(完整版)初二数学最短路径问题知识归纳+练习
初二数学最短路径练习题及答案
初二数学最短路径练习题及答案导言:数学中的最短路径问题是指在网络图中寻找两个顶点之间路径长度最短的问题。
该问题在实际生活中应用广泛,比如在导航系统中为我们找到最短的路线。
对于初二学生而言,在学习最短路径问题时,题目练习是非常重要的。
本文将为初二数学学习者提供一些最短路径练习题及答案,帮助他们巩固知识和提高解题能力。
练习题一:某地有4个村庄A、B、C、D,它们之间的道路如下图所示。
要求从村庄A到村庄D,经过的道路距离最短,请你找出最短路径,并计算出最短路径的长度。
解答一:根据题目所给的道路图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含4个顶点的图,并初始化每条边的权值。
将A、B、C、D顶点分别标记为1、2、3、4。
村庄A到村庄B的距离为5,即A-5-B。
村庄A到村庄C的距离为3,即A-3-C。
村庄B到村庄C的距离为2,即B-2-C。
村庄B到村庄D的距离为6,即B-6-D。
村庄C到村庄D的距离为4,即C-4-D。
2. 接下来,我们使用迪杰斯特拉算法求解最短路径。
a) 首先,我们将起始顶点A的距离设置为0,其他顶点的距离设置为无穷大。
b) 然后,我们选择距离最短的顶点,并将其标记为已访问。
c) 然后,我们更新与该顶点相邻的顶点的距离。
如果经过当前顶点到达邻接顶点的距离比已记录的最短路径更短,就更新最短路径。
d) 重复上述步骤,直到找到最短路径为止。
3. 经过计算,最短路径为A-3-C-4-D,距离为7。
练习题二:某城市有6个地点,它们之间的交通图如下所示。
请你计算从地点A到地点F的最短路径,并给出最短路径的长度。
解答二:根据题目所给的交通图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含6个顶点的图,并初始化每条边的权值。
将地点A、B、C、D、E、F分别标记为1、2、3、4、5、6。
地点A到地点B的距离为4,即A-4-B。
(word完整版)初二数学最短路径问题知识归纳+练习,推荐文档
初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题 - 求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【问题1】作法图形原理AlB在直线l 上求一点P,使PA+PB 值最小.连AB,与l 交点即为P.AP lB两点之间线段最短.PA+PB 最小值为AB.【问题2】“将军饮马”作法图形原理ABl在直线l 上求一点P,使PA+PB 值最小.作B 关于l 的对称点B'连A B',与l 交点即为P.ABlP两点之间线段最短.PA+PB 最小值为A B'.B'【问题3】作法图形原理l1Pl2在直线l1、l2上分别求点M、N,使△PMN 的周长最小.分别作点P 关于两直线的对称点P'和P'连,P'P''与,两直线交点即为M,N.P' l1MPNl2P''两点之间线段最短.PM+MN+PN 的最小值为线段P'P''的长.【问题4】作法图形原理l1QPl2在直线l1、l2上分别求点M、N,使四边形PQMN 分别作点Q 、P 关于直线l1、l2的对称点Q'和Q'l1M QP两点之间线段最短.四边形PQMN 周长的最P'连Q'P',与两直线交l2N 小值为线段P'P''的长.点即为M,N.P'PE3在直线 l 上求一点 P ,使 直线 l 的交点即为 P .端点的距离相等.PA - PB =0.PA - PB 的值最小.【问题 10】作法图形原理ABl在直线 l 上求一点 P ,使PA - PB 的值最大.作直线 AB ,与直线 l 的交点即为 P .ABPl三角形任意两边之差小于第三边. PA - PB ≤AB .PA - PB 的最大值=AB .【问题 11】作法图形原理AlB在直线 l 上求一点 P ,使PA - PB 的值最大.三角形任意两边之差小于A第三作 B 关于 l 的对称点 B ' 作直线 A B ',与 l 交点B'Pl边. PA - PB ≤AB '.即为 P .BPA - PB 最大值=AB '.【问题 12】“费马点”作法 图形原理A所求点为“费马点”,即满足DBC∠APB =∠BPC =∠APC=120°.以 AB 、AC 为APE两点之间线段最短. PA +PB +PC 最小值△ABC 中每一内角都小于 边向外作等边△ABD 、△ BC=CD .120°,在△ABC 内求一 ACE ,连 CD 、BE 相交于 点 P ,使 PA +PB +PC 值最 P ,点 P 即为所求.小.【精品练习】1. 如图所示,正方形 ABCD 的面积为 12,△ABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD +PE 的和最小,则这个最小值为( )A. 2B. 2 ADC .3D .BC2. 如图,在边长为 2 的菱形 ABCD 中,∠ABC =60°,若将△ACD 绕点 A 旋转,当 AC ′、AD ′分别与 BC 、CD- 3 -662 EDM3交于点 E 、F ,则△CEF 的周长的最小值为()A .2B . 2C . 2 +D .43. 四边形 ABCD 中,∠B =∠D =90°,∠C =70°,在 BC 、CD 上分别找一点 M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为()A .120°B .130°C .110°D .140°A DBNC4. 如图,在锐角△ABC 中,AB =4 ,∠BAC =45°,∠BAC 的平分线交 BC 于点 D ,M 、N 分别是 AD 和AB 上的动点,则 BM +MN 的最小值是 .A5. 如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点 E 在 AB 边上,点 D 在 BC 边上(不与点 B 、C 重合),且 ED =AE ,则线段 AE 的取值范围是 .ACB6. 如图,∠AOB =30°,点 M 、N 分别在边 OA 、OB 上,且 OM =1,ON =3,点 P 、Q 分别在边 OB 、OA 上,则 MP +PQ +QN 的最小值是 .(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即 Rt △ABC 中,∠C =90°,则有 AC 2 + BC 2 = AB 2 )- 4 -D M33 yABOxyBA OCDx7. 如图,三角形△ABC 中,∠OAB =∠AOB =15°,点 B 在 x 轴的正半轴,坐标为 B ( 6 ,0).OC 平分∠AOB ,点 M 在 OC 的延长线上,点 N 为边 OA 上的点,则 MA +MN 的最小值是.8. 已知 A (2,4)、B (4,2).C 在 y 轴上,D 在 x 轴上,则四边形 ABCD 的周长最小值为,此时 C 、D 两点的坐标分别为.9.已知 A (1,1)、B (4,2).(1)P 为 x 轴上一动点,求 PA +PB 的最小值和此时 P 点的坐标;(2)P 为 x 轴上一动点,求 PA PB 的值最大时 P 点的坐标;(3)CD 为 x 轴上一条动线段,D 在 C 点右边且 CD =1,求当 AC +CD +DB 的最小值和此时 C 点的坐标;10. 点 C 为∠AOB 内一点.(1) 在 OA 求作点 D ,OB 上求作点 E ,使△CDE 的周长最小,请画出图形;(2) 在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.A- 5 -yBA OxyBA OxCO BAF11.(1)如图①,△ABD 和△ACE 均为等边三角形,BE 、CE 交于 F ,连 AF ,求证:AF +BF +CF =CD ;(2)在△ABC 中,∠ABC =30°,AB =6,BC =8,∠A ,∠C 均小于 120°,求作一点 P ,使 PA +PB +PC 的值最小,试求出最小值并说明理由.DEBC① ①① ①12.荆州护城河在 CC '处直角转弯,河宽相等,从 A 处到达 B 处,需经过两座桥 DD '、EE ',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使 A 到 B 点路径最短?- 6 -- 7 -“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
