高三文科数学数列专题复习PPT课件

合集下载

高三数学一轮复习课件数列.ppt

高三数学一轮复习课件数列.ppt
[解] (1)由 S2=43a2 得 3(a1+a2)=4a2, 解得 a2=3a1=3. 由 S3=53a3 得 3(a1+a2+a3)=5a3,
解得 a3=32(a1+a2)=6.
(2)由题设知 a1=1. 当 n>1 时,有 an=Sn-Sn-1=n+3 2an-n+3 1an-1, 整理得 an=nn+-11an-1. 于是 a2=31a1,a3=42a2,…,an-1=n-n 2an-2,an=nn+ -11an-1. 将以上 n-1 个等式中等号两端分别相乘,整理得 an=nn2+1. 综上可知,{an}的通项公式 an=nn2+1.
当n=1时,4×1+1=5=a1,故an=4n+1. (2)当n=1时,a1=S1=3+1=4,
当n≥2时,
an=Sn-Sn-1=(3n+1)-(3n-1+1)=2×3n-1. 当n=1时,2×31-1=2≠a1,
故an=42,×3n-1,
n=1, n≥2.
已知数列{an}的前n项和Sn,求数列的通项公式, 其求解过程分为三步:
[例 1] (2013·天津南开中学月考)下列公式可作为
数列{an}:1,2,1,2,1,2,…的通项公式的是
()
A.an=1
B.an=-12n+1
C.an=2-sinn2π
D.an=-1n2-1+3
[自主解答]
由an=2-

sin
2
可得a1=1,
a2=2,
a3=1,a4=2,….
[答案] C
教师备选题(给有能力的学生加餐)
1.下列说法中,正确的是
()
A.数列1,3,5,7可表示为{1,3,5,7}
B.数列1,0,-1,-2与数列-2,-1,0,1是相同的

2020高考文科数学(人教A版)总复习课件:第六章 数列6.4

2020高考文科数学(人教A版)总复习课件:第六章 数列6.4

考点1
第六章
考点2
考点3
6.4 数列求和
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
-13-
对点训练2(2018河北保定一模,17)已知数列{an}满足:2an=an+1+an-1 (n≥2,n∈N*),且a1=1,a2=2.
(1)求数列{an}的通项公式; (2)若数列{bn}满足2anbn+1=an+1bn(n≥1,n∈N*),且b1=1.求数列{bn} 的通项公式,并求其前n项和Tn.
数列,a1=1,b1=2,a2+b2=7,a3+b3=13.
(1)求{an}和{bn}的通项公式;
(2)若 cn=
������������ ������������
,,������������为为偶奇数数,,求数列{cn}的前
2n
项和
S2n.
解 (1)设数列{an}的公差为 d,数列{bn}的公比为 q,
6.4 数列求和
第六章
知识梳理 考点自诊
6.4 数列求和
必必备备知知识识··预预案案自自诊诊
关键能力·学案突破
-2-
1.基本数列求和方法
(1)等差数列求和公式:Sn=������(������12+������������)=na1+������(���2���-1)d.
������������1,������ = 1,
(1)12+22+32+…+n2=������(������+1)6(2������+1);
(2)13+23+33+…+n3=
������(������+1) 2

