模糊控制器设计实例
Simulink模糊控制教程
给出复杂模糊控制器设计实例和 结果展示
实战演练三:模糊控制器优化与改进
模糊控制器优化方法:遗传算法、粒子群算法等 改进模糊控制器性能的措施:调整隶属度函数、增加模糊规则数量等 实际应用中模糊控制器的调试与测试 案例分析:某工业过程控制中模糊控制器的应用与优化
实战演练四:模糊控制器在实时系统中的应用
更多可能性。
模糊控制理论的研 究将更加注重实际 应用,与工程实践 的结合将更加紧密, 推动工业自动化领 域的进步与发展。
模糊控制在工业自动化领域的应用前景
工业自动化领域的现状和 趋势
模糊控制技术的优势和特 点
模糊控制在工业自动化领 域的应用案例
模糊控制在工业自动化领 域的未来发展前景
感谢观看
汇报人:XX
控制器性能评估
评估指标:准确性、稳定性、鲁棒性 评估方法:仿真实验、实际测试 评估工具:Simulink、Matlab/Simulink 评估步骤:设计控制器、搭建仿真模型、进行实验测试、分析实验结果
05
Simulink模糊控制应用实例
模糊控制在电机控制系统中的应用
模糊控制原理简介
模糊控制在电机控制中的应用实 例
练
01
添加章节标题
02
Simulink模糊控制简介
模糊控制基本概念
模糊控制是一种 基于模糊集合理 论的控制方法, 通过将输入变量 模糊化,将模糊 逻辑应用于控制
系统。
模糊控制的基 本原理是通过 模糊化、模糊 推理和去模糊 化三个步骤实
现控制。
模糊集合理论是 模糊控制的基础, 它通过模糊集合 来表示输入和输 出变量,并使用 模糊逻辑规则进
去模糊化操作
定义:将模糊逻辑系统输出 的模糊集合转换为清晰值的 过程
智能控制作业_模糊自适应PID控制
模糊自适应PID 控制的Matlab 仿真设计研究姓名:陈明学号:201208070103班级:智能1201一、 模糊控制思想、PID 控制理论简介:在工业生产过程中,许多被控对象受负荷变化或干扰因素很多基于模糊自适应控制理论, 设计了一种模糊自适应PID 控制器, 具体介绍了这种PID 控制器的控制特点及参数设计规则, 实现PID 控制器的在线自整定和自调整。
通过matlab 软件进行实例,仿真表明, , 提高控制系统实时性和抗干扰能力,易于实现.便于工程应用。
1.1 模糊控制的思想:应用模糊数学的基本理论和方法, 控制规则的条件、操作用模糊集来表示、并把这些模糊控制规则以及有关信息, 诸如PID 控制参数等作为知识存入计算机知识库, 然后计算机根据控制系统的实际情况(系统的输入, 输出) , 运用模糊推理。
1.2 PID 算法:u(t)=k p * e(t)+k i * ∫e(t)t 0dt +k d *de(t)dt= k p *e(t)+ k i *∑e i (t) + k d * e c (t)其中, u (t) 为控制器输出量, e(t) 为误差信号, e c (t)为误差变化率, k p , k i , k d 分别为比例系数、积分系数、微分数。
然而,课本中,为了简化实验难度,只是考虑了kp ,ki 参数的整定。
1.3 模糊PID 控制器的原理图:二、基于Matlab的模糊控制逻辑模块的设计关于模糊逻辑的设计,主要有隶属函数的编辑,参数的选型,模糊规则导入,生成三维图等观察。
2.1 模糊函数的编辑器的设定:打开matlab后,在命令窗口输入“fuzzy”,回车即可出现模糊函数编辑器,基本设置等。
基于课本的实验要求,我选的是二输入(e, e c)二输出(k p ,k i)。
需要注意的是,在命名输入输出函数的时候,下标字母需要借助下划线的编辑,即e_c 能够显示为e c。
2.2四个隶属函数的N, Z, P 函数设定:在隶属函数的设定中,N 选用的是基于trimf(三角形隶属函数) , Z是基于zmf(Z型隶属函数),P是基于smf(S型隶属函数)。
模糊控制的Matlab仿真实例
其他例子
模型Shower.mdl―淋浴温度调节模糊控制系统仿真; 模型slcp.mdl―单级小车倒摆模糊控制系统仿真; 模型 slcp1.mdl―变长度倒摆小车模糊控制系统仿
真; 模型 slcpp1.mdl—定长、变长二倒摆模糊控制系
统仿真; 模型slbb.mdl―球棒模糊控制系统仿真; 模型sltbu.mdl―卡车智能模糊控制倒车系统仿真; 模型sltank2.mdl ― 用子系统封装的水箱控制仿
为简单起见,我们直接利用系统里已经编辑好的 模糊推理系统,在它的基础上进行修改。这里我 们采用与tank . fis中输入输出变量模糊集合完 全相同的集合隶属度函数定义,只是对模糊规则 进行一些改动,来学习模糊工具箱与仿真工具的 结合运用。对于这个问题,根据经验和直觉很显 然可以得到如下的模糊度示 波器
冷水阀子系统
这个仿真模型的输出是用示波器来表示的,如 图所示。通过示波器上的图形我们可以清楚地 看到温度和水流量跟踪目标要求的性能。
水温示波器
水流示波器
水温偏差区间模糊划分及隶属度函数
水流量偏差区间模糊划分及隶属度函数
输出对冷水阀控制策略的模糊化分及隶属度函数
选Edit菜单,选择Rules, 弹出一新界面Rule Editor. 在底部的选择框内,选择相应的 IF…AND…THEN 规则,点击Add rule 键,上部 框内将显示相应的规则。本例中用9条左右的规 则,依次加入。如下图所示:
模糊逻辑工具箱仿真结果
模糊规则浏览器用于显示各条模糊控制规则对 应的输入量和输出量的隶属度函数。通过指定 输入量,可以直接的显示所采用的控制规则, 以及通过模糊推理得到相应输出量的全过程, 以便对模糊规则进行修改和优化。
这样的结果与实际情况还是有些不符。通常顾客都是给15%的 小费,只有服务特别好或特别不好的时候才有改变,也就是说, 希望在图形中间部分的响应平坦些,而在两端(服务好或坏) 有凸起或凹陷。这时服务与小费是分段线性的关系。例如,用 下面 MATLAB 语句绘出的下图的情况。
模糊控制实例及simulink仿真实验报告
模糊控制实例及simulink仿真实验报告
一、背景介绍