初二最短路径问题练习题
初二最短路径问题练习题在图论中,最短路径问题是指在一个加权有向图或无向图中,找到两个顶点之间的最短路径。
最短路径可能是指权重之和最小的路径,或者是指路径上边的数量最少。
最短路径问题有许多种解决方法,其中最著名且广泛应用的算法是狄克斯特拉算法(Dijkstra's algorithm)。
该算法在计算机科学领域被广泛应用于路由算法、网络传输以及学术研究中。
我们来通过一个初二级别的练习题来巩固对最短路径问题的理解。
假设有一个城市地图,有五个地点:A、B、C、D和E。
每两个地点之间都有一条路径,路径上标有权重,代表两个地点之间的距离。
如下图所示:```1 3 4(A)------(B)------(D)------(E)| | /| | /| | /2 5 1\ /\ /(C)```现在,我们想要从地点A到达地点E,但希望选择一条最短路径。
我们可以使用狄克斯特拉算法来解决这个问题。
首先,我们需要创建一个包含所有地点的列表,并初始化每个地点的距离为无穷大。
然后,我们将起点A的距离设置为0,并将其添加到一个称为“未访问集合”中。
接下来,我们开始循环,直到我们找到到达终点E的最短路径或者我们访问了所有的地点。
在每一轮循环中,我们从未访问集合中选择距离起点A最近的地点,并将其标记为已访问。
然后,我们更新与该地点相邻的所有未访问地点的距离,如果新的路径较短的话。
最后,当我们找到到达终点E的最短路径时,我们可以通过回溯来获取完整的路径。
根据以上算法,我们可以求解出从地点A到达地点E的最短路径。
假设初始设置如下:地点A的最短路径长度为0,其他地点的最短路径长度为无穷大。
未访问集合:A、B、C、D、E首先,我们选择地点A作为起点,因为它的距离最小。
我们更新地点A相邻的地点的距离。
更新后的距离如下:A: 0B: 1C: 2D: ∞E: ∞接下来,我们选择距离最小的地点B,并更新它相邻地点的距离。
更新后的距离如下:A: 0B: 1C: 2D: 4E: ∞然后,我们选择距离最小的地点C,并更新它相邻地点的距离。
初二数学最短路径问题知识归纳+练习
初二数学最短路径问题【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:-①确定起点的最短路径问题即已知起始结点,求最短路径的问题.-②确定终点的最短路径问题与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.-③确定起点终点的最短路径问题即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】.“将军饮马”,“造桥选址”,“费马点”【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.】【十二个基本问题】1作法图形【问题原理A A两点之间线段最短.P l.交点即为P连AB,与l l PA+PB 最小值为AB.BB,使上求一点P在直线l值最小.PA+PB【问题2】“将军饮马”作法图形原理A AB'B关于作B l 的对称点两点之间线段最短.Bl l PA+PB 最小值为 A B P.'.连A B ',与l 交点即为P,使P在直线l 上求一点B'PA+PB 值最小.3】作法图形原理【问题P'l 1l 1分别作点P 关于两直线的两点之间线段最短.M PPM +MN +PN 的最小值为对称点P'和P',连P'P',P ll l 、上2.M,P'''的长.N与两直线交点即为线段P分别求点在直线l212NM 、N,使△PMN的周长P''最小.4】作法【问题图形原理l 1l1Q'Q关于直线分别作点Q 、P Q两点之间线段最短.MPl 、l P'Q'和的对称点21P周长的最小四边形PQMN l2',与两直线交点即Q连'P值为线段P'P''的长.l 2、l l 上分别求点在直线.,N为M21N,使四边形N 、M PQMN P'的周长最小.【问题5】“造桥选址”作法图形原理范文A A M m将点A 向下平移MN 的长度两点之间线段最短.n A'M n'B,交单位得A',连A N m AM +MN +BN 的最小值为B于m N 作NM ⊥于点N,过n N,n ,在m 、n 直线m ∥A'B+MN ..M B MN、N,使上分别求点M 的,且AM+ MN+ BN ⊥m 值最小.【问题6】作法图形原理A A'A将点A 向右平移a 个长度单B B l两点之间线段最短.的对',作 A '关于位得A l a N l M,交直线称点A',连A'B AM +MN +BN 的最小值为MN l MM(上求两点、N在直线l 点向左平,将于点NNA'B+ MN.A''MN a 移 a 个单位得M.在左),使,并使的值最小.AM + MN+ NB 】【问题7作法图形原理l l1 1 P'P P l点到直线,垂线段最短.',的对称点作点P 关于P 1A ll 于B⊥,交作P'B22PA+ AB 的最小值为线段P'l 2于A.l B的长.2l l 上求A上求点在,在21B,使PA+ AB 值最小.点B图形原理】【问题8作法l 1B'NAl 1l的对称点关于 A 作点2l2两点之间线段最短.MB l 的对称A ',作点 B 关于N1A AM +MN +NB 的最小值为lll,于B'交M 为上点B',连A'A 为上一定点,B 212线段A'B'的长.l 2BM l l ,一定点,在上求点交M.N 于21A'l 在使,N 点上求1的值最小.AM + MN+ NB图形原理】【问题9作法A A垂直平分上的点到线段两B端点的距离相等.B的中垂线与AB ,作连AB l l.l 直线的交点即为P PA PB =0.P PA 上求一点l P,使在直线的值最小.PB【问题10】作法图形原理范文A三角形任意两边之差小于A B作直线AB,与直线l 的交第三边.PA PB ≤AB.l Bl .点即为P P,使l 上求一点P在直线PA PB 的最大值=AB.PA PB 的值最大.【问题11】作法图形原理A三角形任意两边之差小于A作B 关于l 的对称点B'l B'第三边.PA PB ≤AB'.l交点即l 作直线 A B',与B P为P.B PA PB 最大值=AB'.,使l 上求一点P在直线PA PB 的值最大.【问题12】“费马点”作法图形原理A所求点为“费马点”,即满D APB=∠BPC=∠足∠A两点之间线段最短.E AC°.以AB、APC=120 C B、ABD 为边向外作等边△PA+ PB+ PC 最小值=CD .P△ABC 中每一内角都小于△ACE,连CD 、BE 相交CB于P ,点P 即为所求.,ABC 内求一点P120°,在△值最小.PA+PB+PC 使【精品练习】1 的面积为.