高中数学趣味记忆口诀

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学趣味记忆口诀

高中数学趣味记忆口诀

集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,

观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,

还须将那定义抓。

指数与对数函数,两者互为反函数底数非 1 的正数,

1 两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,

零和负数无对数;

正切函数角不直,余切函数角不平; 其余函数实数集,

多种情况求交集。

两个互为反函数,单调性质都相同; 图象互为轴对称,

Y=X是对称轴;

求解非常有规律,反解换元定义域; 反函数的定义域,

原来函数的值域。

幂函数性质易记,指数化既约分数; 函数性质看指数,

奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数; 图象第一象限内,

函数增减看正负。

三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增

减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形; 向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1 加余弦想余弦, 1 减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值

范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

《不等式》解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0 比大小,作商和 1 争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

《数列》

等差等比两数列,通项公式N 项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,

编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

《立体几何》点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,

画好移出的图形

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵; 都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好; 平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高中数学思想方法中学数学一线牵,代数几何两珠连; 三个基本记心间,四种能力非等闲。常规五法天天练,策略六项时时变,

精研数学七思想,诱思导学乐无边。

一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)

[[亠

三基:方法(熟)知识(牢)技能(巧)四能力:概念运算

(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)五法:换元法、配方法、待定系数法、分析法、归纳法六策略:以简驭繁,正难则反,以退为进,化异为同,移花接

木,以静思动。

七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了; 有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高。

相关文档
最新文档