基于单片机的直流电机控制系统

合集下载

基于单片机的直流伺服电机脉冲宽度调制控制系统的设计

基于单片机的直流伺服电机脉冲宽度调制控制系统的设计

基于单片机的直流伺服电机脉冲宽度调制控制系统的设计直流伺服电机脉冲宽度调制(PWM)控制系统是一种常见的控制电机速度和位置的方法。

在这篇文章中,我们将详细介绍基于单片机的直流伺服电机PWM控制系统的设计。

1.引言:直流伺服电机是一种常见的用于机器人、工业自动化和航空航天等领域的电机,它具有速度和位置控制的能力。

脉冲宽度调制技术是一种常用的控制直流电机速度和位置的方法,通过在一定周期内改变PWM信号的脉冲宽度,可以控制电机的转速和转向。

2.系统结构:(1)电源模块:用于提供电机驱动需要的直流电源。

(2)运动控制模块:用于控制电机的转速和转向,并生成PWM信号。

(3)PWM发生器:用于生成PWM信号的方波信号。

(4)驱动器:用于将PWM信号转换成电机驱动信号。

(5)电机:用于产生机械运动。

3.PWM信号生成:PWM信号的生成是整个系统的关键步骤,它决定了电机的转速和转向。

(1)选择合适的单片机:选择具有PWM输出功能的单片机作为控制芯片,常用的有AVR、PIC等系列。

(2)设定PWM周期:根据电机的需求,设定合适的PWM周期,通常周期在几十毫秒到几百毫秒之间。

(3)设定PWM占空比:根据转速和转向的需求,设定合适的PWM占空比,通常占空比在0%到100%之间。

(4)编程生成PWM信号:利用单片机的PWM输出功能,编程生成设定好的PWM信号。

4.电机驱动:电机驱动模块负责将PWM信号转换成电机驱动信号。

通常采用H桥驱动器来实现,H桥驱动器可以控制电机的正转和反转。

(1)选择合适的H桥驱动器:根据电机的电流和电压需求,选择合适的H桥驱动器。

(2)连接H桥驱动器:将控制信号连接到H桥驱动器的控制端口,将电机的电源和地线连接到驱动器的电源和地线端口。

(3)编程控制H桥驱动器:利用单片机的IO口,编程产生控制信号,控制H桥驱动器的输出。

5.运动控制:运动控制模块负责接收用户输入的速度和位置指令,并将其转换成合适的PWM信号。

基于单片机的直流电机调速系统设计

基于单片机的直流电机调速系统设计

直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)

基于单片机的直流电机控制系统

基于单片机的直流电机控制系统

摘要本设计首先介绍了AT89S52单片机,L298驱动电路及直流电机的基本原理与功能;其次,设计直流电机实现转向、速度的控制方案;再次,在这些器件功能与特点的基础上,拟出设计思路,构建系统的总体框架,并利用LED数码管对测试结果进行显示;最后利用Proteus软件绘出电路图,同时写出设计系统的运行流程和相关程序。

整个系统通过写入单片机中的程序分配好控制字的存储单元以及相应的内存地址赋值;启动系统后,从单片机的I/O口输出控制脉冲,经过L298驱动电路对脉冲进行处理,输出能直接控制直流电机的脉冲信号。

本系统采用了低成本的AT89S52单片机芯片作为控制芯片,以按键做为输入达到对直流电机的启停、速度和方向的精确控制。

直流电机的驱动采用的是达林顿集成管L298,并且采用LED的进行显示。

在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。

总之,本次设计出了操作简单、显示直观的直流电机控制系统。

关键字: AT89S52单片机;L298驱动芯片;直流电机。

AbstractThe design first introduced the AT89S52 single-chip microcomputer, L298 drive circuit and dc motor of the basic principle and function; Second, the design of dc motor to realize, the speed control scheme; and Again, in these devices based on the characteristics of the function and, draw up the design idea, construction of the whole system framework, and use of LED digital tube the results shows; Finally, using the Proteus software draw circuit diagram, at the same time, write design the operation of the system process and procedures. The whole system by writing to the single chip microcomputer program allocation good control of the word and the corresponding storage unit of the memory address assignment; Reboot your system, from single chip I/O mouth output control pulse, after L298 driving circuit pulse processing, the output can directly control dc motor of the pulse signal. This system USES a low cost AT89S52 single-chip microcomputer chip as control chip, with button as input to the keyboard to dc motor of the rev. Stop, speed and direction of the accurate control. Dc motor driver uses is the integration of L298 tube, and using the LED displayed. In the design, adopted PWM technology of motor control, through to the occupies emptiescompared to achieve the purpose of accurate calculation speed. All in all, this design out the operation is simple, direct display of dc motor control system.Key word:AT89S52 single-chip microcomputer; L298 driving chip; DC motor.目录1 绪论 (1)1.1 直流电机调速系统的发展 (1)1.2 开发背景 (2)1.3 选题的目的及意义 (3)1.4 研究方法 (4)2 系统方案设计 (5)2.1 概述 (5)2.2 总体设计任务 (5)2.3 系统总体设计方案论证 (6)2.4 系统总体设计方框图 (7)2.5 直流电机调速概述 (8)2.5.1 直流电机简介 (8)2.5.2 直流电机调速原理 (9)2.5.3 直流调速系统实现方式论证 (9)3 电机调速驱动设计 (11)3.1 PWM控制方式 (11)3.2 PWM控制的基本原理 (11)3.3 PWM 发生电路的设计 (13)3.4 功率放大驱动电路 (16)3.4.1 芯片L 298 性能及特点....................... ..163.4.2 L298芯片引脚的电气特性及功能 (17)3.4.3 L298驱动电机的逻辑功能 (19)4 硬件电路设计 (21)4.1 AT89S52的最小系统电路 (21)4.1.1 单片机芯片AT89S52介绍 (21)4.1.2单片机管脚说明 (22)4.1.3 时钟电路 (25)4.1.4 复位电路 (26)4.2 数码管显示 (27)4.3 排阻的简介 (27)4.4 显示电路与AT89S52单片机接口电路设计 (28)4.5 键盘与AT89S52单片机接口电路设计 (30)4.6 驱动电路与AT89S52单片机接口电路设计 (30)5 系统软件设计 (32)5.1 主程序设计 (33)5.2 子程序设计 (34)5.2.1 键盘子程序设计 (34)5.2.2显示子程序设计 (35)5.2.3 P W M控制程序设计 (36)5.3 系统仿真 (36)5.4 Proteus的简单使用 (37)6 设计总结 (39)致谢 (40)参考文献 (41)附录1 程序清单 (42)附录2 系统总图 (50)绪论1.1 直流电机调速系统的发展直流电气传动系统中需要有专门的可控直流电源,常用的可控直流电源有以下几种: 第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。