如图所示,正方形ABCD12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD +PE 的和最小,则这个最小值为()AD62 62 3B..C.3D A.PEBC2.如图,在边长为2 的菱形ABCD 中,∠ABC =60 °,若将△ACD 绕点 A 旋转,当AC ′、AD ′分别与BC 、CD)交于点E、F ,则△CEF 的周长的最小值为(A.2B.2 3C.23D.4范文3.四边形ABCD 中,∠B=∠D =90°,∠C=70 °,在BC 、CD 上分别找一点M、N,使△AMN 的周长最小时,∠AMN + ∠ANM 的度数为()AD°110°D.140CA.120°B.130°.N BM4.如图,在锐角△ABC 中,AB =42 ,∠BAC=45 °,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和ABC 的最小值是上的动点,则BM +MN .D MAN B5.如图,Rt△ABC 中,∠C=90 °,∠B=30 °,AB=6,点E 在AB 边上,点D 在BC 边上重合),、C (不与点B.的取值范围是且ED =AE,则线段AEA ECD B6.如图,∠AOB=30°,点M、N 分别在边OA、OB 上,且OM =1,ON=3,点P、Q 分别在边OB、OA 上,则MP +PQ+QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,222BC AC AB°,则有=90 C即Rt△ABC 中,∠)7.如图,三角形△ABC中,∠OAB=∠AOB=15°,点B 在x轴的正半轴,坐标为B( 63 ,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______.范文y轴上,D 在在x 轴上,则四边形4)、B (4,2).C 8.已知A(2,ABCD 的周长最小值为,两点的坐标分别为D 此时C、.yABOx.已知9).,2 1,1)、B(4A(y点的坐标;轴上一动点,求PA+PB 的最小值和此时P (1)P 为xBAOx点的坐标;P 的值最大时x 轴上一动点,求PA PB )(2 P 为y BAOx(3)CD 为x 轴上一条动线段, D 在 C 点右边且CD =1,求当AC+ CD+ DB 的最小值和此时C 点的坐标;yBAOxC D10 .点C 为∠AOB 内一点.(1)在OA 求作点 D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB =30°,OC=10,求△CDE 周长的最小值和此时∠DCE 的度数.ACB O范文11.(1)如图①,△ABD 和△ACE 均为等边三角形,BE、CE 交于F,连AF,求证:AF +BF +CF =CD ;(2)在△ABC 中,∠ABC =30°,AB=6,BC=8,∠ A ,∠C 均小于120°,求作一点P,使PA+PB+PC 的值最小,试求出最小值并说明理由.DA A EC B F图②C B图①处,需经过两座桥处到达 B A '处直角转弯,河宽相等,从12 .荆州护城河在CC',护城河及两桥EE '、DD点路径最短?到都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使B A范文。
初二上最短路径思维训练题
初二上最短路径思维训练题●巩固训练1、M 在正方形ABCD 的边 DC 上,且DM =2,N 是AC 上的一动点,求DN +MN 最小值。
2、如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,求EC +ED 最小值。
3、如图,四边形ABCD 中,M 是BC 的中点,且∠AMD=120O。
求证:AB+BC+CD ≥AD 。
MBC4、荆州护城河在CC '处直角转弯,河宽相等,从A 处到达B 处,需经过两座桥DD '、EE ',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A 到B 点路径最短?5、如图,△ABC 中,∠A=30O,∠ACB=70O,延长CB 至点D ,使CD=CA ,E 、F 分别为AC ,AB 上的动点,且CE=AF ,当DE+CF 的值最小时,求∠DCE 的度数。
6、如图,AD 为等边△ABC 的高,E 、F 分别为AD 、AC 上的动点,且AE=CF ,求当BF+CE 最小时∠A FB 的度数。
7、如图,△ABC 中,AB=AC ,AB ⊥AC ,点P 为边BC 上一动点,AQ ⊥AP ,AQ=AP ,连接PQ ,若BC=2. (1)当P 点从B 至C 运动过程中,线段AQ 的最小值是 。
(2)当P 从B 至C 运动过程中,点 Q 运动的路径长是多少?8、如图,△ABC 中,AB=BC=2,AB ⊥AC ,D 是边AB 上一动点。
(1)如图1,以CD 为直角边构造等腰直角△CDE ,当D 从A 运动到B 时,求点E 运动的路径长。
(2)如图2,以CD 为斜边构造等腰直角△CDE ,当D 从A 运动到B 时,求点E 运动的路径长。
9、如图,边长为2的等边△ABC,点E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60o,得到FC ,连接DF ,则在点E 运动过程中,求DF 的最小值。
最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(学生版) 24-25学年八年级数学上册
专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。
使△PAB的周长最小。
图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。
使四边形PAQB的周长最小。
图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。
图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。
图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【变式】(23-24八年级上·广东广州·期中)如图,在ABC ∆中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC ∆中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7。
八年级上第08讲 最短路径问题 讲义+练习
轴对称:最短路径问题【知识导图】1.两点之间,线段最短。
2.三角形两边之和大于第三边,两边之差小于第三边。
3.线段垂直平分线上的点与这条线段两个端点的距离相等。
求直线异侧的两点到直线上一点距离的和最小的问题讲解内容:只要连接这两点,所得线段与直线的交点即为所求的位置。
讲解内容:只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置。
如图所示,点A ,B 分别是直线l 同侧的两个点,在l 上找一个点C ,使CA +CB 最短【答案】作点B 关于直线l 的对称点B',连接AB'与l 交于点C ,则点C 为所求的点。