高考总复习数学人教A版文科第6单元 数列 第三节等比数列 课件

高考总复习数学人教A版文科第6单元 数列 第三节等比数列 课件

得a4=2,a14=3,或a4=3,a14=2,∴

a18 a14 3 a8 a4 2
a18 a14 2 , a8 a4 3
,故选C.
4. 在等比数列{an}中,前n项和为Sn,若S3=7, S6=63,则公比q的值是( ) A. 2 B. -2 C. 3 D. -3 解析:方法一:由题意知q≠1,且S3=7,S6=63, ∴
a1 (1 q 3 ) 7, 1 q 6 a1 (1 q ) 63. 1 q
②÷①得
1 q3 9, 6 1 q
即1+q3=9,解得q=2. 方法二:S3=a1+a2+a3=7, S6-S3=a4+a5+a6=(a1+a2+a3)q3=56, ∴q3=8,q=2.
【例1】(2010· 浙江)设Sn为等比数列{an}的前n项
和,8a2+a5=0,则 =( A. -11 B. -8
S5 S2
) C. 5
D. 11
分析:设出基本量a1,q,解方程.
解:设公比为q, ∵8a2+a5=0,∴8a2+a2q3=0,∴q=-2, ∴
a1 (1 q 5 ) S5 1 q S 2 a1 (1 q 2 ) 1 q
题型三
等比数列的性质
【例3】(1)(2010· 全国)已知各项均为正数的等比数列 {an},a1a2a3=5,a7a8a9=10,则a4a5a6=( ) A. 5 2 B. 7 C. 6 D. 4 2 (2)在等比数列{an}中,S4=1,S8=3,则a17+a18+a19+a20=( ) A. 14 B. 16 C. 18 D. 20 分析:(1)利用等比数列的性质求解;(2)运用等比中 项求解. 解:(1)由等比数列的性质知a1a2a3=(a1a3)· a2=a32=5, a7a8a9=(a7a9)· a8=a38=10, 1 所以a2a8= 50 3 , 1 3 3 所以a4a5a6=(a4a6)· a5=a 5=( a2a8 ) =( 506 )3=5 2 ,故选A. (2)因为S4,S8-S4,S12-S8,S16-S12,S20-S16成等比数列, 而S4=1,S8-S4=2,所以a17+a18+a19+a20=S4×24=1×24=16, 故选B.

2020版高考文科数学第一轮复习课件:第六章 数列6-1

2020版高考文科数学第一轮复习课件:第六章 数列6-1

4.已知数列,1, 3, 5, 7,…, 2n-1,…,则 3 5是 它的( )
A.第 22 项 B.第 23 项 C.第 24 项 D.第 28 项
[解析] 由 3 5= 45= 2×23-1,可知 3 5是该数列的第 23 项.故选 B.
[答案] B
5.已知数列{an}的前 n 项和 Sn=3+2n,则 an=________.
[答案] A
2 . (2018·山 东 济 宁 期 中 ) 已 知 数 列 {an} 满 足 an =
an-2,n<4, 6-an-a,n≥4,
若对任意的 n∈N*都有 an<an+1 成立,则实
数 a 的取值范围为( )
A.(1,4) B.(2,5)
C.(1,6) D.(4,6)
[解析] 因为对任意的 n∈N*都有 an<an+1 成立,所以数列是
[拓展探究] (1)若把本例(1)中“Sn=3n2-2n”改为“Sn= 3n2-2n+1”,其他条件不变,数列{an}的通项公式是________.
(2) 本 例 (2) 中 条 件 改 为 a1 = - 1 , an +1 = SnSn + 1 , 则 Sn = __________.
[解析] (1)当 n=1 时,a1=S1=3×12-2×1+1=2; 当 n≥2 时,an=Sn-Sn-1=(3n2-2n+1)-[3(n-1)2-2(n-1) +1]=a,>0, a<6-a×4-a,
解得 1<a<4.故选 A.
[答案] A
[辨识巧记] 1.一个重要关系 数列是一种特殊的函数,在研究数列问题时,既要注意函数 方法的普遍性,又要考虑数列方法的特殊性. 2.两个特殊问题 (1)对于数列与周期性有关的题目,关键是找出数列的周期. (2)求数列最大项的方法: ①利用数列{an}的单调性; ②解不等式组aakk≥≥aakk-+11,,

