中国风能分布及风电

合集下载

中国七大风电场情况概述

中国七大风电场情况概述

3.1.基本状况我国风能资源总体非常丰富,但主要分布在西北、华北、东北等“三北地区”,资源比较集中,经过不长时间的酝酿讨论,中国政府发展风电的思路逐步统一到“融入大电网、建设大基地”的思想上来,要求按照“建设大基地、融入大电网”的方式进行规划和建设。

2008年以来,在国家能源局的组织下,以各省风能资源普查及风电建设前期工作为基础,甘肃、新疆、河北、蒙东、蒙西、吉林、江苏沿海千万千瓦级风电基地规划相继完成。

根据规划,到2020年,在配套电网建成的前提下,各风电基地具备总装机1.38亿kW的潜力。

3.1.1.河北风电基地河北省风能资源丰富,主要分布在张家口、承德坝上地区和沿海秦皇岛、唐山、沧州地区。

张家口坝上地区年平均风速可达5.4~8m/s,主风向为西北风,风能资源十分丰富,张家口地区风能丰富区主要分布在坝上的康保县、沽源县、尚义县、张北县的低山丘陵区和高原台地区。

该地区交通便利、风电场建设条件好,非常适宜建设大型风电场,崇礼县和蔚县部分山区也具有丰富的风能资源;承德地区年平均风速可达5~7.96m/s,主风向为西北风,主要集中在围场县的北部和西部,丰宁县的北部和西北部,平泉县的西部;沿海地区风能资源主要分布在秦皇岛、唐山、沧州的沿海滩涂,年平均风速为5m/s 左右。

根据河北省风能资源的总体分布特点,河北省千万千瓦级风电基地各规划风电场主要分布在张家口地区、承德地区以及河北省沿海区域。

经对河北省风能资源、工程地质、交通运输、电网规划容量等条件的分析,共计规划了59个子风电场,到2020年规划总装机容量为1,413万kW,建成河北省千万千瓦级风电基地。

河北省千万千瓦风电基地中,张家口市选择了39个风电场场址,估算风电场总装机容量为955万kW,承德市选择了16个风电场场址,估算风电场总装机容量为398万kW,沿海地区选择了4个风电场场址,估算风电场总装机容量为60万kW。

河北省千万千瓦级风电基地规划容量表见表12。

中国风能风电行业市场现状及未来发展趋势分析报告

中国风能风电行业市场现状及未来发展趋势分析报告

中国风能风电行业市场现状及未来发展趋势分析报告一、市场现状分析中国风能风电行业是国家能源战略的重要组成部分,通过多年的发展,取得了显著的成绩。

据统计,截至2024年底,中国风电装机容量已达到了280GW,占世界总装机容量的40%以上。

风电已经成为中国可再生能源发电的重要组成部分,对于推动中国能源结构的转型升级,减少对传统能源的依赖具有重要意义。

风能风电行业的市场竞争日益激烈,国内外企业纷纷涌入,行业格局越来越趋于多元化。

中国风电装机容量的快速增长主要得益于国家对可再生能源的政策支持和市场需求的不断扩大。

同时,风能发电的成本不断降低,风电设备的性能也得到了显著提升,进一步推动了风能风电行业的发展。

二、发展趋势分析1.政策支持:中国政府将可再生能源发电作为国家能源发展的重要方向,未来仍将继续加大对风能风电行业的政策支持。

政府将出台更多的优惠政策,鼓励企业投资风能风电项目,提高风电装机容量。

2.技术创新:随着科技的进步,风能发电技术也在不断创新。

近年来,风能风电设备的效率不断提高,同时具备多元化的产品和服务,满足不同地区、不同条件下的发电需求。

3.装备升级:未来风能风电行业将逐渐实现从传统风电机组向大型化、智能化、高效化的风电机组升级。

同时,风电装备制造商将进一步提升装备产能和质量,降低生产成本。

4.市场竞争加剧:随着行业的快速发展和市场需求的不断扩大,风能风电行业市场竞争将进一步加剧。

企业需要加强技术研发和创新能力,提高产品质量和核心竞争力,以在激烈的市场竞争中占据领先地位。

三、发展建议1.加强技术创新和研发能力,提高核心竞争力。

企业应关注新技术的研发和应用,提高风电装备的效率和可靠性,降低生产成本。

2.发挥市场机制的作用,建立健全的风能风电市场体系。

培育风能风电市场主体,鼓励企业参与竞争,建立公平、公正、透明的市场环境。

3.注重人才培养和引进,提升行业整体素质。

加强高素质人才队伍的培养,提高行业整体的管理和技术水平。

风能调研报告

风能调研报告

风能调研报告风能技术是一种通过利用气流运动产生的能源来产生电力,已经成为实现低碳环保和可持续发展的主要手段之一。

风能作为一种可再生能源,它不会对煤炭、石油等传统能源引起的环境污染问题做出贡献,在未来的发展中有着不可替代的重要地位。

此次调研旨在了解风能技术的现状以及未来的发展趋势,考察其在中国市场的应用情况并探究其未来发展的前景。

一、风能技术的现状1、全球风电装机容量持续增长按照工信部的数据,2023年全球累计风电装机容量突破700Gw,其中,中国的风电装机容量超过了242Gw0全球风电装机容量呈逐年增长的态势,预计到2050年,风电市场将占据全球能源总量的26%o2、风能技术的发展趋势随着科技的发展,风能技术也得到了极大的提升。

特别是在风机的设计、维护以及升级等方面,许多技术已经得到了迅猛的发展。

未来,随着风电市场越来越成熟,领先的企业将会通过技术创新来提高产能,降低成本,并提高经济效益。

3、风能技术的优势与传统能源相比,风能技术有如下的优势:a.无污染,对环境无任何影响;b.可再生,不会加剧自然环境的压力;C,稳定性高,转化率可达90%以上;d.成本低,发电成本比核能、煤炭等传统能源低,而且稳定性也更高。

二、风能技术在中国市场的应用情况1、中国风电装机容量逐年增长随着政府的支持和风电客户的不断增加,中国风能市场的装机容量逐年增长。

根据网上披露的数据,目前全国风电装机容量已经超过了240GWo2、风电场的分布在中国,风电场主要分布在北方,主要有内蒙古、辽宁、吉林等地。

同时,在华南、华东和华北等地也分别建有许多风电场。

总而言之,我国的风电市场已经成为全球最大的风能市场之一。

三、风能技术的未来发展前景1、政府支持在我国,政府通过多种政策来鼓励风能技术的应用。

政府设立了多种基金来支持风电技术,同时还制定了多种政策来促进风电产业的发展。

2、技术进步随着风能市场的不断成熟,风机的技术性能会得到极大程度的提升,从而降低了成本和维护费用。

我国第三大能源——风电知多少?

我国第三大能源——风电知多少?

5. 风电的经济性如何
从风电的成本特性看,由于没有燃料消耗,因此风 电运营成本较低,其发电成本主要由初期投资、自然资 源条件决定,其中新兴和成长中的技术,风力发 电成本变化与技术发展及成熟度直接相关。总体来看, 风力发电成本相对传统化石能源发电仍然较高,市场竞 争力仍然较弱。
视点 View
我 国 第 三 大 能 源
——
How Much Do You Know about Wind Power the China's Third Largest Energy?