【解析】在直线l 上任取不同于C 点的C'点,连接AC’,BC’∵点B 和B'关于直线l 对称∴CB=CB’、C'B=C'B'∴CA+CB=CA+CB'=AB'∵CA+CB’<C'A+C'B'∴AB'=CA+CB<C'A+C'B'一、导入考点1 二、知识讲解考点2 三 、例题精析例题1如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AM+NB最短?(假定河的两岸是平行的直线,桥要与河垂直)【答案】1.将点A沿垂直与河岸的方向平移一个河宽到A',2.连接A'B交河对岸于点N,则点N为建桥的位置,MN为所建的桥。
【解析】由平移的性质,得 AM∥A'N且AM=A'N, MN=M'N',AM'∥A'N',AM'=A'N' 所以A、B两地的距:AM+MN+BN=AA'+A'N+NB=AA'+A'B若桥的位置建在M'N'处,则AB两地的距离为: AM'+M'N'+N'B=A'N'+M'N'+N'B 在△A'N'B中,∵A'N'+N'B>A'B ,M'N'=AA'∴M'N'+A'N'+N'B>AA'+A'B所以桥的位置建在MN处,AB两地的路程最短。
2022-2023学年人教版八年级数学上册《最短路径问题》专题练习(含答案)
最短路径问题专题练习1.如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB值最小的是()A.B.C.D.2.小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A,B提供牛奶,要使点P到A,B的距离之和最短,则下列作法正确的是()A.B.C.D.3.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)()A.(BM垂直于a)B.(AM不平行BN)4.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.9.6B.8C.6D.4.85.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是()A.1B.2C.3D.46.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°8.在△ABC中,AB=6,BC=7,AC==4,直线m是△ABC中BC边的垂直平分线,P是直线m.上的一动点,则△APC的周长的最小值为()A.6B.10C.11D.139.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,BD 平分∠ABC ,如果点M ,N 分别为BD ,BC上的动点,那么CM +MN 的最小值是( )A .4B .4.8C .5D .610.如图,OE 为∠AOB 的角平分线,∠AOB =30°,OB =6,点P ,C 分别为射线OE ,OB 上的动点,则PC +PB的最小值是( )A .3B .4C .5D .611.如图,△ABC 中,AD ⊥BC ,垂足为D ,AD =BC ,点P 为直线BC 上方的一个动点,△PBC 的面积等于△ABC的面积的12,则当PB +PC 最小时,∠PBD 的度数为( )A .30°B .45°C .60°D .90°12.如图,在锐角三角形ABC 中,AB =4,∠BAC =60°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB上的动点,当BM +MN 取得最小值时,AN =( )A .2B .4C .6D .813.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足S△PBC=12S△ABC,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°14.如图,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于点D,AD=12AB,点E为AC边上的中点,点P为BC上一动点,则P A+PE的最小值为.15.如图,点P是∠AOB内任意一点,OP=5cm,点M、N分别是OB、OA边上的点,当△PMN周长的最小值是5cm时,则∠AOB=.16.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cm C.6cm D.2cm17.如图,AB=AC=8,∠BAC=110°,AD是∠BAC内的一条射线,且∠BAD=25°,P为AD上一动点,则|PB ﹣PC|的最大值是.思考题1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ =α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN 最小时,∠MBN的度数为()A.15°B.22.5°C.30°D.47.5°最短路径问题专题练习(答案)1.如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB值最小的是(D)A.B.C.D.2.小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A,B提供牛奶,要使点P到A,B的距离之和最短,则下列作法正确的是(B)A.B.C.D.3.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)(D)A.(BM垂直于a)B.(AM不平行BN)4.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.9.6B.8C.6D.4.8【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,如图所示.∵S△ABC=12BC•AD=12AC•BQ,∴BQ=BC⋅ADAC=12×810=9.6.故选:A.5.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是()A.1B.2C.3D.4【解答】解:作AH⊥OB于H,交OC于P,作PQ⊥OA于Q,∵∠OAB=∠AOB=15°,∴PH=PQ,∴P A+PQ=P A+PH=AH,∴P A+PQ的最小值为AH,在Rt△ABH中,∵OB=AB=6,∠ABH=30°,∴AH=12AB=3,∴P A+PQ的最小值为3,故选:C.6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°【解答】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°【解答】解:作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD 于N,交BC于M,连接AM、AN,∵∠B=∠D=90°,∴AN=NF,AM=EM,∴△AMN的周长=AM+AN+MN=NF+MN+EM=EF,此时△AMN的周长有最小值,∵∠F AN=∠F,∠E=∠EAM,∴∠E+∠F=180°﹣∠BAD,∵∠BAD=130°,∴∠E+∠F=50°,∴∠BAM+∠F AN=50°,∴∠MAN=130°﹣50°=80°,∴∠ANM+∠AMN=180°﹣∠MAN=100°,故选:C.8.在△ABC中,AB=6,BC=7,AC==4,直线m是△ABC中BC边的垂直平分线,P是直线m.上的一动点,则△APC的周长的最小值为()A.6B.10C.11D.13【解答】解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故选:B.9.