二重积分的概念与性质 习题
多元微积分第7次习题课(二重积分概念、性质、计算)答案(2015)
![多元微积分第7次习题课(二重积分概念、性质、计算)答案(2015)](https://img.taocdn.com/s3/m/68f1923aeefdc8d376ee32e1.png)
I = ∫∫ (1 −
D
x2 y2 − )dxdy 9 4
就会达到最大值,所以积分域应取为
D = {( x, y ) x2 y2 + 9 4
≤1} . (二重积分与累此积分的关系)设函数 f ( x, y) 连续,交换下列累次积分的积分次序: 2. (1) ∫ dx∫ f ( x, y)dy ; (2) ∫ dx∫ f ( x, y)dy + ∫ dx∫ f ( x, y)dy ;
多元微积分第 7 次习题课
多元微积分第 7 次习题课 参考答案
1
1/9
. (比较定理,区域可加性)确定积分区域 D ,使得二重积分 I = ∫∫ (1 − x9 − y4 )dxdy 达到
2 2 D
最大值. 解:根据重积分的比较定理和积分区域的可加性性质,只要积分域 D 包含了使得被积函数 x y x y f ( x, y ) = 1 − − ≥ 0 的所有点,而没有包含 f ( x, y ) = 1 − − < 0 的点,那么二重积分 9 4 9 4
=
6 8 2 3 4 x dx + ∫ (8x 2 − x3 )dx ∫ 2 3 0 3
=
2 4 x 3
1
π
0
3 0
(4) ∫
(1, 0)
π 2 π − 2
dθ ∫
2 cos θ
0
f (r cos θ , r sin θ ) rdr
对应的积分域 D 是一个圆心在
ห้องสมุดไป่ตู้
D
1
,半径为1 的圆(如图) ,所以
2 cos θ 0
∫
dθ ∫
f (r cos θ , r sin θ ) rdr
15重积分——二重积分的习题课
![15重积分——二重积分的习题课](https://img.taocdn.com/s3/m/1010190a7cd184254b35350e.png)
y2 − 2 1 0
=e 。
−
1 2
17
5 例 把 分 ∫ dx∫ 积
0
a
x
0
x2 + y2 dy化 极 标 为 坐
式 计 积 值 形 ,并 算 分 。
积分区域D如图所示 解 积分区域 如图所示
y
极 标 示 用 坐 表 为: a π D: 0 ≤ r ≤ ,0 ≤ θ ≤ ; cosθ 4
I = ∫ dx∫
∫∫ f (x, y)dσ = ∫∫ f ( y, x)dσ
D
1 = ∫∫[ f ( x, y) + f ( y, x)]dσ 2D
D
(四)有关二重积分的一些证明题 中值定理、变上限积分、 中值定理、变上限积分、换元等
11
1 D 以 例 设 1是 (0,1)为 心 边 为的 方 , 中 , 长 2 正 形 D , D 分 为 1的 切 和 接 别 D 内 圆 外 圆 2 3 2 2 − x2 − y2 f (x, y) = (2y − x − y )e
2 2 2
(∵ f (x, y)是 续 数。 连 函 )
13
3 例 把 f (x, y)dσ表 极 标 的 次 分 为 坐 下 二 积 , ∫∫
D
中 其 D: x ≤ y ≤ 1, −1 ≤ x ≤ 1 。
2
的图形如下,将 分成 解 D的图形如下 将D分成 的图形如下 三个部分区域。 三个部分区域。
0 a x 2 2 0
D
o
2 2
a
x
x + y dy = ∫∫ x + y dσ
a a 4 dθ = r ⋅ rdr= ∫0 3 3 cos θ 3
3
二重积分(习题)
![二重积分(习题)](https://img.taocdn.com/s3/m/796e3167910ef12d2bf9e783.png)
第九章 二重积分习题9-11、设⎰⎰+=13221)(D d y x I σ,其中}22,11|),{(1≤≤-≤≤-=y x y x D ;又⎰⎰+=23222)(D d y x I σ,其中}20,10|),{(2≤≤≤≤=y x y x D ,试利用二重积分的几何意义说明1I 与2I 之间的关系. 解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =. 2、利用二重积分的几何意义说明:(1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即),(),(y x f y x f -=-时,有0),(=⎰⎰Dd y x f σ;(2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即),(),(y x f y x f =-时,有⎰⎰⎰⎰=1),(2),(D Dd y x f d y x f σσ,其中1D 为D 在0≥x 的部分.并由此计算下列积分的值,其中}|),{(222R y x y x D ≤+=.(I)⎰⎰D d xy σ4;(II)⎰⎰--D d y x R y σ222;(III)⎰⎰++Dd y x xy σ2231cos . 解:令⎰⎰=Dd y x f I σ),(,⎰⎰=1),(1D d y x f I σ,其中1D 为D 在0≥x 的部分,(1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积为1I -,于是0=I ;(2)由于D 关于y 轴对称,),(y x f 为x 的偶函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0<x 的部分的体积也为1I ,于是12I I =.(I)由于}|),{(222R y x y x D ≤+=关于y 轴对称,且4),(xy y x f =为x 的奇函数,于是04=⎰⎰Dd xy σ;(II)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且222),(y x R y y x f --=为y 的奇函数,于是0222=--⎰⎰Dd y x R y σ;(III)由于}|),{(222R y x y x D ≤+=关于x 轴对称,且2231cos ),(y x x y y x f ++=为y 的奇函数,于是01cos 223=++⎰⎰Dd y x xy σ. 3、根据二重积分的性质,比较下列积分的大小:(1)⎰⎰+=Dd y x I σ21)(与⎰⎰+=Dd y x I σ32)(,其中D 是由x 轴、y 轴与直线1=+y x 所围成;解:由于在D 内,10<+<y x ,有23)()(0y x y x +<+<,所以1232)()(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.(2)⎰⎰+=Dd y x I σ)ln(1与⎰⎰+=Dd y x I σ22)][ln(,其中}10,53|),{(≤≤≤≤=y x y x D . 解:由于在D 内,63<+<<y x e ,有1)ln(>+y x ,2)][ln()ln(y x y x +<+,所以221)][ln()ln(I d y x d y x I DD=+<+=⎰⎰⎰⎰σσ.4、利用二重积分的性质估计下列二重积分的值: (1)⎰⎰++=Dd y x xy I σ)1(,其中}20,10|),{(≤≤≤≤=y x y x D ;解:由于D 的面积为2,且在D 内,8)1(0<++<y x xy ,那么1628)1(200=⨯<++<⨯=⎰⎰Dd y x xy σ.(2)⎰⎰++=Dd y x I σ)94(22,其中}4|),{(22≤+=y x y x D ;解:由于D 的面积为π4,且在D 内,25313949222≤+≤++≤y y x ,那么ππσππ100425)94(493622=⨯<++<⨯=⎰⎰Dd y x .(3)⎰⎰++=Dy x d I 22cos cos 100σ, 其中}10|||| |),{(≤+=y x y x D ;解:由于D 的面积为200,且在D 内, 1001cos cos 1001102122≤++≤y x ,那么 2100200cos cos 1001022005110022=<++<⎰⎰D y x d σ=. 习题9-21、计算下列二重积分:(1)⎰⎰+Dd y x σ)(22,其中D 是矩形区域:1||,1||≤≤y x ;解:38)31(2)()(11211112222=+=+=+⎰⎰⎰⎰⎰---dx x dy y x dx d y x Dσ. (2)⎰⎰+Dy xd xye σ22,其中},|),{(d y c b x a y x D ≤≤≤≤=;解:⎰⎰⎰⎰⎰-==++b a x c d badcy xDdx xe e e dy xye dx d y x 22222)(21)()(22σ.))