风能是一种清洁的可再生能源,风力发电是风能利用的主要形式。

随着世界各国对能源安全、生态环境等问题日益重视,加快发展风电
已成为我国乃至全世界推动能源转型发展、应对全球气候变化的普遍

共识和一致行动。随着技术进步及政策支持,近年来我国风力发电发
展迅速,2017 年,我国风电总装机容量达到 1.64 亿千瓦,持续保持世
界首位,风电发电量达到 3057 亿千瓦时,成为我国继煤电、水电之
后的第三大能源。
那么风电究竟为何物,为什么发展如此之快,它的经济性如何,
分省区看,2017 年全国累计并网装机容量超过 1000 万千瓦的共有 5 个,在 2016 年内蒙古、新疆、 甘肃、河北 4 个省(自治区)的基础上增加了山东省。 由此也可以看出,风电项目开发集中区域与风资源 分布基本一致,但随着风电消纳问题的日益严峻, 建设重点也从单纯考虑在风资源条件好的“三北” 地区,逐渐向电力消纳条件好的中东部地区转移的 趋势。
图 1 全国平均风速(左)及风功率密度(右)分布
海上风能资源。我国不仅陆地面积广阔,而且 还拥有近 1.8 万公里的大陆海岸线以及 6000 多个岛 屿与 1.4 万公里的岛屿海岸线,领海面积达到 300 万平方公里。目前,近海风能资源最丰富的是台湾 海峡,其次是广东东部、浙江近海和渤海湾中北部。 在近海 100 米高度内,水深在 5-25 米范围内的风 电技术可开发量可以达到约 1.9 亿千瓦,水深 25-50 米范围内的风电技术可开发量约 3.2 亿千瓦。

与风力发电方式的国内外应用情况相关的调研报告

与风力发电方式的国内外应用情况相关的调研报告

与风力发电方式的国内外应用情况相关的调研报告调研报告: 风力发电技术的国内外应用情况一、背景说明风力发电作为一种清洁可再生能源,近年来得到了全球范围内的广泛应用。

本报告将对国内外风力发电技术的应用情况进行调研分析。

二、国内应用情况1.发展概况中国自2005年开始风力发电规模化应用,经过持续发展,已成为全球最大的风力发电市场。

2.装机容量截至2021年底,中国风力发电装机容量已达到300,000兆瓦,占全球总装机容量的近40%。

3.地理分布风力发电在中国的分布不均,主要集中在东部沿海、东北地区以及内蒙古、甘肃等地区。

4.技术创新中国在风力发电技术方面取得了许多进展,积极推动大型风机技术、离岸风电技术、储能技术等的发展与应用。

5.政策支持中国政府出台了一系列扶持政策,包括风电上网电价补贴、风电发电权竞价、离岸风电专项规划等,促进了风力发电行业的良性发展。

三、国外应用情况1.发展概况全球范围内,风力发电技术的应用也正在快速发展。

许多国家纷纷转向可再生能源,风力发电作为其中的重要组成部分得到广泛应用。

2.装机容量根据国际能源署(IEA)的数据,截至2021年底,全球装机容量已超过700,000兆瓦,其中欧洲占据了约50%的份额,北美和亚太地区分别占30%和20%左右。

3.技术创新国外许多国家在风力发电技术方面也取得了重大突破,包括大容量风机、深水风电技术、风能储能技术等,不断推动行业的升级和发展。

4.政策支持许多国家也出台了一系列的政策支持,包括补贴、优惠税收、绿色证书制度等,以推动风力发电的应用和发展。

四、对比分析1.装机容量中国目前是全球最大的风力发电市场,装机容量居世界前列。

然而,欧洲仍然是全球风力发电装机容量最大的地区。

2.地理分布差异中国的风力发电主要集中在东部沿海和东北地区,而欧洲则更加广泛地分布在各个国家。

北美地区的风力发电主要集中在美国和加拿大。

3.技术创新差异中国在技术创新方面也取得了一些进展,但与欧洲和北美相比,仍然存在一定的差距。

中国风电产业发展报告(2023)

中国风电产业发展报告(2023)