采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。

而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。

并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。

随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。

1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。

示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。

基于单片机的PWM直流电机调速系统设计

基于单片机的PWM直流电机调速系统设计

基于单片机的PWM直流电机调速系统设计摘要本文主要介绍基于单片机的PWM直流电机调速系统的设计和实现方法。

该系统通过利用单片机控制器控制电机的启动、停止、正转和反转等操作,同时实现对电机速度的调节。

在电机工作时,单片机通过PWM技术控制电机的电压和电流,从而达到调节电机转速的效果。

系统设计思路为了实现电机的调速功能,本系统采用基于单片机控制器和PWM技术的电机驱动控制方案。

系统整体分为硬件和软件两个部分,硬件部分主要包括电机、电路组成和控制器,而软件部分则是单片机程序设计。

电路组成系统电路主要由电源、单片机控制器、电机驱动模块和电机组成。

其中,电源主要用于系统供电,单片机控制器主要用于控制电机驱动模块的输出,电机驱动模块负责将单片机控制器输出的PWM信号转换为直流电机可控的电流。

单片机程序设计系统中需要对单片机进行程序设计,以实现对电机的启动、停止、正转和反转等操作,同时实现电机的调节功能。

程序设计主要包括以下几个部分:1.系统初始化:包括系统时钟初始化、输入输出口初始化以及中断配置等。

2.电机控制:控制电机的启动、停止、正转和反转等操作。

3.电机调速:利用PWM技术实现对电机的调节功能。

4.数据处理:对输入的调节参数进行处理,然后转换成PWM占空比输出到电机。

PWM技术原理PWM技术是通过控制模拟信号的占空比,来达到模拟信号的数字化的目的。

具体而言,通过控制PWM信号的占空比,从而实现对电机输出电压和电流的控制,从而达到对电机转速的调节。

系统实现步骤本系统的实现步骤主要包括以下几个部分:电机接线首先,需要根据电机的参数和工作电压要求,正确接线电机。

接线时需要注意电机正反转的问题,以及电路的安全性问题。

程序编写根据我们的设计思路,需要编写相应的单片机程序。

程序编写包括系统初始化、电机控制、电机调速和数据处理等部分。

编写程序时需要考虑到各参数变化的初始值和变化范围,以及程序的鲁棒性和可调节性。

系统调试在程序编写完成后,需要对整个系统进行调试。

基于单片机的直流电机控制风扇系统设计

基于单片机的直流电机控制风扇系统设计

基于单片机的直流电机控制风扇系统设计
本文介绍基于单片机的直流电机控制风扇系统设计。

所使用的单片机为STC15F2K60S2,电机为12V直流电机,控制模块为L298N。

系统设计分两部分,硬件设计和软件设计。

下面分别进行介绍。

一、硬件设计
1.电源电路设计
本系统的电源为12V的直流电源。

电源电路设计如下图所示:
图中VCC为12V直流电源正极,GND为负极。

C1为电容器,滤波电路,保证电源稳定。

LED1为电源指示灯,用于指示系统是否有电。

2.电机驱动电路设计
本系统采用L298N控制电机,并用单片机控制L298N电路的工作状态,控制电机的正反转。

电机驱动电路如下图所示:
图中,IN1、IN2、IN3、IN4接单片机的IO口,用于控制电机的正反转。

3.电机控制电路设计
电机控制电路如下图所示:
图中,M1为12V直流电机。

4.程序下载电路设计
程序下载电路如下图所示:
图中,P1为ISP下载器接口,用于单片机程序的下载。

二、软件设计
本系统的软件主要由单片机程序控制,程序流程如下:
1.初始化各个IO和定时器;
2.读取按键状态,判断按键是否按下;
3.如果按键按下,则控制电机正反转;
4.定时器每隔一段时间检测温度传感器,若检测到温度过高,则打开电机,达到散热的目的;
5.程序无限循环,直到关机。

以上就是基于单片机的直流电机控制风扇系统的设计方案,通过硬件电路的设计和软件程序的编写,可以实现对电机的控制,使风扇系统能够自动调节风速,达到更好的散热效果。

基于单片机的直流电机控制

基于单片机的直流电机控制

基于单片机的直流电机控制【摘要】这篇文章主要探讨了基于单片机的直流电机控制。

在文章介绍了研究的背景、意义和目的。

在分别讨论了直流电机的原理与分类、单片机在直流电机控制中的应用、基于单片机的直流电机控制系统设计、控制策略及算法以及性能测试与分析。

在文章总结了基于单片机的直流电机控制的优势,并探讨了未来发展方向。

通过本文的研究,揭示了基于单片机的直流电机控制在工程领域中的重要作用,并为相关研究提供了理论支持和实践指导。

未来,该领域的研究还有待进一步深入探讨,以应对不断变化的技术需求和挑战。

【关键词】直流电机、单片机、控制系统、控制策略、算法、性能测试、优势、未来发展、总结、研究背景、研究意义、研究目的、直流电机原理、分类、直流电机控制系统设计1. 引言1.1 研究背景单片机具有体积小、功耗低、易编程、成本低廉等优点,能够实现复杂的控制算法和策略,提高直流电机控制的精度和性能。