模糊控制是一种基于模糊逻辑的控制方法,其优点在于可以很好地处理复杂的非线性和不确定性系统,而且不需要精确的数学模型和计算,能够快速实现控制的优化。
二、实例介绍
本次实例采用一个双轮小车为对象,实现小车在平面上向指定位置运动的控制。
通过小车的速度和转向角两个输入变量,输出一个模糊控制信号,控制小车前进和转向。
三、实验过程
1. 建立模糊控制系统模型
打开Simulink软件,建立一个新模型,模型中包括输入变量、输出变量和控制器。
2. 设计输入变量和输出变量
(1)设计输入变量
本实例选择小车速度和转向角两个输入变量,每个变量包含三个模糊集合,速度变量分别为“慢速”、“中速”、“快速”,转向角变量分别为“左转”、“直行”、“右转”。
(2)设计输出变量
模糊控制信号输出变量选择小车的前进和转向,每个变量包含三个模糊集合,分别为“慢行”、“中行”、“快行”、“左转”、“直行”、“右转”。
3. 建立控制器
建立模糊控制器,包含输入变量和输出变量的关系,建立控制规则库和模糊关系。
4. 仿真实验
在Simulink下进行仿真实验,调整控制器参数,观察小车运动状态,对比试验。
四、实验结果
经过多次试验和调整,得到最优的小车模糊控制参数,可以实现小车的平滑运动
和准确转向。
五、实验结论
本实验通过建立一个小车的模糊控制系统,可以有效实现小车的平滑运动和准确转向,控制效果优于传统的PID控制方法。
模糊控制可以很好地处理非线性、不确定性和模糊性的系统,适合许多需要快速优化控制的场合。
WORD型模糊控制电子教案
WORD型模糊控制电子教案第一章:模糊控制基础1.1 模糊控制简介模糊控制的起源和发展模糊控制与传统控制的比较模糊控制的应用领域1.2 模糊集合与模糊逻辑模糊集合的定义和表示模糊逻辑的基本原理模糊推理与模糊判断1.3 模糊控制系统的结构与原理模糊控制系统的组成模糊控制器的结构与设计模糊控制算法的实现第二章:WORD型模糊控制器的结构与设计2.1 WORD型模糊控制器的概述WORD型模糊控制器的定义和特点WORD型模糊控制器的应用领域WORD型模糊控制器的设计要求2.2 WORD型模糊控制器的结构设计输入输出层的结构设计模糊化层的结构设计规则库的设计解模糊层的结构设计2.3 WORD型模糊控制器的参数设计模糊集合的划分与选择隶属度函数的设计模糊规则的设计与优化第三章:WORD型模糊控制器的仿真与优化3.1 WORD型模糊控制器的仿真方法模糊控制仿真系统的构建模糊控制仿真的基本步骤仿真结果的分析和评估3.2 WORD型模糊控制器的优化方法基于规则的优化方法基于隶属度函数的优化方法基于控制效果的优化方法3.3 WORD型模糊控制器的性能改进改进控制器的动态性能提高控制器的鲁棒性降低控制器的计算复杂度第四章:WORD型模糊控制器在电子系统中的应用4.1 WORD型模糊控制器在温度控制系统中的应用温度控制系统的原理与结构WORD型模糊控制器的设计与实现仿真结果与实际应用效果分析4.2 WORD型模糊控制器在速度控制系统中的应用速度控制系统的原理与结构WORD型模糊控制器的设计与实现仿真结果与实际应用效果分析4.3 WORD型模糊控制器在其他电子系统中的应用例如:电机控制系统、控制系统等第五章:WORD型模糊控制器的实验与验证5.1 WORD型模糊控制器的硬件实验平台实验硬件的选择与搭建实验系统的调试与验证5.2 WORD型模糊控制器的软件实验平台实验软件的选择与使用实验数据的采集与分析5.3 WORD型模糊控制器的实验结果与验证实验结果的对比与评估实验结果的实际应用价值第六章:WORD型模糊控制器的设计实例6.1 电机控制系统中的WORD型模糊控制器设计电机控制系统的原理与结构WORD型模糊控制器的设计与实现电机控制系统仿真与实际应用效果分析6.2 控制系统中的WORD型模糊控制器设计控制系统的原理与结构WORD型模糊控制器的设计与实现控制系统仿真与实际应用效果分析6.3 其它实例及WORD型模糊控制器的设计与应用如:风力发电控制系统、无人驾驶控制系统等第七章:WORD型模糊控制器的性能分析与评估7.1 WORD型模糊控制器的静态性能分析稳态误差分析静态特性曲线分析7.2 WORD型模糊控制器的动态性能分析动态响应特性分析过渡过程性能分析7.3 WORD型模糊控制器的性能评估指标控制效果评估指标系统稳定性评估指标计算复杂度评估指标第八章:WORD型模糊控制器的优化方法8.1 基于遗传算法的WORD型模糊控制器优化遗传算法的基本原理与实现遗传算法在WORD型模糊控制器优化中的应用优化结果分析与评估8.2 基于粒子群优化算法的WORD型模糊控制器优化粒子群优化算法的基本原理与实现粒子群优化算法在WORD型模糊控制器优化中的应用优化结果分析与评估8.3 基于神经网络的WORD型模糊控制器优化神经网络的基本原理与实现神经网络在WORD型模糊控制器优化中的应用优化结果分析与评估第九章:WORD型模糊控制器的实际应用与案例分析9.1 WORD型模糊控制器在工业领域的应用案例如:工业生产线自动控制系统、化学工业过程控制系统等9.2 WORD型模糊控制器在农业领域的应用案例如:农业自动化控制系统、智能灌溉系统等9.3 WORD型模糊控制器在日常生活领域的应用案例如:智能家居控制系统、智能交通控制系统等第十章:WORD型模糊控制器的未来发展趋势与展望10.1 WORD型模糊控制器技术的发展趋势新型模糊控制算法的研究与发展WORD型模糊控制器与其他控制技术的融合跨学科研究与创新应用10.2 WORD型模糊控制器在未来的应用前景应用于更多领域的智能化控制系统与、大数据等技术的结合为人类社会带来的福祉与贡献重点和难点解析一、模糊控制基础:理解模糊集合与模糊逻辑的基本概念,以及模糊控制系统的原理和结构。
模糊控制实例2-agv小车倒车入库控制
倒车入库控制的重要性
倒车入库是AGV小车在仓库、车间等有限空间内进行作业 的重要环节。由于空间有限,障碍物多,倒车入库的控制 难度较大,需要精确控制小车的速度和方向,确保安全、 准确地完成入库操作。
模糊控制的基本原理
通过引入模糊集合和模糊逻辑,模糊控制能够处理不确定性和非线性问题,从而实现对复杂系统的有 效控制。