((412222c d a b e e e e --=. (3)⎰⎰+Dd y x σ)23(,其中D 是由两坐标轴及直线2=+y x 所围成的闭区域;解:320)224()23()23(22220=-+=+=+⎰⎰⎰⎰⎰-dx x x dy y x dx d y x xDσ.(4)⎰⎰+Dd y x x σ)cos(,其中D 是顶点分别为)0,(),0,0(π和),(ππ的三角形闭区域.解:πσππ23)sin 2(sin )cos()cos(000-=-=+=+⎰⎰⎰⎰⎰dx x x x dy y x x dx d y x x x D.2、画出积分区域,并计算下列二重积分:(1)⎰⎰Dd y x σ,其中D 是由两条抛物线2,x y x y ==所围成的闭区域;解:556)(321044712=+==⎰⎰⎰⎰⎰dx x x dy y x dx d y x xx Dσ.(2)⎰⎰Dd xyσ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域;解:492321212===⎰⎰⎰⎰⎰xdx dy x y dx d x y x x Dσ. (3)⎰⎰+Dd y x σ)2(,其中D 是由x y x y 1,==及2=y 所围成的闭区域;解:619)112()2()2(2122211=--=+=+⎰⎰⎰⎰⎰dy y y dx y x dy d y x y y Dσ.(4)⎰⎰+Dy x d e σ,其中D 是由1||||≤+y x 所确定的闭区域.解:⎰⎰⎰⎰⎰⎰+--+-+--+++=10110111x x y x x x y x Dy x dy e dx dy e dx d e σe e e e e e dx e e dx e e x x 1212232)()(101201112-=++-=-+-=⎰⎰---+. a:=0..1;b:=x-1..-x+1; f:=exp(x+y); int(f,y=b);int(int(f,y=b),x=a); simplify(");3、如果二重积分⎰⎰Dd y x f σ),(的被积函数),(y x f 是两个函数)(1x f 及)(2y f 的乘积,即)()(),(21y f x f y x f =,积分区域},|),{(d y c b x a y x D ≤≤≤≤=,证明这个二重积分等于两个单积分的乘积,即12(,)()()b d a c Df x y d f x dx f y dy σ⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰. 证明:1212()()()()b d b da c a c f x f y dy dx f x dx f y dy ⎡⎤⎡⎤⎡⎤==⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰.4、化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域D 是:(1)由曲线x y ln =、直线2=x 及x 轴所围成的闭区域;>plot([ln(x),0,[[2,0],[2,ln(2)]]],x=0..2,y=0..0.8,color=1); 解:⎰⎰⎰⎰==2ln 0221ln 0),(),(y ex dx y x f dy dy y x f dx I .(2)由y 轴及右半圆22y a x -=所围成的闭区域;>plot([(1-x^2)^(1/2),-1*(1-x^2)^(1/2)],x=0..1,color=1); 解:⎰⎰⎰⎰-----==aay a ax a x a dx y x f dy dy y x f dx I 22222200),(),(.(3)由抛物线2x y =与直线32=+y x 所围成的闭区域.>plot([x^2,3-2*x],x=-3..1,color=1); 解:319201(,)(,)y y yyI dy f x y dx dy f x y dx ---=+⎰⎰⎰⎰.5、改换下列二次积分的积分顺序: (1)⎰⎰10),(y y dx y x f dy ;解:⎰⎰=12),(x xdy y x f dx I .(2)⎰⎰10),(eey dx y x f dy ;解:⎰⎰=e xdy y x f dx I 1ln 0),(.(3)⎰⎰-+-11122),(y ydx y x f dy ;解:⎰⎰--=21222),(x x xdy y x f dx I .(4)⎰⎰⎰⎰-+21201),(),(2xx dy y x f dx dy y x f dx ;解:⎰⎰-=102),(y ydx y x f dy I .(5)⎰⎰-π0sin 2sin),(xx dy y x f dx ;>plot([sin(x),-sin(x/2),[[Pi,0],[Pi,-1]]],x=0..Pi,color=1); 解:⎰⎰⎰⎰---+=1arcsin arcsin 01arcsin 2),(),(yyydx y x f dy dx y x f dy I ππ.(6)⎰⎰⎰⎰--+21202022),(),(2xa ax x ax dy y x f dx dy y x f dx .>plot([(2*x-x^2)^(1/2),(2*x)^(1/2),[[2,0],[2,2]]],x=0..2,color=1); 解:⎰⎰⎰⎰-+--+=aay a a ay a a ay dx y x f dy dx y x f dy I 020222222),(),(⎰⎰+a aaay dx y x f dy 2222),(.6、设平面薄片所占的闭区域D 由直线x y y x ==+,2和x 轴所围成,它的面密度22),(y x y x +=ρ,求该改薄片的质量.>plot([2-x,x],x=0..2,y=0..1,color=1); 解:⎰⎰⎰⎰-+==10222)(),(x yDdx y x dy d y x m σρ34)384438(1032=-+-=⎰dy y y y . 7、求由平面1,1,0,0=+===y x z y x 及y x z ++=1所围成的立体的体积.>with(plots):A:=plot3d([x,y,1],x=0..1,y=0..1-x):B:=plot3d([x,1-x,z],x=0..1,z=1..2):F:=plot3d([x,0,z],x=0..1,z=1..1+x):G:=plot3d([0,y,z],y=0..1,z=1..1+y):H:=plot3d([x,y,1+x+y],x=0..1,y =0..1-x):display({A,B,F,G,H},grid=[25,20],axes=BOXED, scaling=CONSTRAINED,style=PATCHCONTOUR);解:⎰⎰⎰⎰⎰=-=+=-++=-102101031)1(21)(]1)1[(dx x dy y x dx d y x V x Dσ.8、为修建高速公路,要在一山坡中辟出一条长m 500,宽m 20的通道,据测量,以出发点一侧为原点,往另一侧方向为x 轴(200≤≤x ),往公路延伸方向为y 轴(5000≤≤y ),且山坡高度为x y z 20sin 500sin 10ππ+=,试计算所需挖掉的土方量.>plot3d(10*sin(Pi*y/500)+sin(Pi*x/20),y=0..500,x=0..20);解:)(70028)20sin 500sin10(32005000m dy x y dx zd V D =+==⎰⎰⎰⎰ππσ. 9、画出积分区域,把积分⎰⎰=Dd y x f I σ),(表示为极坐标形式的二次积分,其中积分区域D 是:(1))0( }0,|),{(222>≥≤+=a x a y x y x D ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2)],x=0..1,color=1);解:⎰⎰-=22)sin ,cos (ππθθθardr r r f d I .(2)}2|),{(22y y x y x D ≤+=;>plot([1+(1-x^2)^(1/2),1-(1-x^2)^(1/2)],x=-1..1,color=1); 解:y y x 222=+⇔θsin 22r r =⇔θsin 2=r ,于是⎰⎰=πθθθθ0sin 20)sin ,cos (rdr r r f d I .(3)}|),{(2222b y x a y x D ≤+≤=,其中b a <<0;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:⎰⎰=πθθθ20)sin ,cos (bardr r r f d I .(4)}0,10|),{(2x y x y x D ≤≤≤≤=.