利用单片机来设计直流电机控制系统已成为一种趋势。

虽然单片机技术在直流电机控制中有着广阔的应用前景,但目前仍存在一些问题和挑战,如控制算法的优化、系统稳定性等方面需要进一步改进和研究。

对基于单片机的直流电机控制技术进行深入研究具有重要的理论和实际意义。

1.2 研究意义,作者等信息。

以下为输出内容:直流电机在工业生产中应用广泛,其控制系统的性能直接影响到设备的运行效率和稳定性。

基于单片机的直流电机控制系统具有实时性高、精度高和可靠性好的特点,可以更好地满足现代工业生产对于电机控制的需求。

对于基于单片机的直流电机控制系统的研究具有重要的理论和实践意义。

研究基于单片机的直流电机控制系统可以推动电机控制技术的发展,提高电机控制系统的性能和稳定性,为工业生产的自动化和智能化发展提供技术支持。

研究基于单片机的直流电机控制系统可以优化电机控制策略和算法,提高电机控制的效率和精度,降低能耗和成本,实现节能减排的目标。

1.3 研究目的研究目的是通过基于单片机的直流电机控制系统设计和控制策略的研究,实现对直流电机运行状态的精准控制和调节。

基于单片机的无刷直流电动机控制系统研究 的文献综述2000字左右

基于单片机的无刷直流电动机控制系统研究 的文献综述2000字左右

基于单片机的无刷直流电动机控制系统研究的文献综述2000字左右研究无刷直流电动机控制系统是电气工程领域的一个重要课题,它涉及到控制理论、电机原理、嵌入式系统等多个学科领域。

以下是一个关于基于单片机的无刷直流电动机控制系统研究的文献综述,大约2000字左右:________________________________________文献综述:基于单片机的无刷直流电动机控制系统研究1. 引言无刷直流电动机(BLDC)以其高效率、低噪音和长寿命等优点在工业和家用电器中得到了广泛应用。