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是()A.4B.4.8C.5D.6【解答】解:如图所示:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于点N,∵BD平分∠ABC,∴ME=MN,∴CM+MN=CM+ME=CE.∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,CE⊥AB,∴S△ABC=12•AB•CE=12•AC•BC,∴10CE=6×8,∴CE=4.8.即CM+MN的最小值是4.8,10.如图,OE 为∠AOB 的角平分线,∠AOB =30°,OB =6,点P ,C 分别为射线OE ,OB 上的动点,则PC +PB 的最小值是( )A .3B .4C .5D .6【解答】解:过点B 作BD ⊥OA 交于D 点,交OE 于点P ,过点P 作PC ⊥OB 交于C 点, ∵OE 为∠AOB 的角平分线,∴DP =CP ,∴PB +PC =PD +PB =BD ,此时PC +PB 的值最小,∵∠AOB =30°,OB =6,∴BD =3,故选:A .11.如图,△ABC 中,AD ⊥BC ,垂足为D ,AD =BC ,点P 为直线BC 上方的一个动点,△PBC 的面积等于△ABC 的面积的12,则当PB +PC 最小时,∠PBD 的度数为( )A .30°B .45°C .60°D .90° 【解答】解:∵△PBC 的面积等于△ABC 的面积的12,∴P 在与BC 平行,且到BC 的距离为12AD 的直线l 上,作点B关于直线l的对称点B',连接B'C交l于P,如图所示:则BB'⊥l,PB=PB',此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB'=2PM=AD,∵AD⊥BC,AD=BC,∴BB'=BC,BB'⊥BC,∴△BB'C是等腰直角三角形,∴∠B'=45°,∵PB=PB',∴∠PBB'=∠B'=45°,∴∠PBC=90°﹣45°=45°;故选:B.12.如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2B.4C.6D.8【解答】解:作B点关于AD的对称点E,过E点作EN⊥AB交AB于点N,交AD于CM于点M,连结BM,∵∠BAC=60°,AD平分∠BAC,∴E点在AC上,∵BM+MN=EM+MN=EN,此时BM+MN的值最小,由对称性可知,AE=AB,∵AB=4,在Rt △ABE 中,∠EAN =60°,∴∠AEN =30°,∴AN =2,故选:A .13.如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90° 【解答】解:∵S △PBC =12S △ABC ,∴P 在与BC 平行,且到BC 的距离为12AD 的直线l 上, ∴l ∥BC ,作点B 关于直线l 的对称点B ',连接B 'C 交l 于P ,如图所示:则BB '⊥l ,PB =PB ',此时点P 到B 、C 两点距离之和最小,作PM ⊥BC 于M ,则BB '=2PM =AD ,∵AD ⊥BC ,AD =BC ,∴BB '=BC ,BB '⊥BC ,∴△BB 'C 是等腰直角三角形,∴∠B '=45°,∵PB =PB ',∴∠PBB '=∠B '=45°,∴∠PBC =90°﹣45°=45°;14.如图,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于点D,AD=12AB,点E为AC边上的中点,点P为BC上一动点,则P A+PE的最小值为4.【解答】解:∵AB=AC,BC=8,AD⊥BC,∴BD=CD=4,延长AD至A',使AD=A'D,连接A'E,交BC于P,此时P A+PE的值最小,就是A'E的长,∵AD=12AB,AA′=2AD,∴AA'=AB=AC,∵AD=A'D,AD⊥CD,∴AC=A'C,∴△AA'C是等边三角形,∵E是AC的中点,∴A'E⊥AC,∴A'E=CD=4,即P A+PE的最小值是4,故答案为:4.15.如图,点P是∠AOB内任意一点,OP=5cm,点M、N分别是OB、OA边上的点,当△PMN周长的最小值是5cm时,则∠AOB=30°.【解答】解:分别作点P关于OA、OB的对称点D、C,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA,∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD=5,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故答案为30°.16.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cm C.6cm D.2cm【解答】解:∵MN垂直平分AC,∴MA=MC,又∵C△BMC=BM+MC+BC=20cm,BM+MA=AB=12cm,∴BC=20﹣12=8(cm),在MN上取点P,∵MN垂直平分AC连接P A、PB、PC∴P A=PC∴P A﹣PB=PC﹣PB在△PBC中PC﹣PB<BC当P、B、C共线时,即P运动到与P'重合时,(PC﹣PB)有最大值,此时PC﹣PB=BC=8cm.故选:B.17.如图,AB=AC=8,∠BAC=110°,AD是∠BAC内的一条射线,且∠BAD=25°,P 为AD上一动点,则|PB﹣PC|的最大值是8.【解答】解:如图.作点B关于射线AD的对称点B',连接AB'、CB'.则AB=AB',PB'=PB,∠B'AD=∠BAD=25°,∠B'AC=∠BAC﹣∠BAB'=110°﹣25°﹣25°=60°.∵AB=AC=8,∴AB'=AC=8,∴△AB'C是等边三角形,∴B'C=8,在△PB'C中,|PB'﹣PC|≤B'C,当P、B'、C在同一直线上时,|PB'﹣PC|取最大值B'C,即为8.∴|PB﹣PC|的最大值是8.故答案为:8.思考题1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=12(180°﹣α)=∠AOB+∠MQP=20°+12(180°﹣β),∴180°﹣α=40°+(180°﹣β),∴β﹣α=40°,故选:C.2.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为()A.15°B.22.5°C.30°D.47.5°【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故选:C.。
八年级数学上册最短路径问题专题复习练习 含解析
9.如图,在 中, , , 的面积为12, 于点D,直线EF垂直平分BC交AB于点E,交BC于点F,P是线段EF上的一个动点,则 的周长的最小值是()
A.6B.7C.10D.12
10.如图, 分别是线段 的垂直平分线, ,一只小蚂蚁从点M出发爬到 边上任意一点E,再爬到 边上任意一点F,然后爬回M点,则小蚂蚁爬行的最短路径为()
A. B. C. D.
二、填空题
11.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=8,AD是∠BAC的平分线,若点P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.