>plot([x^2,[[1,0],[1,1]]],x=0..1,color=1);解:2x y =⇔θθ22cos sin r r =⇔θθtan sec =r ,1=x ⇔1cos =θr ⇔θsec =r ,于是⎰⎰=40sec tan sec )sin ,cos (πθθθθθθrdr r r f d I .10、化下列二次积分为极坐标形式的二次积分: (1)⎰⎰11),(dy y x f dx ;>plot([[0,0],[0,1],[1,1],[1,0],[0,0]],color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,1=y ⇔1sin =θr ⇔θcsc =r ,于是⎰⎰⎰⎰+=24csc 040sec 0)sin ,cos ()sin ,cos (ππθπθθθθθθθrdrr r f d rdr r r f d I . (2)⎰⎰--+1011222)(x xdy y x f dx ;>plot([(1-x^2)^(1/2),1-x],x=0..1,color=1); 解:x y -=1⇔θθcos 1sin r r -=⇔θθcos sin 1+=r ,于是⎰⎰+=201cos sin 1)(πθθθrdr r f d I .11、把下列积分为极坐标形式,并计算积分值: (1)⎰⎰-+ax ax dy y x dx 2020222)(;>plot((2*x-x^2)^(1/2),x=0..2,color=1);解:22x ax y -=⇔θθθ22cos cos 2sin r ar r -=⇔θcos 2a r =,于是4204420cos 20343cos 4a adr r d I a πθθππθ===⎰⎰⎰.(2)⎰⎰+103221xxdy yx dx ;>plot([3^(1/2)*x,x],x=0..1,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是2132lnsec 3434sec 0++===⎰⎰⎰ππππθθθθd dr d I . (3)⎰⎰⎰⎰-+++a a x a a x dy y x dx dy y x dx 23022233302222.>plot([3^(1/2)*x/3,(1-x^2)^(1/2)],x=0..1,y=0..0.5,color=1); 解:1=x ⇔1cos =θr ⇔θsec =r ,于是36036002183a d a dr r d I a πθθππ===⎰⎰⎰.12、利用极坐标计算下列各题:(1)⎰⎰--Dd y x R σ222,其中D 为圆域Rx y x ≤+22(0>R );>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:Rx y x =+22⇔θcos 2Rr r =⇔θcos R r =,于是)34(31322cos 022-=-=⎰⎰-πθππθR rdr r R d I R .(2)⎰⎰++Dd y x σ)1ln(22,其中D 为圆122=+y x 及坐标轴所围成的在第一象限内的闭区域;>plot((1-x^2)^(1/2),x=0..1,color=1);解:)12ln 2(4)1ln(20102-=+=⎰⎰πθπrdr r d I .(3)⎰⎰Dd x yσarctan ,其中D 为圆周122=+y x ,422=+y x 及直线x y y ==,0所围成的在第一象限内的闭区域.>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2),x],x=-2..2,y=0..2^(1/2),color=1); 解:240402164323πθθθθππ===⎰⎰⎰d rdr d I .13、选择适当的坐标计算下列各题:(1)⎰⎰D d y x σ22,其中D 是直线x y x ==,2及曲线1=xy 所围成的闭区域;>plot([x,1/x,[[2,1/2],[2,2]]],x=0..2,y=0..2,color=1);解:49)(21321122=-==⎰⎰⎰dx x x dy y x dx I x x .(2)⎰⎰+Dd y x σ22sin ,其中D 是圆环形区域22224ππ≤+≤y x ;>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1); 解:22026sin πθπππ-==⎰⎰rdr r d I .(3)⎰⎰+Dd y x σ)(22,其中D 是由直线a y a y a x y x y 3,,,==+==(0>a )所围成的闭区域;>plot([[0,1],[1,1],[3,3],[2,3],[0,1]],x=0..3,y=0..3,color=1);解:4332232214)32()(a dx a y a ay dx y x dy I a a a a y a y =+-=+=⎰⎰⎰-.(4)⎰⎰--Dd y x σ|1|22,其中D 为圆域422≤+y x .>plot([(1-x^2)^(1/2),-(1-x^2)^(1/2),(4-x^2)^(1/2),-(4-x^2)^(1/2)],x=-2..2,color=1);解:πππθθππ5292)1()1(2021220102=+=-+-=⎰⎰⎰⎰rdr r d rdr r d I . 14、计算以xOy 面上的圆周ax y x =+22围成的闭区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积.>plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1);解:ax y x =+22⇔θcos 2ar r =⇔θcos a r =,于是4224422cos 0322323cos 4)(a d a dr r d d y x V a Dπθθθσππππθ===+=⎰⎰⎰⎰⎰--. 15、某水池呈圆形,半径为5米,以中心为坐标原点,距中心距离为r 处的水深为215r +米,试求该水池的蓄水量. >plot([(x-x^2)^(1/2),-(x-x^2)^(1/2)],x=0..1,color=1); 解:29.16)13ln 2(ln 51520502=+=+=⎰⎰πθπrdr r d V (米3). 16、讨论并计算下列广义二重积分: (1)⎰⎰Dq p y x d σ,其中}1,1|),{(≥≥=x xy y x D ; 解:))(1(11111011111p q q dx x q dy yx dx I q p q p q x q p --===-====>-+∞+->+∞+∞⎰⎰⎰. 即当1>>q p 时,广义二重积分收敛,且))(1(1q p q I --=. (2)⎰⎰+Dp y x d )(22σ,其中}1|),{(22≥+=y x y x D ; 解:1111220112-=====>-+∞-⎰⎰p dr r d I p p πθπ. 即当1>p 时,广义二重积分收敛,且1-=p I π.。
数学分析课本-习题及答案第二十一章
![数学分析课本-习题及答案第二十一章](https://img.taocdn.com/s3/m/d1e511b2aaea998fcc220ecc.png)
第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理:若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。
.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。
高数 第六章-重积分-二重积分(第1-2节)
![高数 第六章-重积分-二重积分(第1-2节)](https://img.taocdn.com/s3/m/58838e3858fafab069dc02f6.png)
∫∫ 3.积分 3 1 − x 2 − y 2 dxdy 有怎样的符号, 其中 D : x 2 + y 2 ≤ 4. D
4.利用二重积分的性质估计下列积分的值:
∫∫ (1) I = (x2 + 4 y2 + 9) dσ , 其中=D {(x, y) x2 + y2 ≤ 4} ; D
闭区域;
(4)
∫∫
D
sin x
x
dxdy
,
其中 D 是由 y =
x,
y= x, 2
x = 2 所围成的闭区域;
(2) ∫∫| y − x2 | dxdy, 其中 D 为 −1 ≤ x ≤ 1, 0 ≤ y ≤ 1; D
3
(5) ∫∫ (x2 + y2 − x)dxdy , 其中 D 是由 y = 2 , y = x , y = 2x 所围成 D
π
dx
0
sin x −sin x
f (x, y)dy ;
2
4
ቤተ መጻሕፍቲ ባይዱ
∫ ∫ (4)
1
dy
y f (x, y)dx ;
0
y
2
2y
∫ ∫ (5) dy f (x, y)dx ;
0
y2
3. 将下列积分表示为极坐标形式下的二次积分:
{ } ∫∫ (1) f (x, y)dσ , 其= 中 D (x, y) | x2 + y2 ≤ 4x ; D
x − 3y = 0, y − 3x = 0 所围成的平面闭区域.