中国风电产业发展报告(2023)近年来,中国风电产业发展迅猛,成为全球最大的风能发电国家。

截至2023年,中国已经取得了令人瞩目的成就,实现了从初创阶段到成熟阶段的跨越。

本文将对中国风电产业的发展进行全面分析和展望。

一、发展概况中国风电产业从1980年代开始起步,经过多年的努力,如今已经成为全球风电领域的领军者。

2023年,中国风电累计装机容量预计达到500GW以上,占到全球风电装机容量的40%。

同时,中国在风电研发、制造、安装及运营管理等方面都处于全球领先地位。

二、政策支持中国政府一直积极鼓励和支持风电产业的发展。

政策层面上,中国制定了一系列激励措施,包括提供土地资源、优惠的贷款利率和强制购电等政策,以吸引更多的投资者进入风电领域。

此外,政府还实施了严格的限电政策,以鼓励清洁能源的使用,风电因其高效、环保的特点受到青睐。

三、技术创新中国风电产业一直致力于技术创新和研发。

近年来,风力发电机组单位容量产能大幅提升,风机叶片制造技术水平不断提高,风电控制系统逐步实现智能化。

此外,中国在风电领域积累了丰富的运维和管理经验,并通过技术创新不断提高发电效率和风电系统的可靠性。

四、混合能源系统随着可再生能源的快速发展,中国开始积极探索混合能源系统的建设。

风电与太阳能、水力能等形成互补,提高了可再生能源的整体利用率。

在光伏和风电的联合开发中,中国已经建立了大规模的光伏-风电混合电站,解决了电力波动性等问题。

五、国际合作中国风电产业在国际间的合作也日益加强。

中国风电企业积极参与国内外市场开拓,拓展了海外业务,建立了一批海外风电项目。

同时,中国在风电技术方面的崛起也带动了与其他国家的合作,推动了全球风电技术的不断进步。

六、面临的挑战中国风电产业虽然取得了长足的发展,但仍然面临一些挑战。

首先,风电资源的分布不均匀,稳定的风力资源仍然集中在一些特定地区。

其次,风电上网电价补贴等问题也亟待解决。

最后,风电的技术研发和成本降低仍需要进一步努力。

风能资源分布的地理分析

风能资源分布的地理分析

风能资源分布的地理分析在当今全球环境问题日益严重的背景下,可再生能源备受关注。

其中,风能作为一种清洁、可再生的能源形式,受到了广泛的关注与利用。

然而,风能资源分布的地理分析对于风能的利用和开发至关重要。

本文将对风能资源分布的地理特点进行分析与解读,以期为相关研究和实践提供一定的参考。

一、全球风能资源分布特点风能的分布受到地球环境、地形地貌、季节变化以及地理位置等多种因素的影响。

在全球范围内,风能资源的分布具有以下几个特点。

1. 风能资源呈现地域差异性由于地球环境的复杂性,风能资源在地球各个地域之间存在明显的差异性。

比如,海洋地区由于受到洋流、海气交互作用等因素的影响,相对于内陆地区具有更高的风速和更强的风力资源。

而沿海地区则受到海陆风的影响,风能资源丰富。

此外,高山地区和山谷地区由于地形起伏复杂,山风效应的存在使得局部风能资源丰富。

2. 纬度和季节对风能资源分布的影响纬度和季节也是影响风能资源分布的重要因素之一。

通常情况下,赤道附近和中高纬度地区的风能资源较为丰富,而副热带地区的风能资源较为稀缺。

此外,季节的变化也会对风能资源的分布产生重要影响。

例如,在季风气候区,夏季风和冬季风的交替使得风能资源具有较明显的季节变化。

3. 地表类型和地形地貌对风能资源利用的限制地表类型和地形地貌也对风能资源的利用和开发带来一定限制。

例如,沙漠和高温地区由于缺乏植被覆盖和地表水汽含量低,风能资源相对较少。

在地形地貌方面,山地地区由于狭长的山谷和陡峭的山坡,对于风能的利用存在一定的局限性。

而平原地区和海洋地区则更易于风能资源的开发。

二、中国风能资源分布的地理特点中国作为世界上最大的发展中国家之一,其风能资源分布也呈现出一定的地理特点。

1. 东部沿海地区风能资源丰富中国东部沿海地区的风能资源较为丰富,主要受到东亚季风和海陆风的影响。

这片地区的风能潜力巨大,如冬季的黄海风电和夏季的东海风电,具备较高的风能开发价值。

2. 西北和西南地区风能资源较为丰富西北和西南地区由于地形起伏、山地和高原的存在,风能资源相对较为丰富。

我国风力发电场地分布情况

我国风力发电场地分布情况

我国风力发电场的分布情况我国有效风能分布图根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区:(1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上、这一风能丰富带的形成,主要就是由于三北地区处于中高纬度的地理位置有关、(2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西与海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上、(3)内陆个别地区由于湖泊与特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区与湖北的九宫山与利川等地区、(4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约就是陆上的3倍,即7亿多千瓦、根据中国气象科学研究院绘制的全国平均风功率密度分布图,中国陆地10m高度层的风能总储量为32、26亿KW,居世界第一位。

我国陆上实际可开发风能资源储量为2、53亿千瓦,近海风场的可开发风能资源就是陆上3倍,则总的可开发风能资源约10亿千瓦。

也就就是说,如果中国的风力资源开发60%,那么仅风能就可以支撑中国目前每年全部的电力需求。

中国的风电资源不仅丰富,而且分布基本均匀。

东南沿海及其岛屿、青藏高原、西北、华北、新疆、内蒙古与东北部分地区都属于风能储藏量比较丰富的地区,而甘肃、山东、苏北、皖北等地区也有相当大比例的风能资源可以有效利用。

我国陆地上从新疆、甘肃、宁夏到内蒙古,就是一个大风力带;同时还有许多大风口,如张家口地区,鄱阳湖湖口地区、云南大理等。

这些为风能的集中开发利用提供了极大的便利。

到2008年底,中国的风电装机容量达到1200万千瓦,现在在全世界就是位居第四位,装机容量近三年来就是连续成倍增长。

我国风能发展的现状和发展前景

我国风能发展的现状和发展前景

我国风能发展的现状和发展前景摘要:在世界性能源危机越发严重的今天,风能作为一种天然能源,已被各国应用在发电领域。

我国的风电事业起步较晚,但是近几年发展迅速,未来几年的前景也十分良好。

关键词:风能新能源风电事业自主创新一:21世纪人类理想的替代能源——风能1何为风能:风是一种自然现象。

由于不同地表(如海洋、森林、田野、山岳和沙漠等)在白天受太阳照射以及晚上吸放热的特性不同,对空气加热(或放热)的差异,造成了空气的流动,通常人们将垂直上下的流动称为“气流”,将水平流动称为“风”。

由于空气是有一定质量的,因而其流动时必然具有一定能量,这就是风能。

它可通过如下公式加以测算:E=1/2gρAV3(kg·m/s)式中:A——空气流动面积(m 2);V——风速(m/s);ρ——空气密度(kg/m 3);g——重力加速度(m/s2)。

上式如按kW计量只需乘以转换系数1102即可。

据理论测算,全球大气中总的能量是1017kW,而且是可再生的,据估计大约有3.5×1012kW的蕴藏风能可以被开发利用,这个价值至少比世界上可利用的水能大10倍〔1〕。

2.风能的特点风能作为一种天然能源,与其他能源尤其是矿物能源相比,它有如下几个特点:(1) 蕴藏量丰富。

大家都知道与常规能源相比,水能巨大,殊不知风能是全球水能的10倍多,我国仅陆地上就有风能资源大约1.6×109kW。

(2) 可以再生,永不枯竭。

风能是太阳能的变异,只要太阳和地球存在,就有风能,它取之不尽,用之不竭,是可再生的。

(3) 清洁无污染,随处都可开发利用。

煤、石油、天然气的大量消耗,核电站的广泛建设,均会给人类生活环境造成极大污染和破坏,危害人类健康,而风能开发就没有这样的弊病,而且风能开发利用越多,空气中的漂尘和降尘会越少。

另外,风能的开发也不存在开采和运输问题,无论何地(海边、平原或者山区)都可建立风电站,就地开发,就地利用。

中国沿海和海上风能资源评价

中国沿海和海上风能资源评价
海上风电发展迅速
中国海上风电起步较晚,但发展迅速,目前已成为全球最 大的海上风电市场之一,并计划进一步扩大规模。
风能资源开发中的挑战与问题
资源评估精度不够
目前对风能资源的评估精度不够高,导致风电场选址和布局不够 合理,影响风电开发效益。
海上风电建设难度大
海上风电建设需要克服复杂的环境条件和海洋工程难题,如水深、 潮汐、海流等,建设难度较大。
海上风电成为发展重点
海上风电资源丰富,具有较大的开发潜力,未来将有更多的国家和地区将海上风电作为重 点发展方向。
风能产业竞争格局加剧
随着风能市场的不断扩大,风能产业竞争将更加激烈,企业需要加强技术创新和产业升级 ,提高竞争力。
中国风能发展趋势与展望
01
中国风能装机容量持续领跑全球
中国政府对可再生能源的支持力度不断加大,风能装机容量将继续保持
高海拔地区风能利用技术
针对高海拔地区的风能资源特点,研发适合 高海拔地区的风能技术和设备,提高风能利 用率。
智能风电技术
利用人工智能、大数据等先进技术,实现风电设备 的智能监测、预测和维护,提高风电场的运营效率 和安全性。
大型化、轻量化风电机组
研发更大规模、更轻量化的风电机组,提高 风能利用率和设备的运输安装能力。
通过气象观测站获取实时的风 速、风向、气压、气温等数据 ,进行长期观测和统计分析。
数值模拟
利用数值模式进行大范围的风 能资源评估,通过输入气象数 据和地形数据,模拟出风速和 风向分布。
遥感技术
利用卫星遥感技术获取大范围 的风能资源数据,具有覆盖范 围广、获取速度快、成本低等 优点。
实地勘测
在具有开发价值的地区进行实 地勘测,获取更加详细的风能 资源数据,为后续开发提供依

我国风电资源分布表

我国风电资源分布表

表2-1是我国风能分区及占我国面积的百分比,表2-2是我国风能资源分布:
表2-1 我国风能分区及占我国面积百分比
指标丰富区较丰富区可利用区贫乏区
年有效风能密度(W/m2)>200 200-150 <150-50 <50
年≥3m/s累计小时数(h)>5000 5000-4000 <4000-2000 <2000
年≥6m/s累计小时数(h)>2200 2200-1500 <1500-350 <350
占全国面积的百分比(%)8 18 50 24
资料来源:网络搜集表2-2 我国风能资源分布
风功率密度分布地区
三北地区风能丰富带>200~300W/m2 三北指的是东北、华北和西北,包括东北三省、河北、内蒙
古、甘肃、青海、西藏和新疆等省/自治区;
沿海地区风能丰富带>200W/m2 台山、平潭、东山、南鹿、大陈、嵊泗、南澳、马祖、马公、
东沙等;
内陆局部风能丰富区<100W/m2 鄱阳湖、湖南衡山、湖北的九宫山、河南的嵩山、山西的五
台山、安徽的黄山、云南太华山等;
海上风能丰富区我国近海50m等深线浅海域10m高度,包括福建、江苏、
山东、浙江、辽宁、上海、河北、广西、海南、天津等。

资料来源:网络搜集。

[转载]中国的风能资源区域划分(图)