《高三数学数列复习》课件

《高三数学数列复习》课件
详细描述
数列的周期性是指数列中某一段数字按照一定的规律重复出现。对称性是指数列中对应位置的数字相等或互为相 反数。奇偶性是指数列中所有项的奇数位置和偶数位置的数字分别具有相同的奇偶性。此外,还有单调性、有界 性等性质。
2023
PART 02
等差数列
REPORTING
等差数列的定义
总结词
理解等差数列的基本概念
数列在物理学中用于描述周期性现象 和波动,如简谐振动的周期和波动方 程的解。
数列在计算机科学中用于数据压缩和 加密算法,如哈希函数和RSA算法。
生物学
数列在生物学中用于研究生物种群的 增长和变化规律,如指数增长和逻辑 增长模型。
2023
PART 05
数列的复习题及解析
REPORTING
基础题
总结词
2023
PART 03
等比数列
REPORTING
等比数列的定义
总结词
等比数列是一种特殊的数列,其中任意两个 相邻项的比值都相等。
详细描述
等比数列是一种有序的数字序列,其中任意 两个相邻项的比值都相等。这个比值被称为 等比数列的公比,通常用字母q表示。在等 比数列中,第一项是首项,记作a1,公比q
等比数列的求和公式是用来计算等比数列中所有项的 和的数学表达式。
详细描述
等比数列的求和公式有两种形式,一种是当公比q≠1 时,等比数列的和S=a1*(1-q^n)/(1-q),其中a1是首 项,q是公比,n是项数;另一种是当公比q=1时,等 比数列的和S=n*a1,其中a1是首项,n是项数。这个 公式可以用来计算等比数列中所有项的和。
2023
PART 04
数列的应用
REPORTING

2024届高考数学一轮总复习第四章数列第二讲等差数列及其前n项和课件

2024届高考数学一轮总复习第四章数列第二讲等差数列及其前n项和课件
把n换成n+1,2Sn+1+(n+1)2=2(n+1)an+1+n+1,② ②-①可得2an+1=2(n+1)an+1-2nan-2n, 整理得an+1=an+1, 由等差数列定义有{an}为等差数列.
(2)解:由已知有 a72=a4·a9,设等差数列{an}的首项为 x,由(1) 知其公差为 1,
证明:由题意可知,数列{ Sn}的首项为 a1,设等差数列{ Sn} 的公差为 d,
则 d= S2- S1= a1+a2- a1= a1, 所以 Sn= S1+( S2- S1)+( S3- S2)+…+( Sn- Sn-1) = a1+(n-1) a1=n a1, 即 Sn=a1·n2,
所以 an=aS1n,-nS= n-11=,(2n-1)a1,n≥2, 当 n=1 时,(2×1-1)a1=a1, 所以 an=(2n-1)a1, 所以 an+1-an=2a1,所以数列{an}是以 a1 为首项,2a1 为公差 的等差数列.
①当
a1>0,d<0
am≥0, 时,满足am+1≤0
的项数 m 使得 Sn 取得最
大值为 Sm(当 am+1=0 时,Sm+1 也为最大值);
a8+a10=80,则 a7-12a8=(
)
A.4
B.6
C.8
D.10
解析:∵a2+a4+a6+a8+a10=5a6=80, ∴a6=16,又 a6+a8=2a7,∴a7=21a6+12a8,即 a7-12a8=
12a6=8,故选 C. 答案:C
【题后反思】等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N*). (2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*), 则ak+al=am+an. (3)若{an}是等差数列,公差为d,则{a2n}也是等差数列, 公差为2d.

高考数学复习第五章数列第3节等比数列及其前n项和课件文新人教A版

高考数学复习第五章数列第3节等比数列及其前n项和课件文新人教A版

A.13
B.-13
C.19 解析
D.-19 由题知 q≠1,则 S3=a111--qq3=a1q+10a1,得 q2=9,
又 a5=a1q4=9,则 a1=19.
3.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方 法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音 程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前
解 由已知得n≥2时,Sn=2Sn-1+n.∴Sn+1-Sn=2Sn-2Sn-1+1,∴an+1=2an +1,∴an+1+1=2(an+1),n≥2,(*)又a1=1,S2=a1+a2=2a1+2,即a2+1=2(a1 +1),∴当n=1时(*)式也成立,故{an+1}是以2为首项,以2为公比的等比数列, ∴an+1=2·2n-1=2n,∴an=2n-1.
解决等比数列有关问题的两种常用思想 (1)方程的思想:等比数列中有五个量 a1,n,q,an,Sn,一般可以“知三求二”, 通过列方程(组)求关键量 a1 和 q,问题可迎刃而解. (2)分类讨论的思想:等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q =1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an}的前 n 项和 Sn=a111--qqn=a11--aqnq.
等比数列常见性质的应用 等比数列性质的应用可以分为三类: (1)通项公式的变形. (2)等比中项的变形. (3)前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可 找出解决问题的突破口.
核心素养系列 (二十八)数学运算——等比数列及其前 n 项和中的核心素养 数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过 程,它是高中生必须具备的最基础又是应用最广的一种核心素养.