(3)
∫∫D
1+
1 x2 +
y2
dxdy
,
数学分析课本(华师大三版)-习题及答案第二十一章
![数学分析课本(华师大三版)-习题及答案第二十一章](https://img.taocdn.com/s3/m/4bbb3858bed5b9f3f90f1cfc.png)
第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。
.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。
二重积分习题练习及解析
![二重积分习题练习及解析](https://img.taocdn.com/s3/m/5ee61d214a35eefdc8d376eeaeaad1f34693116a.png)
1
x y1
记D1为D的y≥0的部分. 则
D1
1
ox
x y 1
原式= 2 (| x | | y |)dxdy
1
D1
0
1 x
2
(
y
x)dxdy
2 dx 1
4
又
2d 2πa2 , 所以 原式 = πa4 2πa2 .
x2 y2a2
4
21
例 证明: 曲面z a ( x) b ( y) , x2 y2 c2 , z 0 (x) ( y)
所围立体的体积等于 1 πc2(a b),其中 (u)是连续
2
的正值函数, 且a 0,b 0,c 0.
4
f ( x, y)d xOy平面上方的曲顶柱体体积
D
减xOy平面下方的曲顶柱体体积.
3. 物理意义
若平面薄片占有平面内有界闭区域D,
它的面
密度为连续函数 ( x, y), 则它的质量M为:
M ( x, y)d .
D
5
(二)二重积分的性质
(重积分与定积分有类似的性质)
性质1(线性运算性质) 设、 为常数, 则
f ( y), f (arctan y) 或积分域为 圆域、扇形域、
x
x
圆环域时, 则用极坐标计算;
18
3. 注意利用对称性质, 以便简化计算; 4. 被积函数中含有绝对值符号时, 应
将积分域分割成几个子域, 使被积函数在 每个子域中保持同一符号, 以消除被积函
数中的绝对值符号.
19
典型例题
1.交换积分次序
z = f (x, y)的二重积分 n
其中 I是各D小f闭( x区, 域y)的d直径l中im0的i最1 大f (值i.,i ) i
二重积分求体积的例题
![二重积分求体积的例题](https://img.taocdn.com/s3/m/d62088e70129bd64783e0912a216147916117e69.png)
二重积分求体积的例题
摘要:
一、二重积分的概念与性质
1.二重积分的定义
2.二重积分的性质
二、二重积分求体积的方法
1.直接积分法
2.替换变量法
3.极坐标变换法
三、二重积分求体积的例题解析
1.例题一
2.例题二
3.例题三
正文:
二重积分是数学中的一种积分方法,用于求解空间内某一区域的体积。
它具有丰富的性质和灵活的计算方法,是数学分析中的重要内容。
首先,我们来了解二重积分的概念与性质。
二重积分是指在三个变量(x,y,z)的笛卡尔坐标系中,对两个变量(x,y)进行积分,而第三个变量(z)作为被积函数的参数。
二重积分具有以下性质:交换律、结合律、分配律、链式法则等。
接下来,我们学习二重积分求体积的方法。
常用的方法有直接积分法、替
换变量法和极坐标变换法。
直接积分法适用于被积函数较简单的二重积分;替换变量法通过引入新变量,将复杂被积函数转化为简单形式;极坐标变换法则是将笛卡尔坐标系中的积分问题转化为极坐标系中的积分问题,从而简化计算过程。
最后,我们通过例题来解析二重积分求体积的方法。
例题一:求解空间上半球体的体积;例题二:求解空间中四棱锥的体积;例题三:求解空间中曲面的体积。
这些例题涵盖了不同类型的二重积分求体积问题,有助于我们巩固所学知识并提高解题能力。
总之,二重积分是一种强大的数学工具,通过掌握其概念、性质和计算方法,我们可以解决空间体积计算中的一系列问题。
高数习题答案二
![高数习题答案二](https://img.taocdn.com/s3/m/ab0a116a58fafab069dc021d.png)
2π
1
2π
2
1 2 1 4 1 1 4 1 2 2 = 2π ( r − r )|0 +2π ( r − r )|1 = 5π. 2 4 4 2 y r = cosθ 3.利用极坐标计算下列二重积分 (1) ∫∫ xdxdy, D: x2 + y2 ≤ x D 0 1 x 解: 画出D的图形:
y
7.交换下列积分次序,并计算: (1)
∫ dy∫ e dx
y 0 y
1
1
1 y=x
0
D
解: 由已给积分次序知
y ≤ x ≤1 D: 0 ≤ y ≤1 ,
x =1 x 1
画出D的图形:
机动 目录 上页 下页 返回 结束
x eydy = ey |0dx = ∫ dx ∫0 ∫ 0 0
1
x
1
y 1 y=x
x
1 x
机动 目录 上页 下页 返回 结束
u v
2.将二重积分
∫∫ f ( x, y) dxdy 化为二次积分:
D
(1) D 是由 y = 2, y = 2x 及 x = 0 所围成的区域; 解: 画D的图形: 1 2 ∫∫ f ( x, y)dxdy = ∫ dx∫ f ( x, y)dy
D
y
2D
0
D
x =1 1 x
(2) 解: 由已给积分次序知
0 ≤ x ≤1 D: 2 x ≤ y ≤1 ,
画出D的图形:
机动
目录
上页
下页
返回
结束
8. 计算下列二重积分
(1) I = ∫∫ yexy dxdy,其中D 是由直线 y = 2, x =1,
x = 2及曲线
二重积分的例题及解析
![二重积分的例题及解析](https://img.taocdn.com/s3/m/1d6f8ddb4bfe04a1b0717fd5360cba1aa8118c0a.png)
二重积分的例题及解析二重积分是微积分中的重要概念,用来计算平面区域上的某些特性,比如面积、质量、质心等。
在本文中,我们将介绍一些二重积分的例题,并给出相应的解析。
例题一:计算二重积分 D (x^2 + y^2) dA,其中 D 是由曲线 y = x^2 和 y = 2x - 1 所围成的区域。
解析:首先我们需要确定积分的变量范围。
根据题目的条件,我们可以得到 x 的取值范围为 0 ≤ x ≤ 1,y 的取值范围为 x^2 ≤ y ≤ 2x - 1。
接下来,我们将二重积分转化为两个单重积分。
先对 y 进行积分,再对 x 进行积分。
对 y 进行积分时,积分的上下限根据 y 的取值范围确定,即从 x^2 到 2x - 1。
所以我们得到∫(x^2,2x-1) (x^2 + y^2) dy = [x^2y + (1/3)y^3] |_(x^2,2x-1) = x^2(2x-1) + (1/3)(2x-1)^3 - x^2(x^2) - (1/3)(x^2)^3对 x 进行积分时,积分的上下限根据 x 的取值范围确定,即从 0 到1。
所以我们得到∫(0,1) [x^2(2x-1) + (1/3)(2x-1)^3 - x^2(x^2) - (1/3)(x^2)^3] dx= ∫(0,1) (2x^3 - x^2 + 2x - 1/3) dx= [1/2x^4 - 1/3x^3 + x^2 - 1/3x] |_(0,1)= 1/2 - 1/3 + 1 - 1/3 = 1/6所以二重积分的结果为 1/6。
例题二:计算二重积分 D e^(x+y) dA,其中 D 是由直线 x = 0、y = 0 和 x + y = 1 所围成的区域。
解析:同样,我们首先需要确定积分的变量范围。
根据题目的条件,我们可以得到 x 的取值范围为 0 ≤ x ≤ 1,y 的取值范围为 0 ≤y ≤ 1 - x。
接下来,我们将二重积分转化为两个单重积分。
二重积分的概念
![二重积分的概念](https://img.taocdn.com/s3/m/afd9b0b565ce0508763213a7.png)
I1 = 4 I 2
例2 利用二重积分的几何意义确定二重积分
∫∫
D
的值,其中 D : x 2 + y 2 ≤ 9 (3 − x + y )dσ 的值,
2 2
解:
曲顶柱体的底部为圆盘 其顶 是下半圆锥面
x + y ≤9
2 2
2 2
z = 3− x + y
故曲顶柱体为一圆锥体, 故曲顶柱体为一圆锥体,它的 底面半径及高均为3, 底面半径及高均为 ,所以
V = lim ∑ f (ξk , ηk )∆ k σ
λ→0 k =1
n
n
平面薄片的质量: 平面薄片的质量
M = lim ∑µ (ξk , ηk )∆σ k
λ→0 k =1
2.定义(二重积分): 2.定义(二重积分): 定义
设z=f(x,y)在区域 上有界,则 z=f(x,y)在区域D上有界 在区域 上有界, 分割:用平面曲线网将D分成 分成n个小区域 ①分割:用平面曲线网将 分成 个小区域 △ σ 1 , △ σ 2, … , △ σ n 各个小区域的面积是 △σ1 ,△σ2 ,…,△σn , …,d 各个小区域的直径是 d1,d2 ,…,dn 近似: ②近似:在各个小区域上任取一点 (ξi,ηi)∈△σi , 作乘积 f(ξ f(ξi,ηi)△σi (i=1,2, … ,n) n 求和: ③求和:
∫∫
D
⑹
∫∫ f (x, y)dσ ≤ ∫∫ f (x, y) dσ
D D
的面积, ⑺ 在D上若m≤f(x,y)≤M ,σ为D的面积,则 上若m≤f(x,y)≤M
mσ ≤ ∫∫ f ( x, y)dσ ≤ M σ
D
二重积分中值定理: ⑻ 二重积分中值定理:
二重积分的概念与性质
![二重积分的概念与性质](https://img.taocdn.com/s3/m/afa9b0ba65ce0508763213d8.png)
kf ( x, y)d k f ( x, y)d . D D [ f ( x, y) g ( x, y)]d D f ( x, y)d g ( x, y)d .