[转载]中国的风能资源区域划分(图)

[转载]中国的风能资源区域划分(图)原⽂地址:中国的风能资源区域划分(图)作者:华夏风电中国的风能资源区域划分(图)1、东南沿海及其岛屿,为我国最⼤风能资源区这⼀地区,有效风能密度⼤于、等于200W/m2的等值线平⾏于海岸线,沿海岛屿的风能密度在300W/m2以上,有效风⼒出现时间百分率达80~90%,⼤于、等于8 m/s的风速全年出现时间约7000~8000h,⼤于、等于 6 m/s的风速也有4000 h左右。

但从这⼀地区向内陆,则丘陵连绵,冬半年强⼤冷空⽓南下,很难长驱直下,夏半年台风在离海岸50km时风速便减少到68%。

所以,东南沿海仅在由海岸向内陆⼏⼗公⾥的地⽅有较⼤的风能,再向内陆则风能锐减。

在不到100km的地带,风能密度降⾄50W/m2以下,反为全国风能最⼩区。

但在福建的台⼭、平潭和浙江的南麂、⼤陈、嵊泗等沿海岛屿上,风能却都很⼤。

其中台⼭风能密度为534.4W/m2,有效风⼒出现时间百分率为90%,⼤于、等于3 m/s的风速全年累积出现7905h。

换⾔之,平均每天⼤于、等于3 m/s的风速有21.3h,是我国平地上有记录的风能资源最⼤的地⽅之⼀。

2、内蒙古和⽢肃北部,为我国次⼤风能资源区这⼀地区,终年在西风带控制之下,⽽且⼜是冷空⽓⼊侵⾸当其冲的地⽅,风能密度为200~300W/m2,有效风⼒出现时间百分率为70%左右,⼤于、等于3 m/s的风速全年有5000h以上,⼤于、等于6m/s的风速在2000h以上,从北向南逐渐减少,但不象东南沿海梯度那么⼤。

风能资源最⼤的虎勒盖地区,⼤于、等于3 m/s和⼤于、等于6m/s的风速的累积时数,分别可达7659h和4095h。

这⼀地区的风能密度,虽较东南沿海为⼩,但其分布范围较⼴,是我国连成⼀⽚的最⼤风能资源区。

3、⿊龙江和吉林东部以及辽东半岛沿海,风能也较⼤风能密度在200W/m2以上,⼤于、等于3m/s和6m/s的风速全年累积时数分别为5000~7000h和3000h。