模糊控制的基本原理包括模糊化、模糊推理和去模糊化三个主要步骤,通过合理设计每个步骤的方法 和参数,实现对系统的精确控制。
04 模糊控制算法在AGV小车 倒车入库中的应用
模糊控制器设计
模糊控制在AGV小车倒车入库中的优势与局限性
优势
模糊控制具有较强的鲁棒性和适应性, 能够处理不确定性和非线性问题,适用 于各种复杂的控制场景。在AGV小车倒 车入库控制中,模糊控制器能够根据实 际情况进行自适应调整,提高控制的准 确性和稳定性。
VS
局限性
模糊控制器的设计过程较为复杂,需要经 验丰富的专业人员进行设计和调整。此外 ,模糊控制器在处理精确度要求较高的控 制任务时可能会存在一定的误差和波动。
导航系统通常采用磁轨导航或激光雷 达导航技术,通过感应器或传感器获 取环境信息,并由控制系统进行解析 和处理,实现小车的精确导航。
AGV小车的运动控制系统
AGV小车的运动控制系统负责控制小 车的运动,包括速度、方向和位置等。
运动控制系统基于模糊控制算法,通 过模糊逻辑控制器对小车的运动状态 进行实时监测和调整,确保小车能够 稳定、准确地完成搬运任务。
模糊控制算法的实现
编程语言选择
模糊控制应用实例
模糊控制应用实例1. 引言模糊控制是一种基于模糊逻辑的控制方法,它能够处理不确定性和模糊性问题。
本文将介绍模糊控制的应用实例,包括模糊控制在机器人导航、温度控制和交通信号灯控制等方面的应用。
2. 模糊控制在机器人导航中的应用2.1 模糊控制器设计在机器人导航中,模糊控制可以用于控制机器人的运动路径。
首先,需要设计一个模糊控制器,该控制器包括输入和输出变量以及一组模糊规则。
输入变量可以是机器人与障碍物的距离、机器人当前的角度等。
输出变量通常是机器人的速度和转向角度。
2.2 模糊控制器实现在机器人导航中,可以使用传感器来获取机器人与障碍物的距离和机器人当前的角度。
这些信息可以作为输入变量输入到模糊控制器中。
模糊控制器根据一组模糊规则来计算机器人的速度和转向角度,然后将其作为输出变量输出给机器人的控制系统。
2.3 模糊控制器优势相比于传统的控制方法,模糊控制在机器人导航中具有一定的优势。
首先,模糊控制能够处理不确定性和模糊性问题,使得机器人能够更好地适应复杂的环境。
其次,模糊控制可以通过调整模糊规则和输入变量的权重来优化机器人的导航性能。
最后,模糊控制可以很容易地与其他控制方法结合使用,以实现更高级的导航功能。
3. 模糊控制在温度控制中的应用3.1 温度控制系统在温度控制中,模糊控制可以用于调节加热器或制冷器的功率,以维持目标温度。
温度控制系统通常包括一个温度传感器、一个控制器和一个执行器。
温度传感器用于测量当前的温度,控制器根据温度的变化来调整执行器的功率。
3.2 模糊控制器设计在温度控制中,需要设计一个模糊控制器来根据当前的温度误差和误差变化率来调整执行器的功率。
模糊控制器的输入变量可以是温度误差和误差变化率,输出变量可以是执行器的功率。
通过选择适当的模糊规则和调整输入变量的权重,可以实现温度的稳定控制。
3.3 模糊控制器实现在温度控制中,可以使用一个模糊控制器来计算执行器的功率。
模糊控制器根据一组模糊规则来决定执行器的功率大小,然后将其输出给执行器。
洗衣机模糊控制器设计
洗衣机的模糊控制器设计1 洗衣机的模糊控制传统的洗衣机都是人们用肉眼观看后,根据人的经验来调整洗衣时间和用水量,而模糊控制就是以人对被控对象的控制经验为依据而设计的控制器,这样就能实现控制器模拟人的思维方式来控制洗衣机。
以模糊洗衣机的设计为例其控制是一个开环的决策过程,模糊控制按以下步骤进行。
[4]1.1 洗衣机的时间控制1.1.1 确定模糊控制器的结构选用单变量二维模糊控制器。
控制器的输入为衣物的污泥和油脂,输出为洗涤时间。
1.1.2 定义输入、输出模糊集将污泥分为3个模糊集:SD(污泥少),MD (污泥中),LD (污泥多);取值范围为[0,100]。
将油脂分为3个模糊集:NG (油脂少),MG (油脂中),LG (油脂多); 将洗涤时间分为5个模糊集:VS (很短),S(短),M (中等),L(长),VL (很长)。
1.1.3 定义隶属函数选用如下隶属函数:50/5050/10050/50/50x x x x x x x μLDMD SD污泥1005010050500500 x x x x 采用三角形隶属函数可实现污泥的模糊化。
采用Matlab进行仿真,污泥隶属函数设计仿真程序如下: Close all ; N=2; x=0:0.1:100; for i=1:N+1 f(i)=100/N*(i-1); endu=trimf(x,[f(1),f(1),f(2)]); figure(1); plot(x,u); for j=2:Nu=trimf(x,[f(j-1),f(j),f(j+1)]); hold on; plot(x,u); endu=trimf(x,[f(N),f(N+1),f(N+1)]); hold on; plot(x,u); xlabel(‘x’);ylabel(‘Degree of membership ’); 污泥程序仿真结果如图1所示:01020304050607080901000.10.20.30.40.50.60.70.80.91xDe g r e e of m e m b e r s h i p图1 污泥隶属函数将油脂分为三个模糊集:NG (无油脂)MG (油脂中)LG(油脂多),取值范围为[0,100]选用如下隶属函数:50/5050/10050/50/50y y y y y y y LGMG NG油脂1005010050500500 y y y y 采用三角形隶属函数实现油脂的模糊化,仿真程序如下: Clear all; N=2; x=0:0.1:100; for i=1:N+1 f(i)=100/N*(i-1); endu=trimf(y,[f(1),f(1),f(2)]); figure (1); plot(y,u); for j=2:Nu=trimf(y,[f(j-1),f(j),f(j+1)]); hold on; plot(y,u); endu=trimf(y,[f(N),f(N+1),f(N+1)]); hold