D D
逐项积分
线性性质
m g ( x, y)d k f ( x , y ) d [ kf ( x , y ) mg ( x , y )] d
9/24
二、二重积分的定义及可积性
1.定义 设 f ( x, y ) 是定义在有界闭区域 D上的有界函数 , 将区域 D 任意分成 n 个小区域 任取一点 若存在一个常数 I , 使
记作
则称 f ( x, y ) 可积 , 称 I 为 f ( x, y ) 在D上的二重积分.
积分和 积分表达式
x , y 称为积分变量
则有
f ( x, y)d g ( x, y)d . D D
特殊地
f ( x, y )d f ( x, y ) d . D D
15/24
性质6
设 M 、 m分别是 f ( x, y ) 在闭区域 D 上的最 大值和最小值, 为 D 的面积,则
m f ( x, y)d M
[注] 1. 重积分与定积分的区别: 重积分中d 0,定积分中dx 可正可负. 2. 根据分割的任意性,当二重积分存在时,在直角坐标系 下用平行于坐标轴的直线网来划分区域D
12/24
即
x 常数 , y 常数
y
则直角坐标系下面积元素为 d dxdy 故二重积分可写为 f ( x, y )d f ( x, y )dxdy
2
y
1
D
x y2
o
x y1
二重积分的概念与性质
![二重积分的概念与性质](https://img.taocdn.com/s3/m/c7121221af45b307e871977e.png)
四、小结
和式的极限) 二重积分的定义 (和式的极限) (曲顶柱体的体积) 二重积分的几何意义 曲顶柱体的体积)
二重积分的性质(7条性质) 二重积分的性质
∫∫ f ( x , y )dσ = D
f ( ξ , η) σ
(二重积分中值定理) 二重积分中值定理)
利用二重积分的几何意义, 例2 利用二重积分的几何意义,确定下列二重积分 的值: 的值:
∫∫
D
4 x y dxdy , 其其 D = {( x , y ) x + y ≤ 2}
2 2 2 2
= ∫∫ f ( x , y )dσ ± ∫∫ g ( x , y )dσ .
D D
性质3 性质3 对区域具有可加性 ( D = D1 + D2 )
∫∫ f ( x , y )dσ = ∫∫ f ( x , y )dσ + ∫∫ f ( x , y )dσ .
D D1 D2
性质4 性质4 若 σ 为D的面面积 σ
D D
性质5 若在D上 性质5 若在 上 f ( x , y ) ≤ g ( x , y ), 则有 ∫∫ f ( x , y )dσ ≤ ∫∫ g ( x , y )dσ .
D D
练习: 练习:
比较下列各组积分的大小: 比较下列各组积分的大小:
(1) I 1 = ∫∫ ( x + y )2 dxdy , I 2 = ∫∫ ( x + y )3 dxdy
分割、 求曲顶柱体的体积采用 “分割、求和 取极限”的方法,如下动画演示. 、取极限”的方法,如下动画演示.
分割、近似、 求曲顶柱体的体积采用 “分割、近似、 求和、取极限”的方法,如下动画演示. 求和、取极限”的方法,如下动画演示.
第九章重积分习题
![第九章重积分习题](https://img.taocdn.com/s3/m/e973bd50f01dc281e53af0a9.png)
成的闭区域. 7.利用球面坐标计算下列三重积分: (1) ∫∫∫ x 2 + y 2 + z 2 d x d y d z ,其中 Ω 是由球面 x 2 + y 2 + z 2 = z 所围成的闭区域.
Ω
(2) ∫∫∫ z d x d y d z , 其中 Ω 是由不等式 x 2 + y 2 + ( z − a )2 ≤ a 2 , x 2 + y 2 ≤ z 2 (a > 0) 所确定.
D
(2) ∫∫ y 2 d x d y , 其中 D 是由横轴和摆线 x = a (t − sin t ), y = a(1 − cos t ) (0 ≤ t ≤ 2π ) 所围成
D
的闭区域 (a > 0) . (3) ∫∫ xy d σ , 其中 D 是由圆周 x 2 + y 2 = a 2 (a > 0) 所围成.
________ ________ ___ ___
_______________________ d z .
6.利用柱面坐标计算下列三重积分: d xd yd z (1) ∫∫∫ 2 ,其中 Ω 是由锥面 x 2 + y 2 = z 2 以及平面 z = 1 所围成的闭区域. 2 x + y + 1 Ω (2) ∫∫∫ z x 2 + y 2 d x d y d z ,其中 Ω 是由曲面 y = 2 x − x 2 , z = 0, z = a (a > 0), y = 0 所围
D
区域 D 是: (1) 0 ≤ y ≤ x 2 , 0 ≤ x ≤ 1 . (2)由曲线 y = a 2 − x 2 , y = ax − x 2 及 y = − x 围成的闭区域 (a > 0) . 8.利用极坐标计算 ∫∫ y + 3x d x d y, ,其中区域 D 为 x 2 + y 2 ≤ 1 .