第5章《数列》(第1节)ppt 省级一等奖课件

第5章《数列》(第1节)ppt  省级一等奖课件

第五章 数列
5.已知数列{an}的通项公式为 an=pn+qn,且 a2=32,a4=23,则
a8=________.
解析
由已知得24pp++qq24==3232,,解得pq==142,.
则 an=14n+2n,故 a8=94.
答案
9 4
第五章 数列
[关键要点点拨] 1.对数列概念的理解
(2014·安阳模拟)设 Sn 为数列{an}的前 n 项和,若不等 式 a2n+Sn2n2≥ma21对任意等差数列{an}及任意正整数 n 都成立,
则实数 m 的最大值为
()
1
1
A.4
B.5
C.1
D.无法确定
第五章 数列
【思路导析】 将已知不等式用 an 与 a1 表示后分离参数 m 转化为 函数的最值问题求解. 【解析】 因为 Sn=12n(a1+an), 所以原不等式可化为 a2n+41(a1+an)2≥ma21. 若 a1=0,则原不等式恒成立; 若 a1≠0,则有 m≤54aan12+21aan1+41,
第五章 数列
满足条件 项数 有限 项数 无限
an+1 > an an+1 < an an+1=an
其中 n∈N*
第五章 数列
3.数列的通项公式: 如果数列{an}的第n项与 序号n 之间的关系可以用一个式子 来表示,那么这个公式叫做这个数列的通项公式.
第五章 数列
二、数列的递推公式 如果已知数列{an}的首项(或前几项),且 任一项an 与它 的 前一项an-1 (n≥2)(或前几项)间的关系可用一个公式 来表示,那么这个公式叫数列的递推公式.
第五章 数列
2.数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2, 3,…,n})的特殊函数,数列的通项公式也就是相应的 函数解析式,即f(n)=an(n∈N*).

高中数学数列全套教学课件

高中数学数列全套教学课件

三数等差: a d , a, a d 设 元 四数等差: a 3d, a d, a d, a 3d 技巧
首先把握好通项公式和前 n 项和公式,对于
性质主要是理.解.(也就是说自己能推导出来)
例 1.等差数列{an}的前 m 项和为 30,前 2m 项和为 100,
则它的前 3m 项和为( C)
n( n1)
(A) 3 2
n2 n2
(B) 3 2
(C) 3n2 n1 (D)B
第17讲等差数列
1.等差数列的定义 如果一个数列从第二项起,每一项与它的前一项的
差(比即 )等a于n 同 一an个1 常 数d (,d是 这个常数数列,叫且做n等≥差2数) 列.
关系,可以用一个公式来表示,这个公式叫做数列的通项公式. 即 an f (n)(n N * ) .
3.递推公式:数列的第 n 项 an 与它前面相邻一项 an1 (或相邻 n 项)所满足关系式叫递推公式.
作业
练习
练习:
5
1.
已知数列 an 的通项公式 an
(1)n
n
n
1
,则
a5
=_____6_.
即 an
Sn S1
Sn1
(n ≥2,n N*) (a 1)
例 1 已知数列 an 的前 n 项和为 Sn 2n2 3n 1 ,
则通项 an =_________.
例 2 已知数列 an 的前 n 项和为 Sn ,且对任意正整数 n 都有 2Sn (n 2)an 1,求数列 an 的通项公式.
(B) 25 9
(C) 25 16
(D) 31 15
累积法:
注意到 an
an an 1
an1 an 2