而基于单片机的无刷直流电动机控制系统,作为一种先进的电机控制技术,具有成本低、响应快、可靠性高等特点,受到了研究者们的广泛关注。

2. 无刷直流电动机的工作原理无刷直流电动机是一种将电能转换为机械能的装置,其工作原理基于电磁感应和电流的相互作用。

通过在电动机中的定子和转子上安装恰当的磁铁,配合适当的控制电路,可以实现对电机转速和转矩的精确控制。

3. 基于单片机的无刷直流电动机控制系统设计基于单片机的无刷直流电动机控制系统一般由三部分组成:传感器模块、控制算法和功率放大模块。

传感器模块用于获取电机的运行状态,包括转速、位置等信息;控制算法根据传感器获取的信息计算出适当的电机控制信号;功率放大模块将控制信号放大驱动电机。

4. 常用的控制算法常用的无刷直流电动机控制算法包括电枢电流控制、感应电动机模型控制、空间矢量调制控制等。

这些控制算法在实际应用中各有优缺点,研究者们通常根据具体的应用场景选择合适的算法。

5. 实验与应用基于单片机的无刷直流电动机控制系统已经在工业自动化、电动汽车、无人机等领域得到了广泛应用。

研究者们通过实验验证了该控制系统的稳定性、精度和可靠性,并不断改进和优化控制算法,以适应不同的应用需求。

6. 结论与展望基于单片机的无刷直流电动机控制系统是电机控制领域的一个重要研究方向,其在提高电机性能、降低能耗、推动电动化技术发展等方面具有重要意义。

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述随着科技的不断发展,单片机的应用越来越广泛。

在电机控制领域,单片机的应用也得到了广泛的关注。

本文综述了基于单片机的直流电机控制系统设计的相关文献,包括控制系统的设计、控制算法的选择、硬件设计和软件设计等方面。

通过对文献的分析,总结出了单片机在直流电机控制系统中的优点和缺点,并展望了未来的发展方向。

关键词:单片机、直流电机控制、控制算法、硬件设计、软件设计一、引言直流电机是一种常见的电动机,广泛应用于各种机械设备中。

在控制直流电机时,需要使用控制系统来实现对电机的转速、转向等参数的控制。

随着科技的不断发展,单片机的应用越来越广泛。

在直流电机控制领域,单片机的应用也得到了广泛的关注。

本文综述了基于单片机的直流电机控制系统设计的相关文献。

首先介绍了控制系统的设计,包括控制算法的选择、硬件设计和软件设计等方面。

然后对文献进行了分析,总结出了单片机在直流电机控制系统中的优点和缺点。

最后,展望了未来的发展方向。

二、控制系统的设计1. 控制算法的选择直流电机控制系统中常用的控制算法有PID算法、模糊控制算法和神经网络控制算法等。

PID算法是一种经典的控制算法,具有简单、易于实现等特点。

模糊控制算法则能够应对非线性系统的控制问题,具有较强的鲁棒性。

神经网络控制算法则能够学习系统的动态特性,适用于非线性系统的控制。

2. 硬件设计直流电机控制系统的硬件设计包括电机驱动电路、传感器接口电路、单片机接口电路等。

电机驱动电路是直流电机控制系统中最关键的部分,常用的驱动电路包括H桥驱动电路、MOSFET驱动电路等。

传感器接口电路则用于接收电机的参数信号,常用的传感器包括编码器、霍尔传感器等。

单片机接口电路则用于连接单片机和其他模块,常用的接口包括串口、I2C接口等。

3. 软件设计直流电机控制系统的软件设计包括单片机程序设计和上位机程序设计两部分。

单片机程序设计主要是实现控制算法和控制信号的生成,并与硬件电路进行交互。

基于STC单片机无刷直流电机控制系统的设计

基于STC单片机无刷直流电机控制系统的设计

基于STC单片机无刷直流电机控制系统的设计本文将介绍基于STC单片机的无刷直流电机控制系统的设计。

无刷直流电机具有高效率、低噪音、长寿命等优点,在工业自动化、家用电器等领域得到广泛应用。

本设计采用了STC12C5A60S2单片机,通过PWM控制器实现了对无刷直流电机的速度和转向控制。

一、硬件设计1.主控芯片:STC12C5A60S2单片机STC12C5A60S2是一款高性能8位单片机,具有强大的计算能力和丰富的外设资源。

它具有多个定时器/计数器、多路ADC、UART等功能模块,适合于各种应用场合。

在本设计中,该芯片作为主控芯片,负责实现对无刷直流电机的速度和转向控制。

2.驱动模块:L298NL298N是一款双全桥驱动芯片,可实现对直流电机或步进电机的驱动。

它具有较高的输出功率和较低的内部电阻,适合于需要大功率输出的应用场合。

在本设计中,L298N作为无刷直流电机驱动模块,负责将主控芯片输出的PWM信号转化为电机驱动信号。

3.无刷直流电机无刷直流电机具有高效率、低噪音、长寿命等优点,在各种应用场合得到广泛应用。

在本设计中,选择了一款12V、2000rpm的无刷直流电机,作为实验对象。

4.其他元件除上述元件外,还需要使用一些电容、电阻、二极管等元件,以及连接线、面包板等辅助材料。

二、软件设计1.系统框图本设计采用了STC12C5A60S2单片机,通过PWM控制器实现了对无刷直流电机的速度和转向控制。

系统框图如下所示:2.程序流程(1) 初始化各个模块:包括IO口初始化、定时器/计数器初始化等。

(2) 设置PWM占空比:通过改变PWM占空比来实现对电机的速度控制。

(3) 改变输出口状态:根据需要改变输出口状态,实现正反转控制。

(4) 延时:为了保证电机能够正常工作,需要进行适当的延时操作。

(5) 循环执行上述步骤:不断地改变PWM占空比和输出口状态,以实现对电机的控制。

三、实验结果本设计的实验结果表明,采用STC单片机控制无刷直流电机,可以实现精确的速度和转向控制。

基于单片机的无刷直流电动机的控制系统设计

基于单片机的无刷直流电动机的控制系统设计

文章标题:基于单片机的无刷直流电动机的控制系统设计一、引言在现代工业生产和民用设备中,无刷直流电动机(BLDC)的应用越来越广泛。

它具有高效率、高功率密度、响应速度快等特点,在电动汽车、家电、医疗器械等领域都有着重要地位。

而基于单片机的无刷直流电动机控制系统设计,正是为了更精准地控制电动机的运行,以满足不同领域的需求。

二、无刷直流电动机的原理和特点1. 无刷直流电动机的工作原理及结构无刷直流电动机是一种能够将直流电能转换为机械能的电动机,它的结构简单、维护成本低、寿命长。

其工作原理是利用永磁铁和定子电磁绕组之间的磁场相互作用,通过改变转子上的磁场来实现电动机的转动。

2. 无刷直流电动机的特点高效率:相比传统的直流电动机,无刷直流电动机具有更高的能量转换效率。

响应速度快:由于无需使用机械换向装置,无刷直流电动机转速响应速度快。

寿命长:由于无刷直流电动机少了机械换向装置,因此减少了摩擦,提高了机械寿命。

三、基于单片机的无刷直流电动机控制系统设计1. 电机驱动器在基于单片机的无刷直流电动机控制系统中,选择合适的电机驱动器至关重要。

常见的电机驱动器包括晶闸管驱动器、电子换向驱动器等。

通过合理选择电机驱动器,可以实现对电动机的高效控制,提高电动机的性能和稳定性。

2. 控制算法控制算法是影响电动机性能的关键因素之一。

在基于单片机的控制系统设计中,PID控制算法是常用的一种。

通过对电机转速、转矩进行实时调节,可以使电机在不同工况下获得良好的控制效果。

3. 硬件设计在基于单片机的无刷直流电动机控制系统设计中,硬件设计包括单片机选型、外围电路设计等。

根据具体的应用场景和要求,选择合适的单片机,并设计与之匹配的外围电路,保证整个系统的稳定性和可靠性。

四、个人观点和理解在基于单片机的无刷直流电动机控制系统设计中,我认为需要充分考虑电机的工作环境和要求,选择合适的控制算法和电机驱动器,并进行合理的硬件设计。

对系统进行充分的测试和验证,以确保控制系统设计的可靠性和稳定性。

基于单片机设计直流电机控制系统

基于单片机设计直流电机控制系统

基于单片机设计直流电机控制系统一、本文概述本文将详细介绍基于单片机的直流电机控制系统的设计过程。

随着科技的不断发展,电机控制在许多领域,如工业自动化、机器人技术、家用电器等,都发挥着重要的作用。

单片机作为一种高效、可靠的微控制器,具有集成度高、功耗低、控制精度高等优点,因此,基于单片机的直流电机控制系统设计成为了研究的热点。

本文将首先介绍直流电机的基本原理和控制方式,然后详细阐述如何利用单片机实现直流电机的精确控制。

在设计中,我们将考虑电机的启动、停止、正反转、调速等基本功能,并探讨如何通过编程实现这些功能。

我们还将讨论系统的硬件设计和软件设计,包括单片机的选型、电机的驱动电路、传感器的选择以及控制算法的实现等。

通过本文的阐述,读者将能够深入了解基于单片机的直流电机控制系统的设计过程,掌握相关的理论知识和实践技能,为实际应用提供有益的参考。

二、直流电机基本原理及特性直流电机是一种将电能转换为机械能的装置,其基本原理基于安培环路定律和电磁感应定律。

直流电机主要由定子、转子、电刷和换向器等部分组成。

定子通常由电磁铁构成,用于产生磁场;转子则是一个带有绕组的圆柱形结构,当通电时,在定子的磁场作用下产生转矩,从而使电机旋转。

调速性能好:通过改变电枢电压、磁场强度或电枢回路中的电阻,可以有效地调节直流电机的转速。

这使得直流电机在需要精确控制转速的场合,如精密机械、自动化设备中得到广泛应用。

启动转矩大:直流电机在启动瞬间,由于电枢电流较大,可以产生较大的启动转矩,使其具有良好的启动性能。

良好的调速动态性能:直流电机在调速过程中,转矩和转速的动态响应较快,能够满足一些对动态性能要求较高的应用需求。

控制方便:直流电机的控制相对简单,可以通过改变输入电压、电流或磁场强度来实现对电机转速和转向的控制。

通过改变电刷的位置,还可以实现电机的正反转切换。

然而,直流电机也存在一些局限性,如结构复杂、维护成本较高以及电刷和换向器易磨损等问题。

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述随着科技的不断发展,单片机技术在电机控制系统中的应用越来越普遍。