on; plot(y,u); xlabel(‘y’);ylabel(‘Degree of membership ’); 油脂程序仿真结果如图2所示:01020304050607080901000.10.20.30.40.50.60.70.80.91yDe g r e e of m e mb e r s h i p图2 油脂隶属函数将洗涤时间分为五个模糊集:VS(很短)S (短)M (中等)L(很长)取值范围为[0,60] 选用如下隶属函数:20/4020/6015/2515/4015/1015/2510/10/10z z z z z z z z z z z z z VLL M S VS洗涤时间604060404025402525102510100100 z z z z z z z z 采用三角形隶属函数实现洗涤时间的模糊化,其Matlab仿真程序如下: Close all; Z=0:0.1:60;U=trimf(z,[0,0,10]); Figure(1); Plot(z,u);U=trimf(z,[0, 10,25]); hold on; plot(z,u);U=trimf(z,[ 10,25,40]); hold on; plot(z,u);U=trimf(z,[ 25,40,60]); hold on; plot(z,u);U=trimf(z,[ 40,60,60]); hold on; plot(z,u); xlabel(‘z’)ylabel(“Degree of membership ”); 洗涤时间仿真程序结果如图3所示:01020304050600.10.20.30.40.50.60.70.80.91zDe g r e e of m e m b e r s h i p图3 洗涤时间隶属函数1.1.4 建立模糊控制规则根据人的操作经验设计模糊规则,模糊规则设计的标准为:“污泥越多,油脂越多,洗涤时间越长”;“污泥适中,油脂适中,洗涤时间适中”;“污泥越少,油脂越少,洗涤时将越短”。
模糊控制系统的建模与仿真设计方法
模糊控制系统的建模与仿真设计方法摘要:模糊控制系统是一种基于模糊逻辑的控制方法,广泛应用于工业控制、自动驾驶等领域。
本文介绍了模糊控制系统的基本原理,详细讨论了建模与仿真设计的方法,包括输入输出的模糊集合划分、规则库的构建、模糊推理与输出解模糊等关键步骤,并通过实例分析验证了方法的有效性。
1. 引言模糊控制系统是一种使用模糊逻辑进行决策和控制的方法,相较于传统的精确控制方法,具有更强的适应性和鲁棒性。
在实际应用中,模糊控制系统已被广泛运用于工业控制、自动驾驶等各个领域。
为了设计高性能的模糊控制系统,合理的建模与仿真设计方法至关重要。
2. 模糊控制系统的建模建模是模糊控制系统设计的第一步,其目的是将实际控制问题转化为模糊集合及其规则库的形式,方便进行模糊推理。
模糊控制系统的建模过程一般包括以下几个步骤:2.1 输入输出模糊集合划分对于待控制的对象,需要对输入和输出的变量进行模糊化,即将实际输入输出的连续取值划分为若干个模糊集合。
划分过程可以基于专家知识或实际数据,常用的划分方法包括三角法、梯形法和高斯法等。
2.2 规则库的构建规则库是模糊控制系统的核心,其中包含了模糊控制的知识和经验。
规则库的构建需要依据专家知识或经验,并将其转化为一系列模糊规则的形式。
每条规则一般由若干个模糊集合的条件和一个模糊集合的结论组成。
2.3 模糊推理通过将实际输入值映射到对应的模糊集合上,利用推理方法将输入与规则库中的规则进行匹配,得到模糊输出。
常用的推理方法包括最大值法、加权平均法和模糊积分法等。
2.4 输出解模糊由于模糊输出是一个模糊集合,需要对其进行解模糊得到具体的输出。
常用的解模糊方法包括最大值法、面积平衡法和最大隶属度法等。
3. 模糊控制系统的仿真设计模糊控制系统的仿真设计是为了验证所设计的模糊控制系统在实际情况下的性能。
仿真设计通常包括以下步骤:3.1 系统建模根据实际控制对象的特性,将其建模为数学模型,包括输入与输出的关系、系统的动态特性等。
模糊控制器的查询表的实例计算过程
用模糊控制实现水箱水温的恒温控制。
水箱由底部的电阻性电热元件加热,由电动搅拌器实现均温.设控制的目标温度为25ºC,以实测温度T与目标温度R之差,即误差e=T-R,以及误差变化率ec为输入,以固态继电器通电时间的变化量u(以一个控制周期内的占空比表示,控制电加热器的功率)为输出.设e的基本论域为[-5,5] ºC,其语言变量E的论域为[-5,5];ec的基本论域为[-1,1] ºC/s,其语言变量EC的论域为[—5,5];控制量u的基本论域为[—5,5]单位,其语言变量U的论域为[—5,5]。
E、EC和U都选5个语言值{NB,NM,NS,Z,PS,PM,PB},各语言值的隶属函数采用三角函数,其分布可用表1和表2表示,控制规则如表3所示。
要求:1、画出模糊控制程序流程图;2、计算出模糊控制器的查询表,写出必要的计算步骤。
表1 语言变量E、EC的赋值表表2 语言变量U的赋值表解:步骤:1)输入输出语言变量的选择。
输入变量选为实测温度T与目标温度R之差,即误差e,及误差变化率ec;输出语言变量选固态继电器通电时间的变化量u,故模糊控制系统为双输入—单输出的基本模糊控制器.2)建立各语言变量的赋值表。
设误差e的基本论域为[-5,5].C,输入变量E的论域为[-5,—4,-3,—2,-1,0,1,2,3,4,5],误差的量化因子为ke=5/5=1。
语言变量E选取5个语言值:PB PS ZE NS NB。
表1为语言变量E、EC的赋值表,表2为语言变量U的赋值表,,,,表1语言变量E、EC的赋值表表2 语言变量U的赋值表3)建立模糊控制规则表,总结控制策略,得出一组由25条模糊条件语句构成的控制规则,据此建立模糊控制规则表,如表3所示.表中行与列交叉处的每个元素及其所在列的第一行元素和所在行的第一列元素,对应于一个形式为”if E and EC then U”的模糊语句,根据该模糊语句可得相应的模糊关系i R ,则总控制规则的总模糊关系为251=i i R U R =。