12.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_______.
∵∠D+∠G+∠EPF=180°,
∴∠D+∠G=50°,
由对称可知:∠G=∠GPN,∠D=∠DPM,L
∴∠GPN+∠DPM=50°,
∴∠MPN=130°-50°=80°,
故答案为:80°.
17.(1)如图,△A1B1C1即为所求.
(2) =2×2- ×1×2×2- ×1×1= .
(3)如图,连接C1A(或A1C)与直线a交于点P,则点P即为所求.
连接 , 、 、 , 交 、 于点 、 ,
则 , ,
此时 周长的最小值等于 的长.
由轴对称性质可得, ,
,
,
,
,
由轴对称性质可得 ,
.
19.
解:(1)由已知可得AD=t,EC=t,
2024学年初中数学几何(最短路径问题)模型专项练习(附答案)
12024学年初中数学几何(最短路径问题)模型专项练习1.如图,长方体的高为9cm,底边是边长为6cm的正方形,一只美丽的蝴蝶从顶点A开始,爬向顶点B,那么它爬行的最短路程为( )A.10cm B.12cm C.15cm D.20cm2.如图,有一长方体容器,AB=3,BC=2,AA'=4,一只蚂蚁沿长方体的表面,从点C 爬到点A'的最短爬行距离是( )A . B. C.7 D .3.如图所示是一个长方体纸盒,纸盒的长为12cm,宽为9cm,高为5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点G,蚂蚁爬行的最短路程是 cm.4.有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的棱的中点B处,则需要爬行的最短路径长为( )A.cm B.cm C.cm D.cm5.如图,长方体的长EF为3cm,宽AE为2cm,高CE为4cm,B是GF的中点,一只蚂蚁如果要沿着长方体的表面从点D爬到点B,那么它需要爬行的最短距离是( )A.5cm B.cm C.(2+3)cm D.(2+)cm6.如图,桌面上的长方体长为8,宽为6,高为4,B为CD的中点.一只蚂蚁从A点出发沿长方体的表面到达B点,则它运动的最短路程为( )A. B. C.10 D.7.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为( )A.20cm B.2cm C.(12+2)cm D.18cm8.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S,则移动的最短距离为( )A.10 B.12 C.14 D.2039.如图,有一圆柱形油罐,要以A 点环绕油罐建梯子,正好到A 点的正上方B 点,则梯子最短需 m (油罐底面圆的周长为15m ,高AB =8m ).10.如图,台阶阶梯每一层高20cm ,宽30cm ,长50cm ,一只蚂蚁从A 点爬到B 点,最短路程是( )A .10B .50C .120D .13011.如图是一个三级台阶,它的每一级的长、宽、高分别等于55dm 、10dm 和6dm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁从A 点出发沿着台阶爬到B 点的最短距离是 dm .12.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm ,25cm 和15cm 的长方体,A 和B 是这个台阶的两个相对的端点.在A 点处有一只蚂蚁,想到B 点去吃可口的食物,请你算一算,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短路程是多少?1参考答案1.如图,长方体的高为9cm,底边是边长为6cm的正方形,一只美丽的蝴蝶从顶点A开始,爬向顶点B,那么它爬行的最短路程为( )A.10cm B.12cm C.15cm D.20cm【过程解答】解:如图,(1)AB===3;(2)AB ==15,由于15<3;则蚂蚁爬行的最短路程为15cm.故选:C.2.如图,有一长方体容器,AB=3,BC=2,AA'=4,一只蚂蚁沿长方体的表面,从点C 爬到点A'的最短爬行距离是( )A . B. C.7 D .【过程解答】解:如图1,A′C ===,如图2,A′C===,如图3,A′C===3,∵<3<,∴从点C爬到点A'的最短爬行距离是.故选:B.3.如图所示是一个长方体纸盒,纸盒的长为12cm,宽为9cm,高为5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点G,蚂蚁爬行的最短路程是 2cm.【过程解答】解:①如图1,展开后连接AG,则AG就是在表面上A到G的最短距离,3∵∠ACG=90°,AC=12+9=21,CG=5,在Rt△ACG中,由勾股定理得:AG ==(cm);②如图2,展开后连接AG,则AG就是在表面上A到G的最短距离,∵∠ABG=90°,AB=12,BG=9+5=14,在Rt△ACBG中,由勾股定理得:AG ===2(cm);③如图3,展开后连接AG,则AG就是在表面上A到G的最短距离,∵∠AFG=90°,AF=5+12=17,FG=9,在Rt△AFG中,由勾股定理得:AG ==(cm).∴蚂蚁爬行的最短路程是2cm,故答案为:2.4.有一长、宽、高分别是5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的棱的中点B处,则需要爬行的最短路径长为( )A .cm B.cm C.cm D.cm【过程解答】解:如图,AB==,∴需要爬行的最短路径长为,故选:A.5.如图,长方体的长EF为3cm,宽AE为2cm,高CE为4cm,B是GF的中点,一只蚂蚁如果要沿着长方体的表面从点D爬到点B,那么它需要爬行的最短距离是( )A.5cm B.cm C.(2+3)cm D.(2+)cm 【过程解答】解:将长方体展开,连接DB,根据题意可得,HB=2+2=4,DH=3,由勾股定理得:DB===5,则它需要爬行的最短距离是5cm;故选:A.6.如图,桌面上的长方体长为8,宽为6,高为4,B为CD的中点.一只蚂蚁从A点出发沿长方体的表面到达B点,则它运动的最短路程为( )A. B. C.10 D.【过程解答】解:如图1所示,则AB==2;5如图2所示,AB ==10,故它运动的最短路程为10,故选:C.7.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M 在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为( )A.20cm B.2cm C.(12+2)cm D.18cm【过程解答】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN ==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN ===2.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故选:A.8.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC 的中点S,则移动的最短距离为( )A.10 B.12 C.14 D.20【过程解答】解:如图所示,在圆柱的截面ABCD中AB=16,BC=12,∴AB=×16=8,BS=BC=6,∴AS==10.故选:A.9.如图,有一圆柱形油罐,要以A点环绕油罐建梯子,正好到A点的正上方B点,则梯子最短需 17m(油罐底面圆的周长为15m,高AB=8m).7【过程解答】解:将圆柱体的侧面展开,如图所示:则AC =底面周长=15m ,BC =8m , 在Rt △ABC 中,AB==17(m ),故答案为:17.如图,台阶阶梯每一层高20cm ,宽30cm ,长50cm ,一只蚂蚁从A 点爬到B 点,最短路程是( )A .10B .50C .120D .130【过程解答】解:如图所示,∵它的每一级的长宽高为20cm ,宽30cm ,长50cm , ∴AB ==50(cm ).答:蚂蚁沿着台阶面爬行到点B 的最短路程是50cm ,故选:B .11.如图是一个三级台阶,它的每一级的长、宽、高分别等于55dm 、10dm 和6dm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物,则这只蚂蚁从A 点出发沿着台阶爬到B 点的最短距离是 73 dm .【过程解答】解:展开后由题意得:∠C=90°,AC=3×10+3×6=48,BC=55,由勾股定理得:AB===73dm,故答案为:73.12.如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?【过程解答】解:展开后由题意得:∠C=90°,AC=3×25+3×15=120,BC=90, 由勾股定理得:AB===150cm,答:最短路程是150cm.。