风电发展现状与未来展望

风电发展现状与未来展望

中国风电发展现状与未来展望一、风能资源风能储量我国幅员辽阔,海岸线长,风能资源比较丰富;根据全国900多个气象站陆地上离地10m高度资料进行估算,全国平均风功率密度为100W/m2,风能资源总储量约亿kW,可开发和利用的陆地上风能储量有亿kW,近海可开发和利用的风能储量有亿kW,共计约10亿kW;如果陆上风电年上网电量按等效满负荷2000小时计,每年可提供5000亿千瓦时电量,海上风电年上网电量按等效满负荷2500小时计,每年可提供万亿千瓦时电量,合计万亿千瓦时电量;风能资源分布我国面积广大,地形条件复杂,风能资源状况及分布特点随地形、地理位置不同而有所不同;风能资源丰富的地区主要分布在东南沿海及附近岛屿以及北部地区;另外,内陆也有个别风能丰富点,海上风能资源也非常丰富;北部东北、华北、西北地区风能丰富带;北部东北、华北、西北地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200km宽的地带;三北地区风能资源丰富,风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场,但是当地电网容量较小,限制了风电的规模,而且距离负荷中心远,需要长距离输电;沿海及其岛屿地区风能丰富带;沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省/市沿海近10km宽的地带,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,加上台湾海峡狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区;沿海地区经济发达,沿海及其岛屿地区风能资源丰富,风电场接入系统方便,与水电具有较好的季节互补性;然而沿海岸的土地大部份已开发成水产养殖场或建成防护林带,可以安装风电机组的土地面积有限;内陆风能丰富点;在内陆一些地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区;海上风能丰富区;我国海上风能资源丰富,东部沿海水深2m到15m的海域面积辽阔,按照与陆上风能资源同样的方法估测,10m高度可利用的风能资源约是陆上的3倍,即7亿多kW,而且距离电力负荷中心很近;随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源;二、风电的发展建设规模不断扩大,风电场管理逐步规范1986年建设山东荣成第一个示范风电场至今,经过近20多年的努力,风电场装机规模不断扩大截止2004年底,全国建成43个风电场,安装风电机组1292台,装机规模达到万kW,居世界第10位,亚洲第3位位于印度和日本之后;另外,有关部门组织编制有关风电前期、建设和运行规程,风电场管理逐步走向规范化;专业队伍和设备制造水平提高,具备大规模发展风电的条件经过多年的实践,培养了一批专业的风电设计、开发建设和运行管理队伍,大型风电机组的制造技术我国已基本掌握,主要零部件国内都能自己制造;其中,600kW及以下机组已有一定数量的整机厂,初步形成了整机试制和小批量生产;截止2004年底,本地化风电机组所占市场份额已经达到18%,设备制造水平不断提高,目前,我国已经具备了设计和制造750kW定桨距定转速机型的能力,相当于国际上二十世纪90年代中期的水平;与国外联合设计的1200千瓦和独立设计的1000千瓦变桨距变转速型样机于2005年安装,进行试验运行;风力发电成本逐步降低随着风电产业的形成和规模发展,通过引进技术,加速风电机组本地化进程以及加强风电场建设和运行管理,我国风电场建设和运行的成本逐步降低,初始投资从1994年的约12000元/kW降低到目前的约9000元/kW;同时风电的上网电价也从超过元/kWh降低到约元/kWh;2003年国务院电价改革方案规定风电暂不参与市场竞争,电量由电网企业按政府定价或招标价格优先购买;国家发展改革委从2003年开始推行风电特许权开发方式,通过招投标确定风电开发商和上网电价,并与电网公司签订规范的购电协议,保证风电电量全部上网,风电电价高出常规电源部分在全省范围内分摊,有利于吸引国内外各类投资者开发风电;2005年2月28日通过的中华人民共和国可再生能源法中规定了“可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定”,“电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收;”和“电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊”,将风电特许权项目中的特殊之处已经用法律条文作为通用的规定,今后风电的发展应纳入法制的框架;三、存在问题资源需要进行第二轮风能资源普查,在现有气象台站的观测数据的基础上,按照近年来国际通用的规范进行资源总量评估,进而采用数值模拟技术编制高分辨率的风能资源分布图,评估风能资源技术可开发量;更重要的是应该利用GIS地理信息系统技术将电网、道路、场址可利用土地,环境影响、当地社会经济发展规划等因素综合考虑,进行经济可开发储量评估;风电设备生产本地化现有制造水平远落后于市场对技术的需求,国内定型风电机组的功率均为兆瓦级以下,最大750千瓦,而市场需要以兆瓦级为主流;国内风电机组制造企业面临着技术路线从定桨定速提升到变桨变速,单机功率从百千瓦级提升到兆瓦级的双重压力,技术路线跨度较大关;自主研发力量严重不足,由于国家和企业投入的资金较少,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说还处于跟踪和引进国外的先进技术阶段;目前国内引进的许可证,有的是国外淘汰技术,有的图纸虽然先进,但受限于国内配套厂的技术、工艺、材料等原因,导致国产化的零部件质量、性能需要一定时间才能达到国际水平;购买生产许可证技术的国内厂商要支付昂贵的技术使用费,其机组性能价格比的优势在初期不明显;在研发风电机组过程中注重于产品本身,而对研发过程中需要配套的工作重视不够;由于试验和测试手段的不完备,有些零部件在实验室要做的工作必须总装后到风电场现场才能做;风电机组的测试和认证体系尚未建立;风电机组配套零部件的研发和产业化水平较低,这样增加了整机开发的难度和速度;特别是对于变桨变速型风机,国内相关零部件研发、制造方面处于起步阶段,如变桨距系统,低速永磁同步发电机,双馈式发电机、变速型齿轮箱,交直交变流器及电控系统,都需要进行科技攻关和研发;成本和上网电价比较高基本条件设定:根据目前国内风电场平均水平,设定基本条件为:风电场装机容量5万千瓦,年上网电量为等效满负荷2000小时,单位千瓦造价8000-10000元,折旧年限年,其他成本条件按经验选取;财务条件:工程总投资分别取4亿元8000元/千瓦、亿元9000元/千瓦和5亿元10000元/千瓦,流动资金150万元;项目资本金占20%,其余采用国内商业银行贷款,贷款期15年,年利率%;增值税税率为%,所得税税率为33%,资本金财务内部收益率10%;风电成本和上网电价水平测算:按以上条件及现行的风电场上网电价制度,以资本金财务内部收益率为10%为标准,当风电场年上网电量为等效满负荷2000小时,单位千瓦造价8000~10000元时,风电平均成本分别为~元/千瓦时,较为合理的上网电价范围是~元/千瓦时含增值税;成本在投产初期较高,主要是受还本付息的影响;当贷款还清后,平均度电成本降至很低;风电场造价对上网电价有明显的影响,当造价增加时,同等收益率下的上网电价大致按相同比率增加;我国幅员辽阔,各地风电场资源条件差别很大,甚至同一风电场址内资源分布也有较大差别;为了分析由风能资源引起的发电量变化对成本和平均上网电价影响,分别计算年等效满负荷小时数为1400、1600、1800、2200、2400、2600、2800、3000的情况下发电成本见表1,上网电价见表2;如果全国风电的平均水平是每千瓦投资9000元,以及资源状况按年上网电量为等效满负荷2000小时计算,则风电的上网电价约每千瓦时元,比于全国火电平均上网电价每千瓦时元高一倍;电网制约风电场接入电网后,在向电网提供清洁能源的同时,也会给电网的运行带来一些负面影响;随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,这些负面影响就可能成为风电并网的制约因素;风力发电会降低电网负荷预测精度,从而影响电网的调度和运行方式;影响电网的频率控制;影响电网的电压调整;影响电网的潮流分布;影响电网的电能质量;影响电网的故障水平和稳定性等;由于风力发电固有的间歇性和波动性,电网的可靠性可能降低,电网的运行成本也可能增加;为了克服风电给电网带来的电能质量和可靠性等问题,还会使电网公司增加必要的研究费用和设备投资;在大力发展风电的过程中,必须研究和解决风电并网可能带来的其他影响;四、政策建议1.加强风电前期工作;建立风电正常的前期工作经费渠道,每年安排一定的经费用于风电场风能资源测量、评估以及预可研设计等前期工作,满足年度开计划对风电场项目的需要;2.制定“可再生能源法”的实施细则,规定可操作的政府合理定价,按照每个项目的资源等条件,以及投资者的合理回报确定上网电价;同时也要规定可操作的全国分摊风电与火电价差的具体办法;3.加速风电机组本地化进程,通过技贸结合等方式,本着引进、消化、吸收和自主开发相结合的原则,逐步掌握兆瓦级大型风电机组的制造技术;引进国外智力开发具有自主知识产权的机组,开拓国际市场;4.建立风电制造业的国家级产品检测中心、质量保证控制体系以及认证制度,不断提高产品质量,降低成本,完善服务;5.制定适应风电发展的电网建设规划,研究风电对电网影响的解决措施;五、“十一五”和2020年风电规划我国电源结构70%是燃煤火电,而且负荷增长迅速,环境影响特别是减排二氧化碳的压力越来越大,风能是清洁的可再生能源,我国资源丰富,能够大规模开发,风电成本逐年下降,前景广阔;风电装机容量规划目标为2005年100万千瓦,2010年400~500万千瓦,2020年2000~3000万千瓦;2004年到2005年,“十五计划”后半段重点建设江苏如东和广东惠来两个特许权风电场示范项目,取得建设大规模风电场的经验,2005年底风力发电总体目标达100万千瓦;2006年到2010年;“十一五规划”期间全国新增风电装机容量约300万千瓦,平均每年新增60~80万千瓦,2010年底累计装机约400~500万千瓦;提供这样的市场空间主要目的是培育国内的风电设备制造能力,国家发展改革委于2005年7月下发文件,要求所有风电项目采用的机组本地化率达到70%,否则不予核准;此后又下发文件支持国内风电设备制造企业与电源建设企业合作,提供50万千瓦规模的风电市场保障,加快制造业发展;目前国家规划的主要项目有广东省沿海和近海示范项目31万千瓦;福建省沿海及岛屿22万千瓦;上海市12万千瓦;江苏省45万千瓦;山东省21万千瓦;吉林省33万千瓦;内蒙古50万千瓦;河北省32万千瓦;甘肃省26万千瓦;宁夏19万千瓦;新疆22万千瓦等;目前各省的地方政府和开发商均要求增加本省的风电规划容量;2020年规划目标是2000~3000万千瓦,风电在电源结构中将有一定的比例,届时约占全国总发电装机10亿千瓦容量的2~3%,总电量的1~%; 2020年以后随着化石燃料资源减少,成本增加,风电则具备市场竞争能力,会发展得更快;2030年以后水能资源大部分也将开发完,近海风电市场进入大规模开发时期;。

中国风电发展现状.ppt

中国风电发展现状.ppt

世界风电发展现状
世界风电发展现状
1996-2013年全球每年新增装机变化趋势
MW
50000 45000 40000 35000 30000 25000 20000 15000 10000
5000 0
45169
38467 39059 40636
35289
26872
20285
1280
1530
2520
制造企业同时投资风电场,投资其它行业产品等。 (4)、寻求合资、合作 (5)、机组出口
其他
装机容量(MW) 18950.6 15076 8798.5 7938 5542.5 4487.6 3746.5 3617.45 3535.85 2420.6 17299.29
装机容量占比 20.7% 16.5% 9.6% 8.7% 6.1% 4.9% 4.1% 4.0% 3.9% 2.6% 19%
制造商 维斯塔斯 金风科技
Enercon 西门子
GE 歌美飒 苏司兰 联合动力 明阳风电
Nordex 其他 合计
装机容量 4893 4112 3687 2776 2458 2069 1995 1488 1297 1254 11448 37478
市场份额 13.1 11 9.8 7.4 6.6 5.5 5.3 4 3.5 3.3 30.5 100
2020/3/12
中国风电发展现状
2.投资企业 截止2013年底,全国近1300家项目公司参与风电投资和建
设,其中国企约960家,累计并网容量62440MW,占全国总并 网容量的81%。五大发电集团累计并网容量42560MW,占全 国总并网容量的55%。其中国电集团以累计并网15430MW位 列全国风电装机第一位,华能集团和大唐集团分别以9390MW 和8890MW位列第二位和第三位。

最新我国风力发电场地分布情况

最新我国风力发电场地分布情况

我国风力发电场的分布情况我国有效风能分布图根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区:(1)三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上.这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关.(2)东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10 公里宽的地带,年风功率密度在200W/m2米以上.(3)内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区.(4)近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦.根据中国气象科学研究院绘制的全国平均风功率密度分布图,中国陆地10m高度层的风能总储量为32.26亿KW,居世界第一位。