结合实例完成模糊控制算法的原理与实现
模糊控制算法的原理与实现1. 介绍模糊控制是一种基于模糊逻辑的控制方法,它利用模糊规则来描述和模拟人类专家的经验和知识,以实现对复杂系统的控制。
模糊控制算法是通过模糊推理和模糊辨识来构建模糊控制系统。
本文将详细介绍模糊控制算法的原理与实现。
2. 模糊逻辑基础模糊逻辑是一种适用于处理模糊信息和不确定性问题的逻辑系统。
它是将模糊变量、模糊集合和模糊规则引入传统逻辑中的一种扩展。
模糊变量是指在一定范围内具有模糊性质的变量,模糊集合是指包含了事物之间模糊关系的集合,模糊规则是指用于描述输入与输出之间模糊关系的规则。
3. 模糊推理模糊推理是模糊控制算法的核心部分,它是基于模糊规则和模糊逻辑运算来进行的。
模糊推理过程包括模糊化、模糊规则匹配、模糊逻辑运算和去模糊化四个步骤。
3.1 模糊化模糊化是将实际输入值转换为模糊集合的过程。
通过模糊化,我们可以将精确的输入值映射到模糊集合上,并且可以灵活地描述输入值之间的模糊关系。
3.2 模糊规则匹配模糊规则匹配是将模糊化后的输入值与模糊规则进行匹配的过程。
每条模糊规则都由输入和输出之间的模糊关系构成,通过匹配规则,我们可以得到每条规则的激活度。
3.3 模糊逻辑运算模糊逻辑运算是根据模糊规则的激活度和模糊集合上的运算规则来进行的。
常用的模糊逻辑运算包括模糊交集、模糊并集和模糊推理。
3.4 去模糊化去模糊化是将模糊逻辑运算得到的模糊输出值转换为实际输出值的过程。
通过去模糊化,我们可以将模糊输出值映射到输入值所在的实际输出空间上。
4. 模糊辨识模糊辨识是模糊控制算法的关键步骤,它用于确定模糊控制系统的模糊规则和模糊变量。
模糊辨识可以通过专家经验、试验数据和数学建模等方法来实现。
4.1 专家经验法专家经验法是通过专家的经验和直觉来确定模糊规则和模糊变量。
专家根据对系统的了解和经验,提出一组模糊规则,并定义相应的模糊集合,从而构建模糊控制系统。
4.2 试验数据法试验数据法是通过对系统进行一系列试验,获取输入与输出之间的关系,进而确定模糊规则和模糊变量。
模糊控制在matlab中的实例
模糊控制在matlab中的实例模糊控制是一种应用广泛的控制方法,它可以处理那些难以精确建立数学模型的系统。
在Matlab中,使用Fuzzy Logic Toolbox工具箱可以方便地实现模糊控制系统。
以下是一个简单的模糊控制器示例,控制一个小车的速度和方向,使得其能够沿着预设的轨迹行驶。
1. 首先,定义输入和输出变量。
这里我们需要控制小车的速度和转向角度。
代码如下:```speed = newfis("speed");speed = addvar(speed,"input","distance",[0 10]);speed = addmf(speed,"input",1,"slow","trimf",[0 0 5]);speed = addmf(speed,"input",1,"fast","trimf",[5 10 10]); speed = addvar(speed,"output","velocity",[-10 10]);speed = addmf(speed,"output",1,"reverse","trimf",[-10-10 -2]);speed = addmf(speed,"output",1,"stop","trimf",[-3 0 3]); speed = addmf(speed,"output",1,"forward","trimf",[2 10 10]);angle = newfis("angle");angle = addvar(angle,"input","position",[-1 1]);angle = addmf(angle,"input",1,"left","trimf",[-1 -1 0]);angle = addmf(angle,"input",1,"right","trimf",[0 1 1]); angle = addvar(angle,"output","steering",[-1 1]);angle = addmf(angle,"output",1,"hard_left","trimf",[-1 -1 -0.5]);angle = addmf(angle,"output",1,"soft_left","trimf",[-1 -0.5 0]);angle = addmf(angle,"output",1,"straight","trimf",[-0.5 0.5 0.5]);angle = addmf(angle,"output",1,"soft_right","trimf",[0 0.5 1]);angle = addmf(angle,"output",1,"hard_right","trimf",[0.5 1 1]);```2. 然后,定义模糊规则。
模糊控制在matlab中的实例
模糊控制在matlab中的实例以下是一个模糊控制在MATLAB中的简单实例:假设我们要设计一个模糊控制器来控制一个水箱中水位的高低。
我们可以先建立一个模糊推理系统,其中包含输入和输出变量以及规则。
1. 输入变量:水箱中的水位(假设范围为0到100)。
2. 输出变量:水泵的流量(假设范围为0到10)。
我们需要定义一组模糊规则,例如:如果水箱中的水位为低,则水泵的流量为低。
如果水箱中的水位为中等,则水泵的流量为中等。
如果水箱中的水位为高,则水泵的流量为高。
将这些规则转换成模糊集合,如下所示:输入变量:- 低:[0, 30]- 中等:[20, 50]- 高:[40, 100]输出变量:- 低:[0, 3]- 中等:[2, 6]- 高:[4, 10]接下来,我们可以使用MATLAB的Fuzzy Logic Toolbox来建立模糊推理系统。