本文综述了基于单片机的直流电机控制系统的设计与实现,包括硬件设计、软件设计、电机控制策略等方面。

结果表明,基于单片机的直流电机控制系统具有控制精度高、响应速度快、可靠性强等优点,是一种高效、实用的电机控制方法。

关键词:单片机;直流电机;控制系统;硬件设计;软件设计;控制策略一、引言直流电机广泛应用于工业生产、家电、交通运输等领域,其控制系统的设计和实现对于提高电机的性能和效率具有重要意义。

随着单片机技术的不断发展,基于单片机的电机控制系统成为了研究热点。

本文综述了基于单片机的直流电机控制系统的研究进展和应用现状,以期为相关研究提供参考和借鉴。

二、硬件设计基于单片机的直流电机控制系统的硬件设计包括电机驱动模块、传感器模块、单片机模块和电源模块等部分。

其中,电机驱动模块是整个系统的核心部分,其设计直接影响了系统的性能和稳定性。

电机驱动模块的设计需要考虑电机的电压、电流、转速等参数,以及驱动电路的稳定性和可靠性。

常用的电机驱动器包括PWM调速器、H桥驱动器、单向驱动器等。

另外,传感器模块用于检测电机的位置、速度、转向等信息,常用的传感器包括霍尔传感器、编码器、光电传感器等。

三、软件设计基于单片机的直流电机控制系统的软件设计包括控制算法、驱动程序和用户界面等部分。

其中,控制算法是整个系统的核心部分,其设计直接影响了系统的控制精度和响应速度。

常用的控制算法包括PID控制算法、模糊控制算法、神经网络控制算法等。

驱动程序用于实现电机控制算法,包括PWM输出、速度控制、位置控制等功能。

用户界面用于显示电机的运行状态和控制参数,包括LCD显示屏、LED指示灯等。

四、电机控制策略基于单片机的直流电机控制系统的电机控制策略包括速度控制、位置控制、转向控制等方面。

其中,速度控制是电机控制的基本功能,其目的是保持电机在指定的转速范围内运转。

基于单片机的直流电机控制系统设计

基于单片机的直流电机控制系统设计

基于单片机的直流电机控制系统设计一、设计目标设计一个基于单片机的直流电机控制系统,能够实现对直流电机的速度和方向的控制。

二、设计方案1.硬件设计(1)电源电路:通过适配器将交流电转换为直流电以供系统使用。

(2)单片机选择:选择一款适合该应用的单片机,如STC89C52系列。

(3)直流电机驱动电路:使用H桥驱动电路来控制直流电机的速度和方向。

(4)编码器:使用编码器来进行速度反馈,可以根据反馈信号来调整电机的转速。

2.软件设计(1)系统初始化:对单片机进行初始化配置,包括IO口的设置、定时器的配置等。

(2)速度控制算法:设计一个控制算法,根据期望速度和实际速度的差距来调整PWM波的占空比,从而控制电机转速。

(3)方向控制算法:设计一个方向控制算法,通过改变H桥电路的输入信号来改变电机的转向。

(4)编码器反馈处理:读取编码器的信号,计算出实际速度,并与期望速度进行比较。

(5)用户接口设计:可以通过按键或者外部PWM输入调节期望速度和方向,实现用户对电机的控制。

三、系统实现1.硬件实现根据硬件设计方案,按照电路原理图进行电路连接和焊接。

确保电源电路正常工作,单片机可以正常工作,H桥驱动电路可以正常控制电机的转向和速度。

连接编码器并确保能够正常读取速度反馈信号。

2.软件实现(1)编写单片机初始化程序,进行必要的配置。

(2)编写速度控制算法,根据期望速度和实际速度的差距来调整PWM波的占空比。

(3)编写方向控制算法,根据用户输入的方向来改变H桥电路的输入信号。

(4)编写编码器反馈处理程序,读取编码器的信号并计算实际速度。

(5)编写用户接口程序,可以通过按键或者外部PWM输入来调节期望速度和方向。

四、系统测试与优化1.对系统进行功能测试,确保可以通过用户接口控制电机的转向和速度。

2.对编码器反馈进行测试,验证实际速度计算的准确性。

3.对速度和方向控制进行测试,确保系统能够按照期望速度和方向进行控制。

4.如果发现问题,对系统进行优化和修改,改进算法和调整参数。

基于51单片机的PWM直流电机调速系统

基于51单片机的PWM直流电机调速系统

基于51单片机的PWM直流电机调速系统一、本文概述随着现代工业技术的飞速发展,直流电机调速系统在众多领域如工业自动化、智能家居、航空航天等得到了广泛应用。

在众多调速方案中,基于脉冲宽度调制(PWM)的调速方式以其高效、稳定、易于实现等优点脱颖而出。

本文旨在探讨基于51单片机的PWM直流电机调速系统的设计与实现,以期为相关领域的技术人员提供一种可靠且实用的电机调速方案。

本文将简要介绍PWM调速的基本原理及其在直流电机控制中的应用。

随后,将详细介绍基于51单片机的PWM直流电机调速系统的硬件设计,包括电机选型、驱动电路设计、单片机选型及外围电路设计等。

在软件设计部分,本文将阐述PWM信号的生成方法、电机转速的检测与控制算法的实现。

还将对系统的性能进行测试与分析,以验证其调速效果及稳定性。

本文将总结基于51单片机的PWM直流电机调速系统的优点与不足,并提出改进建议。

希望通过本文的阐述,能为相关领域的研究与应用提供有益参考。

二、51单片机基础知识51单片机,也被称为8051微控制器,是Intel公司在1980年代初推出的一种8位CISC(复杂指令集计算机)单片机。

尽管Intel公司已经停止生产这种芯片,但由于其架构的通用性和广泛的应用,许多其他公司如Atmel、STC等仍然在生产与8051兼容的单片机。

51单片机的核心部分包括一个8位的CPU,以及4KB的ROM、低128B 的RAM和高位的SFR(特殊功能寄存器)等。

它还包括两个16位的定时/计数器,四个8位的I/O端口,一个全双工的串行通信口,以及一个中断系统。