我国陆上实际可开发风能资源储量为2.53亿千瓦,近海风场的可开发风能资源是陆上3倍,则总的可开发风能资源约10亿千瓦。

也就是说,如果中国的风力资源开发60%,那么仅风能就可以支撑中国目前每年全部的电力需求。

中国的风电资源不仅丰富,而且分布基本均匀。

东南沿海及其岛屿、青藏高原、西北、华北、新疆、内蒙古和东北部分地区都属于风能储藏量比较丰富的地区,而甘肃、山东、苏北、皖北等地区也有相当大比例的风能资源可以有效利用。

我国陆地上从新疆、甘肃、宁夏到内蒙古,是一个大风力带;同时还有许多大风口,如张家口地区,鄱阳湖湖口地区、云南大理等。

这些为风能的集中开发利用提供了极大的便利。

到2008年底,中国的风电装机容量达到1200万千瓦,现在在全世界是位居第四位,装机容量近三年来是连续成倍增长。

如果按照现在这样的增长速度,到2010年底,可能会达到3000万千瓦。

中国风电发展现状和前景 共30页PPT资料

中国风电发展现状和前景 共30页PPT资料
版权所有, 2019 (c) Dale Carnegie & Associates, Inc.
版权所有, 2019 (c) Dale Carnegie & Associates, Inc.
中国风能资源分布
沿海及其岛屿地区
包括山东~广西和海南等省市区沿海岸线近10公里 宽的地带,年有效风功率密度在200W/m2以上,沿 海岛屿风功率密度在500W/m2 以上,风功率密度 线平行于海岸线,可开发利用储量为0.11亿kW,约 占全国可利用储量的4%。 该地区经济发达,风能资源丰富,并网方便,与水电 互补,但风电场地形、交通、地质条件复杂,适合建 设中小型风电场,并应注意台风和盐雾腐蚀的影响。
• 大型风电机组的制造技术我国已基本掌握,主要零部件国 内都能自己制造,如发电机、齿轮箱和叶片等,国际知名 的叶片制造商丹麦LM公司独资在天津设厂生产。 600kW 机组的本地化率可以达到90%。随着大型风电设备产业的 形成,船舶工业的主要认证机构中国船级社开始筹建中国 风电机组产品的认证体系。
版权所有, 2019 (c) Dale Carnegie & Associates, Inc.
内陆局部风能丰富区
在陆上两个大风能丰富带之外,大部分陆地上的风 功率密度在100W/m2以下,可以利用小时数不到 3000。但是在一些特殊地区,由于湖泊和特殊地 形的影响,形成一些风能资源丰富点,如鄱阳湖附 近地区、湖北的九宫山、利川,以及湖南八面山等 地区,适合建设分散的中小型风电场。
版权所有, 2019 (c) Dale Carnegie & Associates, Inc.
中国风能资源及其分布
海上风能丰富区
• 海上风速高,静风期少,可有效利用风电机组容量。 海水表面粗糙度低,风速随高度的变化小,可降低塔架 高度。海上风的湍流强度低,没有复杂地形对气流的影 响,减少风电机组的疲劳载荷,延长使用寿命。 • 一般风速比平原沿岸高20%,发电量多70%,陆上 设计寿命20年的风电机组在海上可达25年到30年。 • 我国海上风能资源丰富,10m高度可利用的风能资源 约7亿多kW,而且距离电力负荷中心近。随着海上风电 场技术的发展成熟,经济上可行,将来必然会成为重要 的可持续能源。

全国风力发电厂分布情况

全国风力发电厂分布情况

全国风力发电厂分布情况
全国风力发电厂分布情况较为分散,主要集中在沿海地区、西北地区和华北地区。

具体分布情况如下:
1. 沿海地区:沿海地区具有较为适宜的风能资源,因此分布有较多的风力发电厂。

主要包括东北地区的辽宁、山东、河北等省份,以及东南沿海地区的福建、广东等省份。

2. 西北地区:西北地区的草原、戈壁和沙漠地带拥有广阔的风能资源,被认为是中国最适合建设风电的地区之一。

主要包括陕西、甘肃、宁夏、青海等省份。

3. 华北地区:华北地区由于其开阔的平原地貌和较强的风力资源,也拥有相对较多的风力发电厂。

主要包括北京、天津、河北、山西等省份。

此外,其他地区如东北地区的黑龙江、吉林等省份,中部地区的湖南、湖北等省份以及西南地区的四川、云南等省份也有少量的风力发电厂分布。

总体而言,风力发电厂分布面广,但仍然存在地区不均衡的情况。

中国风能分布及风电

中国风能分布及风电

1风能资源中国风能资源丰富,具有良好的开发前景,发展潜力巨大。

据最新风能资源普查初步统计成果,中国陆上离地10 m高度风能资源总储量约43. 5亿kW ,居世界第1位。

其中,技术可开发量为2. 5亿kW ,技术可开发面积约20万km ,此外,还有潜在技术可开发量约7 900万kW。

另外,海上10 m高度可开发和利用的风能储量约为7. 5亿kW。

全国10 m高度可开发和利用的风能储量超过10亿kW,仅次于美国、俄罗斯居世界第3位。

陆上风能资源丰富的地区主要分布在三北地区(东北、华北、西北)、东南沿海及附近岛屿。

1. 1“三北”(东北、华北、西北)地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200 km宽的地带,风功率密度在200~300 W /m 2以上,有的可达500 W /m 2以上,可开发利用的风能储量约2亿kW ,占全国可利用储量的80%。

另外,该地区风电场地形平坦,交通方便,没有破坏性风速,是中国连成一片的最大风能资源区,有利于大规模开发风电场。

但是,建设风电场时应注意低温和沙尘暴的影响,有的地方联网条件差,应与电网统筹规划发展。

1. 2东南沿海地区风能丰富带东南沿海受台湾海峡的影响,每当冷空气南下到达海峡时,由于峡管效应使风速增大。

冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,是中国风能最佳丰富区。

中国有海岸线约1 800 km,岛屿6 000多个,是风能大有开发利用前景的地区。

沿海及其岛屿风能丰富带,年有效风功率密度在200 W /m2以上,风功率密度线平行于海岸线,沿海岛屿风功率密度在500 W /m2以上,如台山、平潭、东山、南麂、大陈、嵊泗、南澳、马祖、马公、东沙等,年有效风速(4~25 m /s)时数约在7 000~8 000h。