以下是一个简单的MATLAB脚本:```% 定义输入变量water_level = fisvar("input", "Water Level", [0 100]); water_level.addmf("input", "low", "trapmf", [0 0 30 40]); water_level.addmf("input", "medium", "trimf", [20 50 80]);water_level.addmf("input", "high", "trapmf", [60 70 100 100]);% 定义输出变量pump_flow = fisvar("output", "Pump Flow", [0 10]);pump_flow.addmf("output", "low", "trapmf", [0 0 3 4]); pump_flow.addmf("output", "medium", "trimf", [2 6 8]); pump_flow.addmf("output", "high", "trapmf", [7 8 10 10]); % 建立模糊推理系统rule1 = "If Water Level is low then Pump Flow is low"; rule2 = "If Water Level is medium then Pump Flow is medium"; rule3 = "If Water Level is high then Pump Flow is high"; rules = char(rule1, rule2, rule3);fis = newfis("Water Tank Fuzzy Controller");fis = addvar(fis, water_level);fis = addvar(fis, pump_flow);fis = addrule(fis, rules);% 模糊控制器输入water_level_value = 70;% 运行模糊推理系统pump_flow_value = evalfis([water_level_value], fis);disp(["Water level: " num2str(water_level_value) "%"]); disp(["Pump flow: " num2str(pump_flow_value)]);```在这个简单的例子中,我们使用了Fuzzy Logic Toolbox来定义输入和输出变量以及规则,并运行模糊推理系统来计算输出值。
模糊控制应用实例
• 2)输出变量
图7.15 输出变量旳隶属函数
• (4)解模糊判决成果 • 据此又细提成如下旳洗涤控制: • ①水流9种; • ②洗涤时间16种; • ③清洗时间6种; • ④脱水时间6种。
• 7.2 智能手机充电器
• 7.2.1 智能充电原理
• 根据这些控制规律,就可制定出如下满足 模糊控制要求旳控制规则:
• 规则1:假如NC=+3时R=VG且C=G且 A=VG,那么NC=3;
• 规则2:假如NC=+2时R=VG且C=G且 A=VG,那么NC=2;
• 规则3:假如NC=+1时R=VG且C=G且 A=VG,那么NC=1;
• 规则4:假如NC=0时 R=VG且A=G,那 么
度
• C:(Comfort of riding)乘坐舒适性 • E:(Energy saving)节省能源 • R:(Running time )行驶时间 • S:(Safety)安全性 • T:(Traceability of speed)速度跟踪
性
• 用5个符号表达模糊概念旳等级: • VG:(Very Good)非常好 • G:(Good)好 • M :(Medium)中档 • B:(Bad)差 • VB:(Very Bad)非常差 • (1)停车精确度 • (2)乘坐舒适度 • (3)节省能源
• 规则1:假如N =0时,S=G且C=G且E=G, 那么N=0;
• 规则2:假如N =P7时,S=G且C=G且 T=B,那么N=P7;
• 规则3:假如N=B7时,S=B,那么N=(N (t)+Bmax)/2;
• 规则4:假如NC=4时,S=G且C=G且 T=VG,那么NC=4;
模糊控制的Matlab仿真实例
THANK YOU
中心平均值去模糊化
去模糊化过程
04
Matlab仿真实例
输入输出变量定义
根据被控对象的特性,定义模糊控制系统的输入输出变量,如温度、湿度、压力等。
模糊化函数设计
为每个输入输出变量设计对应的模糊化函数,将实际值映射到模糊集合上。
模糊规则制定
根据专家知识和实际经验,制定模糊控制规则,如“如果温度过高,则调整冷却阀”。
输入输出关系
基于模糊逻辑运算和模糊集合的性质,建立输入和输出之间的映射关系。
推理规则
基于专家知识和经验,制定一系列的推理规则,用于指导模糊推理过程。
推理方法
常用的模糊推理方法包括最大值推理、最小值推理和中心平均值推理等。
模糊推理系统
02
Matlab模糊逻辑工具箱简介
模糊逻辑工具箱的功能
为了将模糊输出转换为实际输出,工具箱提供了多种去模糊化方法,如最大值去模糊化、最小值去模糊化和中心平均值去模糊化等。
性能指标选择
根据所选性能指标,采用合适的方法对模糊控制系统的性能进行评估,如极差分析法、方差分析法等。
性能评估方法
将模糊控制系统的性能与其他控制方法进行比较,如PID控制、神经网络控制等,以验证其优越性。
性能比较
01
02
03
模糊控制系统的性能评估
05
结论与展望
模糊控制对模型误差和参数变化具有较强的鲁棒性,能够适应不确定性和非线性系统。
输出模糊化
将模糊集合的输出映射到实际输出量上,同样采用隶属函数进行模糊化处理。
模糊化过程
模糊控制应用实例
模糊控制应用实例模糊控制是一种部分基于逻辑的控制方法,它通过将模糊集合理论应用于控制系统中的输入和输出来模拟人类决策的过程。
与传统的精确控制方法相比,模糊控制更适合于处理模糊的、不确定的和复杂的系统。
在现实世界中,模糊控制广泛应用于各个领域,例如工业自动化、交通控制、飞行器导航等。
在本文中,我将介绍几个模糊控制的应用实例,以帮助读者更好地了解其实际应用价值。
1. 交通信号灯控制系统交通信号灯控制是一个典型的实时决策问题,涉及到多个信号灯的切换以及车辆和行人的流量控制。
