子,叫做命题.
例如,下列句子都是命题
(1)熊猫没有翅膀; (2)任何一个三角形一定有直角; (3)对顶角相等; (4)无论n为怎样的自然数,式子n2-n+11的值都是质数;
(5)如果两条直线都和第三条直线平行,那么这 两条直线也互相平行. 命题一般都写成“如果……,那么……”的形式,你能把 上面的命题都写成“如果……,那么……”的形式吗? 反之,如果一个句子没有对某一事情作出任何判断, 那么它就不是命题.例如,下列句子都不是命题:
2021/3/7
CHENLI
9
情景引入
观察下列命题,猜测这些命题的共同的结构特征. 与你的同伴交流
(1)如果两个三角形的三条边对应相等,那么这两个三角 形全等; (2)如果一个四边形的一组对边平行且相等,那么这个四边形是平 行四边形; (3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相 等; (4)如果一个四边形的对角线相等,那么这个四边形是矩形; (5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱 形.
每个命题都由条件和结论两部分组成.条件是 已知事项,结论是由已事项推断出的事项.
2021/3/7
CHENLI
10
探索新知
1、如果两个三角形的三条边对应相等, 那么这三角形全等;
条件
结论
已知事项
由已知事项推断 出来的事项
命题都可以写成“如果……那么……”
的形式;其中“如果”引出的部分是
条件,“那么”引出的部分是结论。
义 “;两点之间 线段的长度,叫做这两点之间的距离” 是“两点之间的距离”的定义; “在一个方程中,只含有一个未知数,并且未知数的 指数是1,这样的方程叫做一元一次方程” 是“一 元一次方程”的定义;
“两组对边分别平行的四边形叫做平行四边形” 是“平行四边形”的定义;
你还能举出曾学过的“定义”吗?
的贼.
真正的含义
有一位田径教练向领导汇报训练成绩
小明的百米 成绩是9秒9.
继续努力, 争取达到10
秒.ቤተ መጻሕፍቲ ባይዱ
相传,阎锡山在观看士兵篮球赛,双方争
抢非常激烈.于是命令:
发给每个人一
个球,不要再抢
啦.
可见,交流必须对某些名称和术语有共同的认识才能 进行。
为此,就要对名称和术语的含义加以描述,作出明 确的规定,也就是给出它们的定义 . 例如: “具有中华人民共和国国籍的人,叫做中华人民 共和国公民” 是“中华人民共和国公民”的定
七年级数学(下)第八章
8.1 定义与命题
泰安市黄前中学七年级数学组
小华与小刚正在津津有味地阅读《我们爱科学》.
哈!这个黑客 终于被逮住
了.
是的,现在的因特 网广泛运用于我 们的生活中,给我 们带来了方便,
但…….
坐在旁边的两个人一边听着他们的谈话,一 边也在悄悄地议论着。
这个黑客 是个小偷
吧?
可能是个喜 欢穿黑衣服
正确的命题称为真命题,不正确的 命题称为假命题
2021/3/7
下图表示某地的一个灌溉系统.
如果B处水流受到污染,那么 C,E,F,G 处水流便受到污染; 如果C处水流受到污染,那么 E 处水流便受到污染; 如果D处水流受到污染,那么 K 处水流便受到污染; ……
A
· B
· · · E
C
D
· · · · · · · H
J
K
FG
I
上面“如果……,那么……”都是对事情进行判
2021/3/7
CHENLI
13
2、这几个命题哪些是正确的?哪些不正确?你是怎么知 道它们是不正确的?
(1)如果两个角相等,那么它们是对顶角;不正确
(2)如果a>b,b>c,那么a=c; 不正确
(3)两角和其中一角的对边对应相等的两
个三角形全等;
正确
(4)菱形的四条边都相等;
正确
(5)全等三角形的面积相等。 正确
2021/3/7
CHENLI
11
有些命题没有写成“如果……那么……” 的形式,题设和结论不明显,要经过分析 才能找出题设和结论,也可以将它们改写 成“如果……那么……”的形式。
如“同角的余角相等”可以写成“如果两个 角是同一个角的余角,那么这两个角相等”。
注意:命题的条件(题设)部分有时 可用“已知……”或者“若……”等形 式表述,命题的结论部分有时可用 “求证……”或“则……”等形式表述。