2这一地区特别是东南沿海,由海岸向内陆是丘陵连绵,风能丰富地区仅在距海岸50 km之内。

1. 3内陆局部风能丰富区在2个风能丰富带之外,风功能密度一般在100W/m 2以下,年有效风速( 4~25 m /s)时数在3 000 h以下。

中国风能资源储量与分布

中国风能资源储量与分布
平洋,季风强盛,内陆还有 许多山系,地形复杂,加之青藏 高原耸立我国西部,改变了海陆 影响所引起的气压分布和大气环 流,增加了我国季风的复杂性。 冬季风来自西伯利亚和蒙古等中 高纬度的内陆,那里空气十分严 寒干燥冷空气积累到一定程度, 在有利高空环流引导下,就会爆 发南下俗称寒潮,在此频频南下 的强冷空气控制和影响下,形成 寒冷干燥的西北风侵袭我国北方 各省(直辖市、自治区)。
德意志银行最新发布的研究报告预计,全球风电 发展正在进入一个迅速扩张的阶段,风能产业将保 持每年20%的增速,到2015年时,该行业总产值将增 至目前水平的5倍。 从目前的技术成熟度和经济可行性来看,风能 最具竞争力。
海上有丰富的风能资源和广阔平坦的区域,使得近海风力发电技术成为近 来研究和应用的热点。多兆瓦级风力发电机组在近海风力发电场的商业化运行 是国内外风能利用的新趋势。随着风力发电的发展,陆地上的风机总数已经趋 于饱和,海上风力发电场将成为未来发展的重点。海上发电是近年来国际风力 发电产业发展的新领域,是“方向中的方向”。
风能最为一种安全可靠的、无污染的新能源,日 益受到国际上风能资源丰富的国家和地区的重视 和大规模发展,成为近年来世界上发展最快的能 源工业。 我国风能资源丰富和比较丰富的地区,一是东南 沿海及其岛屿;二是三北地区(东北、华北、和 西北的总称)地区。新疆达坂城、内蒙古和广东 南澳等风电场的装机容量都已分别超过5万千瓦, 占全国的50%以上。
地球表面大量空气流动所产生 的动能。由于地面各处受太阳辐照 后气温变化不同和空气中水蒸气的 含量不同,因而引起各地气压的差 异,在水平方向高压空气向低压地 区流动,即形成风。风能资源决定 于风能密度和可利用的风能年累积 小时数。风能密度是单位迎风面积 可获得的风的功率,与风速的三次 方和空气密度成正比关系。据估算, 全世界的风能总量约1300亿千瓦, 中国的风能总量约16亿千瓦。

我国风力发电场地分布情况

我国风力发电场地分布情况

我国风力发电场的分布情况畑丹上們{护: 讳”曲W m2 1対7詛Wen-50-10Q A RF90 W rfWUT Mow》我国有效风能分布图根据图中国风力资源分布状况图,我国风能资源丰富的地区主要分布在以下地区(1) 三北(东北、华北、西北)地区丰富带,风能功率密度在200~300瓦/米2以上,有的可达500瓦/米2以上,如阿拉山口、达坂城、辉腾锡勒、锡林浩特的灰腾梁等、可利用的小时数在5000小时以上,有的可达7000小时以上.这一风能丰富带的形成,主要是由于三北地区处于中高纬度的地理位置有关•(2) 东南沿海及附近岛屿包括山东、江苏、上海、浙江、福建、广东、广西和海南等省(市)沿海近10公里宽的地带,年风功率密度在200W/m2米以上•(3) 内陆个别地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区•(4) 近海地区,我国东部沿海水深5米到20米的海域面积辽阔,按照与陆上风能资源同样的方法估测,10米高度可利用的风能资源约是陆上的3倍,即7亿多千瓦•根据中国气象科学研究院绘制的全国平均风功率密度分布图,中国陆地10m高度层的风能总储量为32.26亿KW居世界第一位。

我国陆上实际可开发风能资源储量为 2.53亿千瓦,近海风场的可开发风能资源是陆上3倍,则总的可开发风能资源约10亿千瓦。

也就是说,如果中国的风力资源开发60%那么仅风能就可以支撑中国目前每年全部的电力需求。

中国的风电资源不仅丰富,而且分布基本均匀。

东南沿海及其岛屿、青藏高原、西北、华北、新疆、内蒙古和东北部分地区都属于风能储藏量比较丰富的地区,而甘肃、山东、苏北、皖北等地区也有相当大比例的风能资源可以有效利用。

我国陆地上从新疆、甘肃、宁夏到内蒙古,是一个大风力带;同时还有许多大风口,如张家口地区,鄱阳湖湖口地区、云南大理等。

这些为风能的集中开发利用提供了极大的便利。

到2008年底,中国的风电装机容量达到1200万千瓦,现在在全世界是位居第四位,装机容量近三年来是连续成倍增长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 风能资源中国风能资源丰富 ,具有良好的开发前景 ,发展潜力巨大。

据最新风能资源普查初步统计成果 ,中国陆上离地 10 m高度风能资源总储量约 43. 5亿 kW ,居世界第 1位。

其中 ,技术可开发量为 2. 5亿kW ,技术可开发面积约20万 km2 ,此外 ,还有潜在技术可开发量约 7 900万 kW。

另外 ,海上 10 m 高度可开发和利用的风能储量约为 7. 5亿 kW。

全国 10 m高度可开发和利用的风能储量超过 10亿 kW, 仅次于美国、俄罗斯居世界第 3位。

陆上风能资源丰富的地区主要分布在三北地区 (东北、华北、西北 )、东南沿海及附近岛屿。

1. 1 “三北”(东北、华北、西北 )地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省 /自治区近 200 km宽的地带 ,风功率密度在 200~300 W /m 2 以上 ,有的可达 500 W /m 2 以上 ,可开发利用的风能储量约 2亿 kW ,占全国可利用储量的 80%。

另外 ,该地区风电场地形平坦 ,交通方便 ,没有破坏性风速 ,是中国连成一片的最大风能资源区 ,有利于大规模开发风电场。

但是 ,建设风电场时应注意低温和沙尘暴的影响 ,有的地方联网条件差 ,应与电网统筹规划发展。

1. 2 东南沿海地区风能丰富带东南沿海受台湾海峡的影响 ,每当冷空气南下到达海峡时 ,由于峡管效应使风速增大。

冬春季的冷空气、夏秋的台风 ,都能影响到沿海及其岛屿 ,是中国风能最佳丰富区。

中国有海岸线约 1 800 km, 岛屿 6 000多个 ,是风能大有开发利用前景的地区。

沿海及其岛屿风能丰富带 ,年有效风功率密度在 200 W /m2以上 ,风功率密度线平行于海岸线 ,沿海岛屿风功率密度在 500 W /m2以上 ,如台山、平潭、东山、南麂、大陈、嵊泗、南澳、马祖、马公、东沙等 ,年有效风速 (4~25 m /s)时数约在 7 000~8 000h。

这一地区特别是东南沿海 ,由海岸向内陆是丘陵连绵 ,风能丰富地区仅在距海岸50 km之内。

1. 3 内陆局部风能丰富区在 2个风能丰富带之外 ,风功能密度一般在 100 W /m 2 以下 ,年有效风速 ( 4~25 m /s)时数在 3 000 h以下。

但是在一些地区由于湖泊和特殊地形的影响 ,风能也较丰富 ,如鄱阳湖附近较周围地区风能大 ,湖南衡山、湖北的九宫山、河南的嵩山、山西的五台山、安徽的黄山、云南太华山等也较平地风能为大。

1. 4 海上风能丰富区中国海上风能资源丰富 , 10 m高度可利用的风能资源约 7. 5亿 kW。

海上风速高 ,很少有静风期 ,可以有效利用风电机组发电容量。

海水表面粗糙度低 ,风速随高度的变化小 ,可以降低风电机组塔架高度。

海上风的湍流强度低 ,没有复杂地形对气流的影响 ,可减少风电机组的疲劳载荷 ,延长使用寿命。

一般估计海上风速比平原沿岸高 20% ,发电量增加70% ,在陆上设计寿命 20 a的风电机组在海上可达25~30 a,而且海上风电场距离电力负荷中心很近。

随着海上风电场技术的发展成熟 ,经济上可行 ,将来必然会成为重要的可持续能源。

图 1为中国全年风速大于 3 m /s小时数分布图 ,图 2为中国有效风功率密度分布图。

2 风力发电2. 1 风力发电的发展阶段中国风力发电始于 20世纪 80年代 ,发展相对滞后 ,但起点较高 ,主要经历了 3个重要的发展阶段。

第 1阶段: 1985—1995年试验阶段此阶段主要是利用丹麦、德国、西班牙政府贷款 ,进行一些小项目的示范。

欧洲风电大国利用本国贷款和赠款的条件 ,将它们的风机在中国市场进行试验运行 ,积累了大量的经验。

同时中国的“七·五”、“八·五”国家风电规划中设立的国产风机攻关项目 ,也取得了初步成果。

第 2阶段: 1995—2003年在第1阶段取得的成果基础上,中国各级政府相继出台了各种优惠的鼓励政策。

科技部通过科技攻关和国家863高科技项目促进了风电技术的发展,原经贸委、计委分别通过双加工程、国债项目、乘风计划等项目促进风电的持续发展。

第 3阶段: 2003年至今中国国家发展和改革委员会通过风电特许权经营 ,下放 50 MW 以下风电项目审批权 ,要求国内风电项目、风电机组设备国产化比例不小于 70%等政策 ,扶持和鼓励国内风电制造业的发展 ,使国内风电市场的发展进入到一个高速发展的阶段。