八年级数学上册最短路径问题(将军饮马)专项训练(含解析)
最短路径问题(将军饮马)专项训练一、单选题1.如图,在ABC 中,AB AC =,10BC =,60ABC S =△,D 是BC 中点,EF 垂直平分AB ,交AB 于点E ,交AC 于点F ,在EF 上确定一点P ,使PB PD +最小,则这个最小值为( )A .10B .11C .12D .132.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定3.如图,在等边△ABC 中,AB =2,N 为AB 上一点,且AN =1,AD =3,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,连接BM 、MN ,则BM+MN 的最小值是( )A .3B .2C .1D .34.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=12,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则BQ+QP 的最小值是( )A.4 B.5 C.6 D.75.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°6.图1为某四边形ABCD纸片,其中∠B=70°,∠C=80°.若将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,如图2所示,则∠MNB的度数为()度.A.90 B.95 C.100 D.1057.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()A.15 B.17 C.18 D.208.平面直角坐标系xOy中,已知A(-1,0),B(3,0),C(0,-1)三点,D(1,m)是一个动点,当△ACD 的周长最小时,则△ABD的面积为()A.13B.23C.43D.839.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A .15°B .22.5°C .30°D .45°10.如图,在△ABC 中,∠C =90°,∠BAC =30°,AB =8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ +BQ 的最小值是A .4B .5C .6D .711.如图,锐角三角形ABC 中,∠C =45°,N 为BC 上一点,NC =5,BN =2,M 为边AC 上的一个动点,则BM +MN 的最小值是( )A .29B .21C .74D .4512.如图是一块长,宽,高分别是6cm ,4cm 和3cm 的长方体纸盒子,一只老鼠要从长方体纸盒子的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .(3213cm +B 85cmC 97cmD 109cm13.如图,ABC ∆是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( )A .1B .2C .3D .2314.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .3B .4C .5D .615.如图,A 、B 是两个居民小区,快递公司准备在公路l 上选取点P 处建一个服务中心,使P A +PB 最短.下面四种选址方案符合要求的是( )A .B .C .D .16.已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点A 1处,CA 1与AB 交于点N ,且AN=AC ,则∠A 的度数是( )A .30°B .36°C .50°D .60°17.如图,在ABC 中,90BCA ∠=︒,3BC =,4CA =,AD 平分BAC ∠,点M N 、分别为AD AC 、上的动点,则CM MN +的最小值是( )A .1.2B .2C .2.4D .518.在平面直角坐标系中,点A 、B 的坐标分别为( 2,0 ),(4,0),点C 的坐标为(m ,3 m )(m 为非负数),则CA +CB 的最小值是( )A .6B .37C .27D .5二、填空题 19.如图,在等边ABC ∆中,D 是BC 的中点,E 是AB 的中点,H 是AD 上任意一点.如果10AB AC BC ===,53AD =,那么HE HB +的最小值是 .20.如图,在ABC 中,10AB AC cm ==,8BC cm =,AB 的垂直平分线交AB 于点M ,交AC 于点N ,在直线MN 上存在一点P ,使P 、B 、C 三点构成的PBC 的周长最小,则PBC 的周长最小值为______.21.如图,等腰三角形ABC 的底边BC 长为6,面积是36,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值____.22.如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.23.等边三角形ABC中,∠BPC=150°,BP=3,PC=4,M、N分别为AB,AC上两点,且AM=AN,则PM+PN的最小值为__.24.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB边上一动点,N是AC边上的一动点,则MN+MC的最小值为_____.25.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为____.26.如图所示,在边长为2的等边三角形ABC中,G为BC的中点,D为AG的中点,过点D作EF∥BC 交AB于E,交AC于F,P是线段EF上一个动点,连接BP,GP,则△BPG的周长的最小值是________.27.已知∠AOB=30°,点P、Q分别是边OA、OB上的定点,OP=3,OQ=4,点M、N是分别是边OA、OB上的动点,则折线P-N -M -Q长度的最小值是___________.28.如图,在等边三角形ABC中,BC边上的中线4AD=,E是AD上的一个动点,F是边AB上的一个动点,在点E、F运动的过程中,EB EF+的最小值是______.29.如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR 周长最小,则最小周长是_____30.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=4.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.31.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC 的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.32.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(6,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为_____.33.某市为解决农村燃气困难,在P处建立了一个燃气站,从P站分别向A、B、C村铺设燃气管道。
人教版八年级数学13.4最短路径问题(包含答案)
人教版八年级数学13.4最短路径问题(包含答案)13.4最短路径问题知识要点:1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.一、单选题1.A,B,C三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在()A.在A的左侧B.在AB之间C.在BC之间D.B处【答案】D2.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P 的位置应在()A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上【答案】A3.如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.【答案】D4.已知:如图,在Rt△ABC中,△ACB=90°,△A<△B,CM是斜边AB上的中线,将△ACM 沿直线CM折叠,点A落在点A1处,CA1与AB交于点N,且AN=AC,则△A的度数是()A.30° B.36° C.50° D.60°【答案】A5.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q 分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.4 C.4.8D.5【答案】C6.如图所示,△ABC中,AB=AC,△EBD=20°,AD=DE=EB,则△C的度数为()A.70°B.60°C.80°D.65°【答案】A7.如图所示,在Rt△ABC中,△ACB=90°,△B=15°,AB边的垂直平分线交AB于点E,交BC于点D,且BD=13 cm,则AC的长是()A.13 cm B.6.5 cmC.30 cm D.cm【答案】B8.如图所示,从点A到点F的最短路线是()A.A→D→E→F B.A→C→E→FC.A→B→E→F D.无法确定【答案】C9.如图,在Rt△ABC中,△ACB=90°,AC=6,BC=8,AD是△BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.125B.4 C.245D.510.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)【答案】D11.如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短..的是()二、填空题12在平面直角坐标系中,已知点A(0,2)、B(4,1),点P 在轴上,则PA+PB的最小值是______________。