这些功能使得51单片机在多种嵌入式系统中得到了广泛的应用。

在PWM(脉冲宽度调制)直流电机调速系统中,51单片机的主要作用是生成PWM信号以控制电机的速度。

这通常是通过定时/计数器来实现的。

定时/计数器可以设置一定的时间间隔,然后在这个时间间隔内,CPU可以控制I/O端口产生高电平或低电平,从而形成PWM信号。

基于单片机的直流电机控制电路设计

基于单片机的直流电机控制电路设计

基于单片机的直流电机控制电路设计1.电机驱动电路:电机驱动电路用于控制直流电机的启停、正反转和速度调节。

常见的驱动电路有H桥电路和PWM调速电路。

-H桥电路:H桥电路由四个开关管组成,可以控制电流的流动方向,从而实现正反转功能。

在单片机的控制下,通过控制开关管的导通与断开,可以实现电机的正转和反转。

-PWM调速电路:PWM调速电路通过控制脉冲宽度来调节电机的速度。

单片机产生一个固定频率的PWM信号,通过改变脉冲宽度的占空比,控制电机的速度。

占空比越大,电机转动的速度越快。

2.单片机控制电路:单片机控制电路主要实现对电机的控制和监测功能。

通过单片机的IO口输出控制信号,实现电机的启停、正反转和调速。

同时,通过AD转换接口可以实现对电机的速度、电流等参数的监控。

3.电源电路:电源电路为整个系统提供稳定的直流电源。

常见的电源电路有开关电源和线性电源。

-开关电源:开关电源通过开关器件的开关操作,实现对输入电压的调整,从而输出稳定的直流电压。

开关电源具有体积小、效率高、稳定性好等优点,是直流电机控制电路中常用的电源方式。

-线性电源:线性电源通过线性调节器件,将输入的交流电压转换为稳定的直流电压。

线性电源具有设计简单、成本低等优点,但效率较低,一般用于对电流要求较低的应用场景。

总结:基于单片机的直流电机控制电路通过驱动电路,实现对电机的启停、正反转和速度调节。

通过单片机控制电路,实现对电机的控制和监测功能。

同时,为了保证电路的正常工作,需要提供稳定的直流电源。

以上是一个基本的电机控制电路设计,具体电路设计和参数设置需根据具体的应用场景和要求来确定。

基于单片机的无刷直流电机控制系统设计毕业设计

基于单片机的无刷直流电机控制系统设计毕业设计

基于单片机的无刷直流电机控制系统设计毕业设计一、引言哎呀,小伙伴们,今天我们来聊聊一个非常有趣的话题,那就是基于单片机的无刷直流电机控制系统设计毕业设计。

这个话题可是关系到我们的未来哦,所以大家一定要认真听讲,不要走神哦!让我们来简单了解一下什么是无刷直流电机。

哎呀,别看这个词挺高大上的,其实就是一种不用刷子的直流电机。

它的特点是效率高、噪音小、寿命长,所以在很多领域都有广泛的应用,比如电动车、空调、风扇等等。

那么,如何设计一个基于单片机的无刷直流电机控制系统呢?这可是一个相当复杂的问题。

不过没关系,我们会一步一步地来讲解,让大家轻松掌握这个技能。

二、单片机的基本知识我们要了解一些单片机的基本知识。

哎呀,单片机可不是什么神秘的东西,它就是一种集成了处理器、存储器和输入输出接口的微型计算机。

它的功能可强大了,可以控制各种外设,实现各种各样的功能。

现在市面上有很多种单片机,比如51系列、ARM系列、AVR系列等等。

它们的性能和价格都有所不同,我们要根据自己的需求来选择合适的单片机。

三、无刷直流电机的基本原理接下来,我们要了解无刷直流电机的基本原理。

哎呀,这个原理可不像我们平时看到的旋转木马那么简单哦。

无刷直流电机是由定子、转子和霍尔传感器组成的。

定子上有很多槽,转子上有永磁体。

当电流通过定子和转子时,就会产生磁场,从而使转子旋转。

霍尔传感器的作用是检测转子的位置,从而控制单片机的输出信号,实现对电机的控制。

四、基于单片机的无刷直流电机控制系统设计现在我们已经了解了单片机和无刷直流电机的基本知识,接下来我们就要开始设计我们的控制系统了。

哎呀,这个过程可是个大工程哦,需要我们分步骤来进行。

我们需要选择合适的单片机。

根据前面的介绍,我们可以选择51系列、ARM系列或AVR系列的单片机。

然后,我们需要编写程序来控制单片机的工作。

这个程序要包括初始化、定时器设置、PWM波形生成等功能。

接下来,我们需要连接电源、定子和转子。

基于51单片机控制直流电机的设计

基于51单片机控制直流电机的设计

基于51单片机控制直流电机的设计设计目标:1.实现电机的正反转控制。

2.实现电机的速度控制。

3.实现电机的位置控制。

硬件设计:1.51单片机控制器:选择一款性能较好的51单片机,如STC89C522.直流电机:选择合适的直流电机,根据设计需求确定功率和转速。

3.驱动电路:为直流电机提供合适的驱动电路,可以选择H桥驱动芯片,如L298N。

4.传感器:根据设计需求,选用合适的传感器,如编码器、讯号灯等。

软件设计:1.系统初始化:对51单片机进行初始化设置,包括端口方向、定时器等配置。

2.速度控制:设计PID算法,实现对直流电机的速度控制。

通过读取传感器反馈的速度信息,与设定值进行比较,输出控制信号控制电机速度。

3.正反转控制:设计控制程序,读取输入信号控制直流电机的正反转。

可以通过输入按键、外部信号或者串口通信来实现控制。

4.位置控制:通过编码器等传感器读取直流电机的位置信息,与设定值进行比较,输出控制信号控制电机运动到目标位置。

5.通信功能:如果需要与其他设备进行通信,可以使用串口、蓝牙等通信模块实现数据传输。

设计步骤:1.确定设计需求:根据具体应用场景,确定控制电机的功能需求,包括速度控制、正反转控制和位置控制等。