中国2006年新增装机 1 347 MW ,比以前翻了一番还多 ,比 2005年增加106. 4% , 2006年风电累计装机为2 604 MW ,是世界第 6大市场;中国 2007年新增装机 3 304 MW ,比 2006年增加 126. 9% , 2007年风电累计装机为 5 908 MW,是世界第 5大市场 ;中国2008 年新增装机 6 300 MW, 比 2007 年增加106. 6% , 2008年风电累计装机为 12 210 MW ,是世界第 4大市场。

自从2006年 1月 1日开始实施可再生能源法后 , 2006年中国风电市场稳步发展 , 200年提前 3 a实现了 2010年中国风电 5 000 MW 的发展目标。

并且 2008年新增装机容量超过了 2007年以前装机容量的总和。

2. 2 风力发电现状目前 ,随着《可再生能源法》的实施和一系列有关可再生能源政策的出台 ,中国的风电开发势头迅猛 ,主要表现在以下几个方面。

(1) 风电建设规模不断扩大 ,管理逐步规范到 2006年底 ,中国已建和在建的风电场约 91个 ,装机总容量达到 2 604 MW;到 2007年底 ,全国已建和在建的风电场约 158个 ,装机总容量达到5 908 MW;到 2008年底 ,全国风电装机总容量达到12 210 MW。

而“十一·五”国家风电发展规划中要求 2010年全国风电装机容量达到 5 000 MW , 2020年全国风电装机容量达到 30 000 MW。

单个风电场工程规模从过去的 10 MW 左右发展到目前最大的300 MW;风电场工程规划从过去的几万千瓦级发展到目前的百万千瓦级、千万千瓦级风电基地。

同时 ,有关部门正组织编制有关风电前期、建设和运行规程 ,风电场管理在逐步走向规范化。

(2) 风电设备制造能力不断增强中国风电设备制造起步较晚 , 2002年前后仅能小批量生产 600 kW 级风电机组 ,而同期国际风电设备兆瓦级风电机组已经成为主流机型。

2003年以来 ,国家发展和改革委连续组织了 5期风电特许权招标项目 ,采取政府支持和市场机制相结合的方式 ,有力地推进了风电规模化发展 ,为国内风电制造企业创造了良好的市场条件。

近年来 ,在风电市场的拉动下 ,国内风电机组制造业得到迅速发展。

目前 ,中国已基本掌握了大型风电机组的制造技术 ,全国已经生产或准备进入大型风电机组制造的整机生产企业有 50多家 ,初步形成了大连华锐、东方电气、金风科技等风电机组制造龙头企业 ,已能够批量生产单机容量为 1. 5 MW 瓦级的风电机组。

与此同时 ,国内已有一批企业进入了风电机组零部件的配套生产 ,现已可批量生产发电机、齿轮箱、叶片、塔架、控制系统、变桨和偏航轴承等零部件 ,初步形成了风电设备制造和配套零部件专业化产业链。

(3) 风电法规政策环境不断完善为了促进可再生能源的发展 , 2006年 ,中国开始实施了《可再生能源法》,确立了可再生能源发展的法律地位、基本制度和政策框架 ,将可再生能源作为能源优先发展的领域 ,提出了可再生能源总量目标、强制上网、分类电价、费用分摊和专项资金等基本制度 ,为完善可再生能源政策奠定了法律基础。

根据《可再生能源法》的要求 ,国家发展和改革委、财政部等有关政府部门研究制定了有关配套政策 ,形成了较为完整的支持可再生能源发展的政策体系 ,为可再生能源的加快发展奠定了重要基础。

(4) 风电发展前景良好“十一·五”期间和今后相当长时期 ,国家将把实施可持续发展战略放在更加突出的位置 ,发展风电将成为国家可持续发展战略的必然要求。

按照国家能源局“打造陆上‘三峡’、建设大基地、融入大电网”的风电开发和发展思路 ,中国将重点陆续建设甘肃酒泉、新疆哈密、河北坝上、蒙东和蒙西以及江苏沿海等千万千瓦级风电基地。

目前 ,甘肃酒泉千万千瓦级风电基地首批开发项目已经开始建设 ,其它几个千万千瓦级风电基地规划已经通过审查。

到2010年 ,全国风电累计装机容量预计超过 2 000万kW。

同时 ,将逐步建立起国内较为完备的风力发电产业体系 ,风电机组制造的关键技术和重大装备将取得较大突破 ,风电发展政策和具体措施基本落实到位 ,风电投资者积极性进一步提高 ,中国基本具备大规模商业化发展风电的条件;到 2020年 ,全国风电开发建设规模有望达到 1亿 kW,远远超过原先规划的 3 000万 kW 目标。

同时 ,培育出中国具有自主知识产权的兆瓦级及以上风电机组及零部件品牌 ,风电技术水平和装备能力基本达到国际水平 ,风电建设运营中各项技术经济指标进一步提高 ,风电市场竞争力明显增强。

表 1为中国 1995—2008年风电装机容量统计表。

2. 3 风力发电趋势(1) 风力发电成本将大幅度降低风力发电相对于太阳能、生物质能等其它可再生能源技术更为成熟、成本更低、对环境破坏更小。

在过去 20多 a里 ,风力发电技术不断取得突破 ,规模经济性日益明显。

随着风力发电技术的改进 ,风力发电机组将越来越便宜和高效。

增大风力发电机组的单机容量就减少了基础设施的投入费用 ,而且同样的装机容量需要更少数目的机组 ,这也节约了成本。

随着融资成本的降低和开发商的经验丰富 ,项目开发的成本也相应得到降低。

风力发电机组可靠性的改进也减少了运行维护的平均成本。

(2) 风电设备国产化比例提高2005年 7月 ,国家发展和改革委《关于风电建设管理有关要求的通知》中明确规定 :风电设备国产化率要达到 70%以上。

实现风力发电技术装备国产化的目的是提高中国风力发电装备的制造能力和技术水平 ,降低风力发电成本 ,提高市场竞争能力 ,为推动中国风力发电技术大规模商业化发展奠定基础。

加大风力发电机组的国产化力度 ,一方面可为风力发电场建设采用国产设备提供优质廉价的选择;另一方面 ,也可迫使国外同类企业在参与中国市场竞争时大幅度降低产品价格。

有理由相信 ,随着中国风电设备制造能力不断增强和国产化比例的提高 ,中国生产的风电设备技术水平将进一步提高 ,同时风电设备的价格亦将进一步降低。

2. 4 21世纪中国风力发电展望(1) 中国有丰富的风能资源和巨大的风电市场中国可利用的风能资源 10 m高度约 10亿 kW,其中陆上约 2. 5亿 kW,海上约 7. 5亿 kW,陆地上风能资源全部利用可以满足中国目前的用电需求。

相关文档
最新文档