二重积分的性质
![二重积分的性质](https://img.taocdn.com/s3/m/11927b25df80d4d8d15abe23482fb4daa58d1dbb.png)
二重积分的性质
性质1、(积分可加性)函数和(差)的二重积分等于各函数二重积分的和(差),即
性质2、(积分满足数乘)被积函数的常系数因子可以提到积分号外,即
性质3、如果在区域D上有f(x,y)≦g(x,y),则
性质4、设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积,则
性质5、如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。
设函数f(x,y)在有界闭区域D上连续,σ为区域的面积,则在D 上至少存在一点(ξ,η),使得
扩展资料:
二重积分意义
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。
某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分:
其中
表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。
数值意义
二重积分和定积分一样不是函数,而是一个数值。
因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
二重积分习题课2014
![二重积分习题课2014](https://img.taocdn.com/s3/m/1e6ca38019e8b8f67d1cb950.png)
o
1x
证明 在题设条件下,(1)式
1 f 2(x)dx
1
xf ( x)dx
1
f ( x)dx
1xf 2( x)dx 0
0
0
0
0
I [ yf 2( x) f ( y) yf ( x) f 2( y)]dxdy
D
yf ( x) f ( y)[ f ( x) f ( y)]dxdy 0
1
2
D
f ( x) f ( y)dxdy
2 DD'
D'
1
2
1
f ( x)dx
0
1
f ( y)dy
A2
0
2 14
或:利用原函数:令F(u)
u
f ( x)dx
0
dF(u) f (u)du
1
1
1
1
I 0 dxx f ( x) f ( y)dy 0 dxx f ( x)dF( y)
D
1
f ( x) f ( y)[ f ( x) f ( y)]( y x)dxdy
2
由于f
(Dx)单调减且正值,知有
f ( x) f ( y)[ f ( x) f ( y)]( y x) 0
所以I 0,即(1)式成立。
18
xdxdy 0
D1
I x[1 sin yf ( x2 y2 )]dxdy
D
xdxdy x sin yf ( x2 y2 )]dxdy
D
D
xdxdy xdxdy xdx
D 0
dx
数学分析21.1二重积分的概念(含习题及参考答案)
![数学分析21.1二重积分的概念(含习题及参考答案)](https://img.taocdn.com/s3/m/46ce4028c850ad02de8041d4.png)
第二十一章 重积分 1二重积分的概念一、平面图形的面积引例:若构成平面图形P 的点集是平面上的有界点集, 即存在矩形R ,使P ⊂R ,则称平面图形P 有界. 用某一平行于坐标轴的一组直线网T 分割P(如图),这时直线网T 的网眼——小闭矩形△i 可分为三类: (1)△i 上的点都是P 的内点;(2)△i 上的点都是P 的外点,即△i ∩P=Ø; (3)△i 上含有P 的边界点.将所有属于直线网T 的第(1)类小矩形(图中阴影部分)的面积加起来, 记和数为s p (T),则有s p (T)≤△R (矩形R 的面积);将所有第(1)类与第(3)类小矩形(图中粗线所围部分)的面积加起来, 记作S p (T),则有s p (T)≤S p (T). 由确界存在定理知,对于平面上所有直线网,数集{s p (T)}有上确界,数集{S p (T)}有下确界, 记Tp I sup ={s p (T)} ,Tp I inf ={S p (T)}. 显然有0≤p I ≤p I .p I 称为内面积,p I 称为外面积.定义1:若平面图形P 的内面积p I 等于它的外面积p I , 则称P 为可求面积,并称其共同值I p =p I =p I 为P 的面积.定理21.1:平面有界图形P 可求面积的充要条件是:对任给ε>0, 总存在直线网T ,使得S p (T)-s p (T)< ε.证:[必要性]设P 的面积为I p , 由面积的定义知, I p =p I =p I . ∀ε>0, 由p I 及p I 的定义知,分别存在直线网T 1与T 2,使得 s p (T 1)>I p -2ε, S p (T 2)<I p +2ε, 记T 为由T 1与T 2合并所成的直线网,则 s p (T 1)≤s p (T), S p (T 2)≥S p (T),∴s p (T)>I p -2ε, S p (T)<I p +2ε, 从而S p (T)-s p (T)<ε. [充分性]设对任给的ε>0, 存在某直线网T ,使得S p (T)-s p (T)<ε. 但s p (T)≤p I ≤p I ≤S p (T),∴p I -p I ≤S p (T)-s p (T)<ε. 由ε的任意性知,p I =p I ,∴平面图形P 可求面积.推论:平面有界图形P 的面积为零的充要条件是它的外面积p I =0,即对任给的ε>0, 存在某直线网T ,使得S p (T)<ε,或 平面图形P 能被有限个其面积总和小于ε的小矩形所覆盖.定理21.2:平面有界图形P 可求面积的充要条件是:P 的边界K 的面积为0.证:由定理21.1,P 可求面积的充要条件是:∀ε>0, ∃直线网T , 使得S p (T)-s p (T)<ε. 即有S K (T)=S p (T)-s p (T)<ε, 由推论知,P 的边界K 的面积为0.定理21.3:若曲线K 为定义在[a,b]上的连续函数f(x)的图象,则曲线K 的面积为零.证:∵f(x)在闭区间[a,b]上连续,从而一致连续. ∴∀ε>0, ∃δ>0, 当把区间[a,b]分成n 个小区间[x i-1,x i ] (i=1,2,…,n, x 0=a,x n =b)并满足 max{△x i =x i -x i-1 |i=1,2,…,n }<δ时,可使f(x)在每个小区间[x i-1,x i ]上的振幅都有ωi <ab -ε.把曲线K 按自变量x=x 0,x 1,…,x n 分成n 个小段,则 每一个小段都能被以△x i 为宽, ωi 为高的小矩形所覆盖,又 这n 个小矩形面积的总和为i ni i x ∆∑=1ω<ab -ε∑=∆ni ix1<ε,由定理21.1的推论即得曲线K 的面积为零.推论1:参数方程x=φ(t), y=ψ(t), t ∈[α,β]所表示的光滑曲线K 的面积为零.证:由光滑曲线的定义,φ’(t),ψ’(t)在[α,β]上连续且不同时为0. 对任意t 0∈[α,β],不妨设φ’(t 0)≠0,则存在t ’的某邻域U(t 0), 使得 x=φ(t)在此邻域上严格单调,从而存在反函数t=φ-1(x). 又 由有限覆盖定理,可把[α,β]分成有限段:α=t 0<t 1<…<t n =β, 在每一小区间段上,y=ψ(φ-1(x))或x=ψ(φ-1(y)),由定理21.3知, 每小段的曲线面积为0,∴整条曲线面积为零.推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的.注:并非平面中所有的点集都是可求面积的.如D={(x,y)|x,y ∈Q ∩[0,1]}. 易知0=D I ≤D I =1, 所以D 是不可求面积的.二、二重积分的定义及其存在性 引例:求曲顶柱体的体积(如图1).设f(x,y)为定义在可求面积的有界闭区域D 上的非负连续函数. 求以曲面z=f(x,y)为顶,以D 为底的柱体体积V.