人教版八年级下册数学专题复习及练习(含解析):最短路径问题
专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【例题2】如图,小河边有两个村庄出B.要在河边建一自来水厂向川村与万村供水.(1)若要使厂部到心万村的距离相等,则应选择在哪建厂?(2)若要使厂部到川,万两村的水管最短,应建在什么地方?【例题3】如图,从川地到万地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A地到万地的路程最短?【例题4】如图所示,A, 3两点在直线2的两侧,在/上找一点G使点C到点月、万的距离之差最大.如JII练题1 •直线』左侧有两点只Q,试在直线上确左一点Q使得防%最短.2•如图,△月氏与△处关于某条直线对称,请画岀对称轴.A DC F3•如图,A.万为重庆市内两个较大的商圈,现需要在主要交通干道』上修建一个轻轨站只问如何修建,4•如图,四边形ABCD 中,ZBAD=120° , ZB=ZD=90°,在BC、CD ±分别找一点M、N,使Z\AMN 周长最小时,则ZAMN+ZANM的度数为()C. 110°D. 100°5•如图,两条公路0A. 0B相交,在两条公路的中间有一个汕库,设为点P,如在两条公路上各设置一个加油站,,请你设计一个方案,把两个加油站设在何处,可使运汕车从油库出发,经过一个加油站,再到另一个加汕站,最后回到汕库所走的路程最短.专题13.4最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求. 如图所示,点川,万分别是直线2异侧的两个点,在2上找一个点G使CA^CB最短,这时点Q是直线』与初的交点.⑵求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条宜线的对称点, 连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点月,万分别是直线2同侧的两个点,在』上找一个点G使CA+CB最短,这时先作点〃关为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C',连接EG、BC「、证明M -\-CB<AC f +C* 3 如下:证明:由作图可知,点万和万‘关于直线/对称,所以直线/是线段宓’的垂直平分线.因为点Q与C'在直线上,所以BC=B' G BC =B f r C f・在G 中,AB' <AC r +B f C ,所以AC+B' C<AC r +B f C ,所以AC+BC<AC f+C‘ B.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点「到直线上某点的距离和最小越个核心,所有作法都相同.利用轴对称解决最值问题应注意题目要球根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,「审题不淸导致答非所问.3.利用平移确左最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸「的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜而反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.Cy __-7 B5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.对点例题解析【例题1】在图中直线/上找到一点M使它到儿万两点的距离和最小.A【答案】见解析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学最短路径问题
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题 - 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.
【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
在直线l 上求一点P ,使PB PA -的值最大.
作直线AB ,与直线l 的交
点即为P .
三角形任意两边之差小于
第三边.PB PA -≤AB .
PB PA -的最大值=AB .
【问题11】 作法
图形 原理
在直线l 上求一点P ,使PB PA -的值最大.
作B 关于l 的对称点B '作直线A B ',与l 交点即
为P .
三角形任意两边之差小于
第三边.PB PA -≤AB '. PB PA -最大值=AB '.
【问题12】“费马点” 作法
图形 原理
△ABC 中每一内角都小于120°,在△ABC 内求一点P ,使P A +PB +PC 值最小.
所求点为“费马点”,即满足∠APB =∠BPC =∠
APC =120°.以AB 、AC 为边向外作等边△ABD 、△ACE ,连CD 、BE 相交于P ,点P 即为所求.
两点之间线段最短. P A +PB +PC 最小值=CD .
【精品练习】
1.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有
一点P ,使PD +PE 的和最小,则这个最小值为( )
A .3
B .26
C .3
D 6
2.如图,在边长为2的菱形ABCD 中,∠ABC =60°,若将△ACD 绕点A 旋转,当AC ′、AD ′分别与BC 、CD 交于点E 、F ,则△CEF 的周长的最小值为( ) A .2
B .32
C .32+
D .4
l
B
A
l
P
A
B
l A
B
l
B
P
A
B'
A
B
C
P
E
D
C
B
A
A
D
E
P
B C
3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为( )
A .120°
B .130°
C .110°
D .140°
4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .
5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合), 且ED =AE ,则线段AE 的取值范围是 .
6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)
7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).
OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______. D
E
A
B
C
D M
A
B
M
N
8.已知A (2,4)、B (4,
2).C 在y 轴上,D 在x 轴上,则四边形ABCD 的周长最小值为 ,
此时 C 、D 两点的坐标分别为 .
9.已知A (1,1)、B (4,2).
(1)P 为x 轴上一动点,求PA +PB 的最小值和此时P 点的坐标;
(2)P 为x 轴上一动点,求PB PA 的值最大时P 点的坐标;
(3)CD 为x 轴上一条动线段,D 在C 点右边且CD =1,求当AC +CD +DB 的最小值和此时C 点的坐标;
10.点C 为∠AOB 内一点.
(1)在OA 求作点D ,OB 上求作点E ,使△CDE 的周长最小,请画出图形;
(2)在(1)的条件下,若∠AOB =30°,OC =10,求△CDE 周长的最小值和此时∠DCE 的度数.
图①
12.荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A到B点路径最短?。