2.硬件搭建:按照设计需求,选取合适的电机、驱动电路和传感器,并进行搭建和连接。

3.软件开发:根据设计目标,编写相应的程序代码,实现功能要求。

5.优化改进:根据实际使用情况,对系统进行优化改进,提高系统的性能和稳定性。

总结:基于51单片机控制直流电机的设计是一种常见的嵌入式系统开发方案。

通过合理选择硬件和设计软件,可以实现控制电机的速度、方向和位置等功能。

在实际应用中,还可以根据具体需求进行优化改进,使系统更加稳定和可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于AT89S52单片机直流电机PWM控制系统1 绪论1.1直流电机的发展直流电动机在冶金、矿山、化工、交通、机械、纺织、航空等领域中已经得到广泛的应用。

而以往直流电动机的控制只是简单的控制,很难进行调速,不能实现智能化。

如今,直流电动机的调速控制已经离不开单片机的支持,单片机应用技术的飞速发展促进了自动控制技术的发展,使人类社会步入了自动化时代,单片机应用技术与其他学科领域交叉融合,促进了学科发展和专业更新,引发了新兴交叉学科与技术的不断涌现。

现代科学技术的飞速发展,改变了世界,也改变了人类的生活。

由于单片机的体积小、重量轻、功能强、抗干扰能力强、控制灵活、应用方便、价格低廉等特点,计算机性能的不断提高,单片机的应用也更加广泛特别是在各种领域的控制、自动化等方面。

在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的能量转换效率;二是应能根据生产工艺的要求调整转速。

电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。

因此,调速技术一直是研究的热点。

直流电机由于具有速度控制容易,启动制动性能良好,且能在宽范围内平滑调速等特点而在电力、冶金、机械制造等工业部门中得到广泛应用。

直流电动机转速的控制方法可分为两类:励磁控制阀与电枢电压控制法。

励磁控制法控制磁通,其控制功率虽然小但低俗时受到磁场饱和的限制,高速时受到换向火花和转向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差。

所以常用的控制方法是改变电枢端电压调速的电枢电压控制法。

传统的改变端电压的方法是通过调节电阻来实现的,但这种调压方法效率低。

随着电力电子技术的发展,创造了许多新的电枢电压控制方法。

其中脉宽调制(Pulse Width Modulation,PWM)是常用的一种调速方法。

其基本原理是用改变电机电枢电压的接通和断开的时间比(即占空比)来控制马达的速度,在脉宽调速系统中当电机通电时,其速度增加,电机断电时其速度降低。

只要按照一定的规律改变通断电的时间,就可使电机的速度保持在一稳定值上。

1.2单片机以及微处理器控制系统的发展单片微型计算机的诞生是计算机发展史上的一个新的里程碑。

近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。

直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。

而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。

随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。

这是因为单片机具有很多优点:体积小,功能全,抗干扰能力强,可靠性高,结构合理,指令丰富,控制功能强,造价低等。

所以选用单片机作为控制系统的核心以提高整个系统的可靠性和可行性。

早期直流传动的控制系统采用模拟分离器件构成,由于模拟器件有其固有的缺点,如存在温漂、零漂电压,构成系统的器件较多,使得模拟直流传动系统的控制精度及可靠性较低。

随着计算机控制技术的发展,微处理器已经广泛使用于直流传动系统,实现了全数字化控制。

由于微处理器以数字信号工作,控制手段灵活方便,抗干扰能力强。

所以,全数字直流调速控制精度、可靠性和稳定性比模拟直流调速系统大大提高。

所以,直流传动控制采用微处理器实现全数字化,使直流调速系统进入一个崭新的阶段。

微处理器诞生于上个世纪七十年代,随着集成电路大规模及超大规模集成电路制造工艺的迅速发展,微处理器的性价比越来越高。

此外,由于电力电子技术的发展,制作工艺的提升,使得大功率电子器件的性能迅速提高。

为微处理器普遍用于控制电机提供了可能,利用微处理器控制电机完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到充分的发挥,使电机的性能更符合工业生产使用要求,还促进了电机生产商研发出各种如步进电机、无刷直流电机、开关磁阻电动机等便于控制且实用的新型电机,使电机的发展出现了新的变化。

对于简单的微处理器控制电机,只需利用用微处理器控制继电器、电子开关元器件,使电路开通或关断就可实现对电机的控制。

现在带微处理器的可编程控制器,已经在各种的机床设备和各种的生产流水线中普遍得到应用,通过对可编程控制器进行编程就可以实现对电机的规律化控制。

对于复杂的微处理器控制电机,则要利用微处理器控制电机的电压、电流、转矩、转速、转角等,使电机按给定的指令准确工作。

通过微处理器控制,可使电机的性能有很大的提高。

目前相比直流电机和交流电机他们各有所长,如直流电机调速性能好,但带有机械换向器,有机械磨损及换向火花等问题;交流电机,不论是异步电机还是同步电机,结构都比直流电机简单,工作也比直流电机可靠,但在频率恒定的电网上运行时,它们的速度不能方便而经济地调节[2]。