用一组平行于坐标轴的直线网T 把D 分成n 个小区域σi (i=1,2,…,n). ∵f(x,y)在D 上连续,∴当每个σi 都很小时, f(x,y)在σi 上各点的函数值近似相等; 可在σi 上任取一点(ξi ,ηi ),用以f(ξi ,ηi )为高, σi 为底的小平顶柱体的体积f(ξi ,ηi )△σi 作为V i 的体积△V i ,即△V i ≈f(ξi ,ηi )△σi .把这些小平顶柱体的体积加起来, 就得到曲顶柱体体积V 的近似值: V=∑=∆n i i V 1≈i ni i i f σηξ∆∑=1),(.当直线网T 的网眼越来越细密,即分割T 的细度T =di ni ≤≤1max →0(di 为σi 的直径)时,i ni i i f σηξ∆∑=1),(→V.概念:设D 为xy 平面上可求面积的有界闭区域,f(x,y)为定义在D 上的函数. 用任意的曲线把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 以△σi 表示小区域△σi 的面积,这些小区域构成D 的一个分割T , 以d i 表示小区域△σi 的直径,称T =di ni ≤≤1max 为分割T 的细度.在每个σi 上任取一点(ξi ,ηi ),作和式ini iif σηξ∆∑=1),(,称为函数f(x,y)在D 上属于分割T 的一个积分和.定义2:设f(x,y)是定义在可求面积的有界闭区域D 上的函数. J 是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D 的任何分割T ,当它的细度T <δ时,属于T 的所有积分和都有J f ini ii-∆∑=σηξ1),(<ε,则称f(x,y)在D 上可积,数J 称为函数f(x,y)在D上的二重积分,记作:J=⎰⎰Dd y x f σ),(.注:1、函数f(x,y)在有界可求面积区域D 上可积的必要条件是f 在D 上有界.2、设函数f(x,y)在D 上有界,T 为D 的一个分割,把D 分成n 个可求面积的小区域σ1, σ2,…, σn . 令M i =iy x σ∈),(sup f(x,y), m i =iy x σ∈),(inf f(x,y), i=1,2,…,n.作和式S(T)=i n i i M σ∆∑=1, s(T)=i ni i m σ∆∑=1. 它们分别称为函数f(x,y)关于分割T 的上和与下和.定理21.4:f(x,y)在D 上可积的充要条件是:0lim →T S(T)=0lim →T s(T).定理21.5:f(x,y)在D 上可积的充要条件是:对于任给的正数ε,存在D 的某个分割T ,使得S(T)-s(T)<ε.定理21.6:有界闭区域D 上的连续函数必可积.定理21.7:设f(x,y)在有界闭域D 上有界,且不连续点集E 是零面积集,则f(x,y)在D 上可积.证:对任意ε>0, 存在有限个矩形(不含边界)覆盖了E ,而 这些矩形面积之和小于ε. 记这些矩形的并集为K ,则 D\K 是有界闭域(也可能是有限多个不交的有界闭域的并集). 设K ∩D 的面积为△k ,则△k <ε. 由于f(x,y)在D\K 上连续, 由定理21.6和定理21.5,存在D\K 上的分割T 1={σ1, σ2,…, σn }, 使得S(T 1)-s(T 1)<ε. 令T={σ1, σ2,…, σn , K ∩D},则T 是D 的一个分割,且 S(T)-s(T)=S(T 1)-s(T 1)+ωK △k <ε+ωε, 其中ωK 是f(x,y)在K ∩D 上的振幅,ω的是f(x,y)在D 上的振幅. 由定理21.5可知f(x,y)在D 上可积.三、二重积分的性质1、若f(x,y)在区域D 上可积,k 为常数,则kf(x,y)在D 上也可积,且⎰⎰Dd y x kf σ),(=k ⎰⎰Dd y x f σ),(.2、若f(x,y), g(x,y)在D 上都可积,则f(x,y)±g(x,y)在D 上也可积,且[]⎰⎰±Dd y x g d y x f σσ),(),(=⎰⎰Dd y x f σ),(±⎰⎰Dd y x g σ),(.3、若f(x,y)在D 1和D 2上都可积,且D 1与D 2无公共内点,则⎰⎰21),(D D d y x f σ=⎰⎰1),(D d y x f σ+⎰⎰2),(D d y x f σ.4、若f(x,y)与g(x,y)在D 上可积,且f(x,y)≤g(x,y), (x,y)∈D ,则⎰⎰Dd y x f σ),(≤⎰⎰Dd y x g σ),(.5、若f(x,y)在D 上可积,则函数|f(x,y)|在D 上也可积,且⎰⎰Dd y x f σ),(≤⎰⎰Dd y x f σ),(.6、若f(x,y)在D 上都可积,且m ≤f(x,y)≤M, (x,y)∈D ,则 mS D ≤⎰⎰Dd y x f σ),(≤MS D , 其中S D 是积分区域D 的面积.7、(中值定理)若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D , 使得⎰⎰Dd y x f σ),(=f(ξ,η)S D , 其中S D 是积分区域D 的面积.注:中值定理的几何意义:以D 为底,z=f(x,y) (f(x,y)≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于f(x,y)在区域D 中某点(ξ,η)的函数值f(ξ,η).习题1、把重积分⎰⎰Dxydxd σ作为积分和的极限,计算这个积分值,其中D=[0,1]×[0,1],并用直线网x=n i, y=nj , (i,j=1,2,…,n-1)分割D 为许多小正方形,每个小正方形取其右顶点作为其节点.解:⎰⎰Dxydxd σ=2111lim n n j n i nj ni n ⋅⋅∑∑==∞→=21121lim n n j n nj n ⋅⋅+∑=∞→=224)1(lim n n n +∞→=41.2、证明:若函数f(x,y)在有界闭区域D 上可积,则f(x,y)在D 上有界. 证:若f 在D 上可积,但在D 上无界,则对D 的任一分割T={σ1, σ2,…, σn }, f 必在某个小区域σk 上无界. 当i ≠k 时,任取p i ∈σi ,令G=∑≠nki i i p f σ)(, I=⎰⎰Ddxdy y x f ),(.∵f 在σk 上无界,∴存在p k ∈σk ,使得|f(p k )|>kG I σ∆++1, 从而∑=ni iip f 1)(σ=∑≠∆+nki k k i i p f p f σσ)()(≥|f(p k )·△σk |-∑≠nki i i p f σ)(>|I|+1.又f 在D 上可积,∴存在δ>0,对任一D 的分割T={σ1, σ2,…, σn }, 当T <δ时,T 的任一积分和∑=nk k k p f 1)(σ都满足∑=-nk k k I p f 1)(σ<1,即∑=nk k k p f 1)(σ<|I|+1,矛盾!∴f 在D 上可积,则f 在D 上有界.3、证明二重积分中值定理:若f(x,y)在有界闭区域D 上连续,则存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D , 其中S D 是积分区域D 的面积.证:∵f 在有界闭区域D 上连续,∴f 在D 上有最大值M 和最小值m, 对D 中一切点有m ≤f ≤M ,∴mS D ≤⎰⎰Df ≤MS D , 即m ≤⎰⎰DDf S 1≤M.由介值性定理知,存在(ξ,η)∈D ,使得⎰⎰Df =f(ξ,η)S D .4、证明:若f(x,y)为有界闭区域D 上的非负连续函数,且在D 上不恒为零,则⎰⎰Dd y x f σ),(>0.证:由题设知存在p 0(x 0,y 0)∈D ,使f(p 0)>0,令δ=f(p 0),由连续函数的局部保号性知:∃η>0使得对一切p ∈D 1(D 1=U(p 0,η)∩D), 有f(p)>2δ. 又f(x,y)≥0且连续,∴⎰⎰Df =⎰⎰1D f +⎰⎰-1D D f ≥2δ·△D 1>0.5、证明:若f(x,y)在有界闭区域D 上连续,且在D 内任一子区域D ’⊂D 上有⎰⎰'D d y x f σ),(=0,则在D 上f(x,y)≡0.证:假设存在p 0(x 0,y 0)∈D ,使得f(p 0)≠0, 不妨设f(p 0)>0. 