传统的定时控制方法往往无法适应实际交通状况的变化,而模糊控制可以根据不同时间段和交通流量的变化,动态地调整信号灯的切换时间和优先级,以实现交通拥堵的缓解和行车效率的提高。
2. 温度控制系统在许多工业生产过程中,温度的精确控制对产品质量和产量的影响非常重要。
模糊控制可以根据温度传感器采集到的实时数据,结合事先建立的模糊规则库,调整加热或制冷设备的输出,以实现温度的稳定和精确控制。
与传统的PID控制方法相比,模糊控制对于非线性和时变的系统具有更好的适应性和鲁棒性。
3. 汽车制动系统汽车制动系统是保证驾驶安全的重要组成部分,而制动力的控制是其关键。
模糊控制可以根据制动踏板的压力以及车辆的速度和加速度等信息,动态地调整制动力的输出,以实现舒适而有效的制动。
模糊控制还可以考虑路面的湿滑情况和车辆的负荷情况等因素,自适应地调整制动力的分配,提高制动系统的性能和安全性。
4. 智能家居系统智能家居系统通过感应器、执行器和控制器等组件,实现对家庭设备和环境的智能控制。
模糊控制可以根据家庭成员的习惯和偏好,结合各种传感器采集到的数据,自动地调节室内温度、湿度、光线等参数,提高居住舒适度并节约能源。
在夏天的炎热天气中,模糊控制可以根据室内外温度、湿度和人体感觉来控制空调的开关和风速,实现智能舒适的环境控制。
总结回顾:模糊控制在各个领域都有着广泛的应用。
它通过基于模糊集合理论的推理和决策方法,实现对复杂系统的智能控制。
模糊控制程序实例
5.2.2.6 模糊控制器设计实例 1、单输入模糊控制器的设计【例5.12】已知某汽温控制系统结构如图5.10所示,采用喷水减温进行控制。
设计单输入模糊控制器,观察定值扰动和内部扰动的控制效果。
R =图5.10 单回路模糊控制系统按表5-2确定模糊变量E 、U 的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e 、控制量u的实际论域:[ 1.5,1.5]e u =∈-,则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m 所示,仿真结果如图5.11所示。
设温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,选择e 、u 的等级量论域为{3,2,1,0,1,2,3}E U ==---+++量化因子2)5.1(5.132=--⨯=K 。
选择模糊词集为{NB,NS,ZO,PS,PB },根据人的控制经验,确定等级量E ,U 的隶属函数曲线如图5-8 所示。
根据隶属函数曲线可以得到模糊变量E 、U 的赋值表如表5-3所示。
图5-8 E ,U 的隶属函数曲线-3-2-1123依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E 为O ,说明温度接近希望值,喷水阀保持不动; 若误差E 为正,说明温度低于希望值,应该减少喷水; 若误差E 为负,说明温度高于希望值,应该增加喷水。
若采用数学符号描述,可总结如下模糊控制规则: 若E 负大,则U 正大; 若E 负小,则U 正小; 若E 为零,则U 为零; 若E 正小,则U 负小; 若E 正大,则U 负大。
写成模糊推理句:if E=NB then U=PB if E=NS then U=PS if E=ZO then U=ZO if E=PS then U=NS if E=PB then U=NB由上述的控制规则可得到模糊控制规则表,如表5-4所示。
表5-4 模糊控制规则表模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域E 到控制量论域U 的模糊关系R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
de e
模糊PD
U PD
U1
图3-15 模糊PD+精确积分
Ki e
Ui
3)以上两种混合结构由于包含了确定性的比例环节和积分环
节,因此实质上不是纯粹的模糊PID控制器。如果将类型2)中
的分增益Ki 进行模糊化就变成了类型3)的模糊PID控制器。其
中控制器的总输出值为
U3 U PD Fuzzy(Ki ) e
PS NM NS ZE PS PM PB PB
PM NS ZE PS PM PB PB PB
PB ZE PS PM PM PB PB PB
控制值U PD
由上表可知,对于一个二维的PD控制器规则库在7个语言值条
件下共有7×7=49条规则,如果要实现模糊PID控制器的规 则库,则需要7×7×7=343条规则。因此入语言变量的增 加会导致规则库的迅速增加。再则,如果系统为二输入二 输出的多输入多输出系统时 其模糊PID控制器的规则库将 达到117649条。
二、常规PID参数的模糊自整定技术
要为求,了利满用足模在糊不控同制误规差则e 在和线误对差变PID化参数e 进对行PI修D正参,数便自构整成定了的
参数模糊自整正PID控制器,其控制系统的结构如下图。图略
这种技术的设计思想是先找出PID三个参数与误差 和误差变
化 之间的模糊关系,在运行中通过不断检测 和e ,再根据
PM
0
0
0
0
0
0.1 0.4 0.7 1 0.7 0.4
PS
0
0
0
0.1 0.4 0.7
1
0.7 0.4 0.1 0
ZE
0
0
0.1 0.4 0.7
1
0.7 0.4 0.1 0
0
NS
0
0.1 0.4 0.7
1
0.7 0.4 0.1 0
0
0
NM
0.4 0.7
1
0.7 0.4 0.1
0
0
0
0
0
NB
1
0.7 0.4
模糊控制器设计实例-洗衣机模糊控制
以模糊洗衣机的设计为例,其控制是一个开 环的决策过程,模糊控制按以下步骤进行。 (1)模糊控制器的结构
选用单变量二维模糊控制器。控制器的输入 为衣物的污泥和油脂,输出为洗涤时间。 (2)定义输入输出模糊集
将 污 泥 分 为 三 个 模 糊 集 : SD ( 污 泥 少 ) , MD(污泥中),LD(污泥多),取值范围为 [0,100]。
根据一定判断决定哪一个控制器的输出才是系统真正的控