高性能的微处理器如DSP (DIGITAL SIGNAL PROCESSOR即数字信号处理器)的出现,为采用新的控制理论和控制策略提供了良好的物质基础,使电机传动的自动化程度大为提高。

在先进的数控机床等数控位置伺服系统,已经采用了如DSP等的高速微处理器,其执行速度可达数百万兆以上每秒,且具有适合的矩阵运算。

2 系统论述2.1设计背景近年来,随着科技的进步,电力电子技术得到了迅速的发展,直流电机得到了越来越广泛的应用。

直流它具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;需要能满足生产过程自动化系统各种不同的特殊运行要求,从而对直流电机的调速提出了较高的要求,改变电枢回路电阻调速,改变电枢电压调速等技术已远远不能满足要求,这时通过PWM方式控制直流电机调速的方法应运而生。

2.2 设计思路直流电机PWM控制系统的主要功能包括:实现对直流电机的加速、减速以及电机的正转、反转和急停,并且可以调整电机的转速,能够很方便的实现电机的智能控制。

主体电路:即直流电机PWM控制模块。

这部分电路主要由AT89S52单片机的I/O端口、定时计数器、外部中断扩展等控制直流电机的加速、减速以及电机的正转和反转,并且可以调整电机的转速,能够很方便的实现电机的智能控制。

其间是通过AT89S52单片机产生脉宽可调的脉冲信号并输入到L298驱动芯片来控制直流电机工作的。

该直流电机PWM控制系统由以下电路模块组成:设计输入部分:这一模块主要是利用带中断的独立式键盘来实现对直流电机的加速、减速以及电机的正转、反转和急停控制。

设计控制部分:主要由AT89S52单片机的外部中断扩展电路组成。

直流电机PWM控制实现部分主要由一些二极管、电机和L298直流电机驱动模块组成。

设计显示部分:LED数码显示部分,实现对PWM脉宽调制占空比的实时显示。

2.3 系统框架设计直流电机PWM调速方案方案说明:直流电机PWM调速系统以AT89S52单片机为控制核心,由命令输入模块、LED 显示模块及电机驱动模块组成。

采用带中断的独立式键盘作为命令的输入,单片机在程序控制下,定时不断给L298直流电机驱动芯片发送PWM波形,H型驱动电路完成电机正,反转和急停控制;同时单片机不停的将PWM脉宽调制占空比送到LED数码管完成实时显示。

3 PWM脉宽调制原理3.1 PWM调速原理PWM(脉冲宽度调制)是通过控制固定电压的直流电源开关频率,改变负载两端的电压,从而达到控制要求的一种电压调整方法。

PWM可以应用在许多方面,比如:电机调速、温度控制、压力控制等等[7]。

在PWM驱动控制的调整系统中,按一个固定的频率来接通和断开电源,并且根据需要改变一个周期内“接通”和“断开”时间的长短。

通过改变直流电机电枢上电压的“占空比”来达到改变平均电压大小的目的,从而来控制电动机的转速。

也正因为如此,PWM又被称为“开关驱动装置”。

如图1所示:图1PWM信号的占空比设电机始终接通电源时,电机转速最大为Vmax,设占空比为D= t1 / T,则电机的平均速度为Va = Vmax * D,其中Va指的是电机的平均速度;Vmax 是指电机在全通电时的最大速度;D = t1 / T是指占空比。

由上面的公式可见,当我们改变占空比D=t1/T时,就可以得到不同的电机平均速度Vd,从而达到调速的目的。

严格来说,平均速度Vd与占空比D并非严格的线性关系,但是在一般的应用中,我们可以将其近似的看成是线性关系。

3. 2PWM调速方法基于单片机类由软件来实现PWM:在PWM调速系统中占空比D是一个重要参数在电源电压不变的情况下,电枢端电压的平均值取决于占空比D的大小,改变D的值可以改变电枢端电压的平均值从而达到调速的目的。

改变占空比D的值有三种方法:A、定宽调频法:保持不变,只改变t,这样使周期(或频率)也随之改变[。

B、调宽调频法:保持t不变,只改变,这样使周期(或频率)也随之改变[。

C、定频调宽法:保持周期T(或频率)不变,同时改变和t。

前两种方法在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此常采用定频调宽法来改变占空比从而改变直流电动机电枢两端电压。

利用单片机的定时计数器外加软件延时等方式来实现脉宽的自由调整,此种方式可简化硬件电路,操作性强等优点。

3.3 PWM实现方式方案一:采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。

方案二:采用软件延时方式,这一方式在精度上不及方案一,特别是在引入中断后,将有一定的误差。

故采用方案一。

4系统硬件设计4.1系统基本组成4.1.1 硬件模块组成(1)单片机控制模块(2)L298电机驱动模块(3)LED显示模块(4)独立键盘控制模块3.3系统硬件各模块电路4.1.2 单片机整个控制模块单片机整个控制模块这里利用定时计数器让单片机P2口的P2.6、P2.7引脚输出占空比不同的方波,然后经驱动芯片L298放大后控制直流电机。

驱动芯片的输入电压是两引脚的电压差,在调速时一根引脚线为低电平,另一个引脚产生调速方波,这样两个引脚的电压差就可通过控制其中一个引脚来控制。

当需要改变电机转动方向时,两个引脚的输出相反。

定时计数器若干时间(1us)中断一次,就使P2.6或P2.7产生一个高电平或低电平。

直流电机的速度分成100个等级,因此一个周期就有100个脉冲,周期为一百个脉冲的时间,速度等级对应一个周期的高电平脉冲的个数。

占空比为高电平脉冲个数占一个周期总脉冲个数的百分数。

一个周期加在电机两端的电压为脉冲高电压乘以占空比。

占空比越大,加在电机两端的电压越大,电机转动越快。

相关文档
最新文档