2023年高考数学(文科)一轮复习课件——等比数列及其前n项和

2023年高考数学(文科)一轮复习课件——等比数列及其前n项和
索引
(2)求a1a2-a2a3+…+(-1)n-1anan+1. 解 易知(-1)n-1anan+1=(-1)n-1·22n+1, 则数列{(-1)n-122n+1}公比为-4. 故a1a2-a2a3+…+(-1)n-1·anan+1 =23-25+27-29+…+(-1)n-1·22n+1 =23[1-1(+-4 4)n]=85[1-(-4)n] =85-(-1)n·225n+3.
索引
感悟提升
1.证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于 选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存 在连续三项不成等比数列即可. 2.在利用递推关系判定等比数列时,要注意对n=1的情形进行验证.
索引
训练1 已知数列{an}的前n项和为Sn,且an+Sn=n. (1)设cn=an-1,求证:{cn}是等比数列; 证明 ∵an+Sn=n①, ∴an+1+Sn+1=n+1②. ②-①得an+1-an+an+1=1, 所以2an+1=an+1, ∴2(an+1-1)=an-1,又a1+a1=1, 因所为以aaan+1n=-1-1211,=∴12,a1-∴1c=cn+n1-=2112≠. 0, 故{cn}是以 c1=a1-1=-21为首项,12为公比的等比数列.
(2)等比中项:如果 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项.那么Ga =Gb ,
即 G2=__a_b_.
索引
2. 等比数列的通项公式及前n项和公式 (1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=__a_1q_n_-_1__; 通项公式的推广:an=amqn-m. a1(1-qn) (2)等比数列的前 n 项和公式:当 q=1 时,Sn=na1;当 q≠1 时,Sn=____1_-__q___ =a11--aqnq.

2020高考文科数学(人教A版)总复习课件:第六章 数列6.1

2020高考文科数学(人教A版)总复习课件:第六章 数列6.1

A.121 B.25 C.31 D.35
解析:当m=1时,由an+m=an+3m,得an+1-an=3,
∴∴数S5=列5×{an1}+是12首×项5×a14=×1,3公=3差5.d=3的等差数列, 4.(2018 衡水中学押题二,7)数列{an}满足 a1=2,an+1= (an>0),则
an=( D ) A.10n-2
考点1
第六章
考点2
考点3
6.1 数列的概念与表示
必备知识·预案自诊
关关键键能能力力··学学案案突突破破
学科素养·微专题
-12-
解 (1)数列的项有的是分数,有的是整数,可先将各项都统一写
成分数形式再观察:12
,
4 2
,
9 2
,
16 2
,
225,…,所以它的一个通项公式为
an=���2���2.
(2)数列各项的绝对值为 1,3,5,7,9,…,是连续的正奇数,并且奇数
关键能力·学案突破
学科素养·微专题
-5-
知识梳理 考点自诊
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有数列的第n项都能使用公式表达. ( × )
(2)数列{an}和集合{a1,a2,a3,…,an}是一回事. ( × )
(3)若数列用图象表示,则从图象上看都是一群孤立的点. ( √ )
第六章
6.1 数列的概念与表示
必必备备知知识识··预预案案自自诊诊
关键能力·学案突破
学科素养·微专题
-7-
知识梳理 考点自诊
5.设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn= -1������
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bn1
12bn
1 4
且 b1
7 2
,Tn
为 bn 的前n项和。
求证:数列
b
n
1 2
是等比数列,并求
bn
ቤተ መጻሕፍቲ ባይዱ
、T n
3
第二课时 数列通项与求和
一、基础自测 二轮P53 1、2、3、4 二轮P59 1、2、3、4 二轮P60 9、10
二、典例分析 二轮P55 例1 变式训练
4
三、体验高考 巩固提高
14
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX
时 间:XX年XX月XX日
15
二轮P52 9 P53 12(1)
12(1)变式
2
本次统考理9:已知等差数列 an 的前n项和为 S n , 若M、N、P三点共线,O为坐标原点,且 ONa15OM a6OP
(直线MP不过点O),则 S 20 等于(B )
A.15 B.10 C.40 D.20
本次统考理20:已知数列 bn 满足
二轮P59 6、7 P60 10 二轮P63 2 P64 5
5
6
7
8
9
10
11
12
13
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
第一课时 等差数列与等比数列 一、基础自测
二轮P47 1、2、3、4、5 P51 1、2、3、4、7、8
小结: 1、基本量 a1、d(q) 2、准确运用通项公式、求和公式
注:等差等比求和公式的运用条件与特点 3、等差等比数列的性质
1
二、典例分析 二轮P49 例2 变式训练 例3 变式训练
三、体验高考 巩固提高
相关文档
最新文档