制值。难点是如何选择切换条件保证系统平稳切换。对于 第二种方法,不同的对象,一般有不同的结构,5种类型。
1)、当被控过程的稳态增益己知或可以测量 k p,那么积分作 用就没有必要了,在这种情况下模糊逻辑控制器的输出可以用
如下方程来描述 U1 U PD Ui U PD X / K p
表 模糊洗衣机的洗涤规则
洗涤
油脂 y
时间z
NG
MG
LG
污
SD
VS*
M
L
泥
x
MD
S
M
L
LD
M
L
VL
第*条规则为:“IF 衣物污泥少 且 没有油
脂 THEN 洗涤时间很短”。
(6)模糊推理
分以下几步进行:
① 规则匹配。假定当前传感器测得的信息
为: x0 (污泥) 60 , y0 (油脂) 70
,
图 油脂隶属函数
将洗涤时间分为五个模糊集:VS(很短),S (短),M(中等),L(长),VL(很长) ,取值范围为[0,60]。选用如下隶属函数:
VS ( z) (10 z) /10
S
(z)
z /10 (25
z)
/15
洗涤时间
M
(z)
( z 10) /15 (40 z) /15
L
(z)
分别带入所属的隶属函数中求隶属度:
MD (60)
4 5
LD
(60)
1 5
MG (70)
3 5
LG
(70)
2 5
通过上述四种隶属度,可得到四条相匹 配的模糊规则,如下表所示:
表 模糊推理结果
洗涤
时间z NG
SD
0
污
泥 MD
0
x (4/5)
LD(1/5) 0
油脂 y
MG(3/5) LG(2/5)
min(
2 5
,
L
(
z
)),
min(1 5
,
L
(
z)),
min(1 5
,
VL
(
z
))
maxmin(
3 5
,
M
(
z)),
min(
2 5
,
L
(
z
)),
min(1 5
,
VL
(
z))
⑥ 反模糊化 模糊系统总的输出实际上是三个规则推理
结果的并集,需要进行反模糊化,才能得到
精确的推理结果。下面以最大平均法为例,
0
0
M (z)
L(z)
L(z)
VL ( z)
② 规则触发。由上表可知,被触发的规则有4
条:
Rule 1:IF x is MD and y is MG THEN z is M Rule 2:IF x is MD and y is LG THEN z is L Rule 3:IF x is LD and y is MG THEN z is L Rule 4:IF x is LD and y is LG THEN z is VL ③ 规则前提推理。在同一条规则内,前提之间 通过“与”的关系得到规则结论,前提之间通 过取小运算,得到每一条规则总前提的可信度 : 规则1前提的可信度为:min(4/5,3/5)=3/5 规则2前提的可信度为:min(4/5,2/5)=2/5 规则3前提的可信度为:min(1/5,3/5)=1/5
1 0.8 0.6 0.4 0.2
0 0 10 20 30 40 50 60 70 80 90 100 x
图 污泥隶属函数
将油脂分为三个模糊集:NG(无油脂) ,MG(油脂中),LG(油脂多),取值范 围为[0,100]。选用如下隶属函数:
NG ( y) (50 y) / 50
油脂
MG ( y)
2
2
第四节:模糊PID控制器的设计 为了改善模糊制器的静态性能,提出了模糊PID控制器的 思想。目前模糊PID控制器的设计主要涉及两个方面的内容。 一是模糊控制器和常规PID的混合结构;二是常规PID参数 的模糊自整定技术。
一、模糊控制器和常规PID的混合结构 此种结构就是在论域内用不同的控制方式分段实现控制
( z 25) (60 z)
/15 / 20
VL ( z) ( z 40) / 20
0 z 10 0 z 10 10 x 25 10 z 25 25 z 40 25 z 40 40 z 60 40 z 60
采用三角形隶属函数实现洗涤时间的模糊化,
如下图所示。
1
0.1
0
0
0
0
0
0
0
系统的参数 (K , b , c ) (5 ,1,1 ) 。模糊PD控制器的规则由表 3-5给出。
表3-5 模糊控E制则库
NB NM NS ZE PS PM PB
NB NB NB NB NM NM NS ZE NM NB NB NB NM NS ZE PS NS NB NM NM NS ZE PS PM E ZE NB NS NS ZE PS PM PB
--即误差大时采用纯比例控制方式,当误差小于某一阀 值时切换到模糊控制方式,当输入变量误差模糊值为零时 (ZE)进入PI 控制方式;另一种方法是将PID控制器分解为模 糊PD控制器和各种其它类型(如模糊放大器,模糊积分器、 模糊PI控制器,确定积分器等)的并联结构。达到这两种控 制器性能的互补。对于第一种方法,PID控制器和模糊逻辑 控制器各自分别设计完成,并以冗余形式同时投入运行。
0.8
Degree of membership
0.6
0.4
0.2
0
0
10
20
30
40
50
60
z
图 洗涤时间隶属函数
(4)建立模糊控制规则 根据人的操作经验设计模糊规则,模糊规则设计 的标准为:“污泥越多,油脂越多,洗涤时间越 长”;“污泥适中,油脂适中,洗涤时间适中” ;“污泥越少,油脂越少,洗涤时间越短”。 (5)建立模糊控制表 根据模糊规则的设计标准,建立模糊规则表如下 表。
为了实现类型3)和5)的拟模糊PID控制器,必须引入积 分环节的规则库。对于类型3)其模糊增益 Ki的规则库为
E NB NM NS ZE PS PM PB
Ki PS PM PM PB PM PM PS
对于类型5),其模糊输出增益U的规则库为
E NB NM NS ZE PS PM PB
U NB NM NS ZE PS PM PB
这里的模糊积分控制器与模糊PD控制器并联,结构图同类
型4) 。此时 U i不再是增量了。 例3-1 考虑一个二阶动态系统,其传递函数为
K G(s) s2 bs c
已知输入和输出语言变量的语言值和隶属度值都相同(如
下表)
表3-4 隶属度函数值
-5
-4
-3
-2
-1
0
1
2
3
4
5
PB
0
0
0
0
0
0
0
0.1 0.4 0.7 1