由连续函数的保号性知,∃η>0使得对一切p ∈D ’(D ’=U(p 0,η)∩D), 有f(p)>0,由第4题知⎰⎰'D f >0,矛盾! ∴在D 上f(x,y)≡0.6、设D=[0,1]×[0,1],证明: 函数f(x,y)=⎩⎨⎧内非有理点为皆为有理数即内有理点为D y x y x D y x ),(,0),(),(,1在D 上不可积.证: 设D 的任一分割T={σ1, σ2,…, σn }, 则每一个小区域σi 内必同时含有D 内有理点和非有理点,从而 M i =iy x σ∈),(sup f(x,y)=1, m i =iy x σ∈),(inf f(x,y)=0, i=1,2,…,n.∴S(T)=i n i i M σ∆∑=1=1, s(T)=i ni i m σ∆∑=1=0,由T 的任意性知:lim →T S(T)=1≠0=0lim →T s(T). ∴f 在D 上不可积.7、证明:若f(x,y)在有界闭区域D 上连续,g(x,y)在D 上可积且不变号,则存在一点(ξ,η)∈D ,使得⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.证:不妨设g(x,y)≥0, (x,y)∈D ,则⎰⎰Dd y x g σ),(≥0. 令M,m 分别为f 在D 上的最大、最小值,则 m ⎰⎰Dd y x g σ),(≤⎰⎰Dd y x g y x f σ),(),(≤M ⎰⎰Dd y x g σ),(.若⎰⎰Dd y x g σ),(=0, 则⎰⎰Dd y x g y x f σ),(),(=0,任取(ξ,η)∈D ,得证!若⎰⎰Dd y x g σ),(>0, 则m ≤⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),(≤M. 由介值性定理知,存在一点(ξ,η)∈D ,使得f(ξ,η)=⎰⎰⎰⎰DDd y x g d y x g y x f σσ),(),(),( ,即⎰⎰Dd y x g y x f σ),(),(=f(ξ,η)⎰⎰Dd y x g σ),(.8、应用中值定理估计积分:I=⎰⎰++Dyx d 22cos cos 100σ的值, 其中D={(x,y)||x|+|y|≤10}. 解:∵f(x,y)=yx 22cos cos 1001++ 在D={(x,y)||x|+|y|≤10}上连续,根据中值定理知:存在(ξ,η)∈D ,使得I=ηξ22cos cos 100++∆D, 从而102D ∆≤I ≤100D ∆, △D 为D 的面积,∴51100≤I ≤2.9、证明:若平面曲线x=φ(t), y=ψ(t), α≤t ≤β光滑 (即φ(t),ψ(t)在[α,β]上具有连续导数且φ’2(t)+ψ’2(t)≠0),则 此曲线的面积为0.证法1:该平面曲线L 的长度为l=dt t t ⎰'+'βαψϕ)()(22为有限值.对∀ε>0, 将L 分成n=⎥⎦⎤⎢⎣⎡εl +1段:L 1,L 2,…,L n , 在每段L i 上取一点P i , 使P i 与其一端点的弧长为nl 2,以P i 为中心作边长为的ε正方形△i , 则L i ⊂△i (i=1,2,…,n), 从而L ⊂n i 1= △i ,记△=ni 1= △i ,则△为一多边形.设△的面积W ,则W ≤n ε2=⎪⎭⎫ ⎝⎛+1εlε=(1+ε)ε,∴L 的面积W L ≤W ≤(1+ε)ε. 即此曲线的面积为0.证法2:在曲线上任取参数t 的点M ,∵φ’2(t)+ψ’2(t)≠0, 由隐函数存在定理知,存在σ=(t-δ,t+δ)使曲线上对应的一段可以表示成显式方程.应用有限覆盖定理,[α,β]被开区间集{σ}有限覆盖,得出有限个区间, 使曲线分成有限部分,每一部分可以表示成显式方程y=f(x)或x=g(y), 其中f,g 为连续函数,由定理21.3知光滑曲线的面积为0.。
重积分习题课
![重积分习题课](https://img.taocdn.com/s3/m/9383e678dd36a32d73758190.png)
重积分典型例题一、二重积分的概念、性质1、二重积分的概念:d 01(,)lim(,)niiii Df x y f λσξησ→==∆∑⎰⎰其中:D :平面有界闭区域,λ:D 中最大的小区域的直径(直径:小区域上任意两点间距离的最大值者),i σ∆:D 中第i 个小区域的面积2、几何意义:当(,)0f x y ≥时,d (,)Df x y σ⎰⎰表示以曲面(,)z f x y =为曲顶,D 为底的曲顶柱体的体积。
所以d 1Dσ⎰⎰表示区域D 的面积。
3、性质(与定积分类似)::线性性、对积分区域的可加性、比较性质、估值性质、二重积分中值定理(03年)二、二重积分的计算1、在直角坐标系下计算二重积分(1) 若D 为X 型积分区域:12,()()a x b y x y y x ≤≤≤≤,则21()()(,)(,)by x ay x Df x y dxdy dx f x y dy =⎰⎰⎰⎰(2)若D 为Y 型积分区域:12,()()c y d x y x x y ≤≤≤≤,则21()()(,)(,)dx y cx yf x y dxdy dy f x y dx =⎰⎰(X -型或者Y -型区域之和,如图,则123(,)(,)(,)(,)D D D f x y d x d y f x y d x d y f x y d x d y f x y d x=++⎰⎰⎰⎰⎰⎰⎰(4)被积函数含有绝对值符号时,应将积分区域分割成几个子域,使被积函数在每个子域保持同一符号,以消除被积函数中的绝对值符号。
(5)对称性的应用1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y y D x f x y y ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数1(,)2(,),(,)0(,)DD f x y dxdy f x y dxdy f x y x D y f x y x ⎧=⎪⎨⎪⎩⎰⎰⎰⎰关于为偶函数区域关于轴对称, 关于为奇函数 (6)积分顺序的合理选择:不仅涉及到计算繁简问题,而且又是能否进行计算的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章 重积分
第一节 二重积分的概念与性质
一、填空题
1. 二重积分的定义是对 有界闭 区域上的 有界 函数而说的,当和式的极限0lim λ→()1,n i i
i i f ξησ=Δ∑存在时,二重积分存在,对于 闭 区域上的 连续 _函数,
二重积分一定存在.
2. 设曲顶柱体的顶部曲面函数(,)z f x y =,它的底部区域为,则曲顶柱体的体积表示 D 为(,)d σ∫∫D f x y .
3. 设{}22(,)1D x y x y =+≤,则d D
σ=∫∫π.
4. 由二重积分几何意义,d D x y =3π6a .(为D 222x y a +≤,).
0,0,0x y a ≥≥≥提示:当时,
(,)0f x y ≥(,)d D f x y σ∫∫表示以为底,以曲面D (,)z f x y =为顶的曲顶柱 体的体积
5. 设一平面薄片在xoy 面内占的区域为,且其密度函数D 221(,)()2u x y x y =
+,则此薄 片的质量表示为221()d 2D
x y σ+∫∫ 二、单项选择题
1.()01(,)d lim ,n i i
i i D f x y f λσξησ→==Δ∑∫∫中λ是 D .
A. 最大小区间长
B. 小区域最大面积
C. 小区域直径
D. 小区域最大直径
61
三、解答题
1. 利用二重积分性质估计积分()222d d D I x y x =
++∫∫y 的值,其中1x y +≤. 解:∵01x y ≤+≤,∴2221x y xy ++≤,即2212x y x +≤−y , ∴2222323
x y xy ≤++≤−≤,2242
2d 3d 36D D I σσ==≤≤==∫∫∫∫, ∴即 46I ≤≤.
2. 根据二重积分的性质,比较2()d D x y σ+∫∫与3()d D
x y σ+∫∫的大小,其中由圆周 D 22(2)(1)x y −+−=22)围成.
解:,即22(2)(1)x y −+−≤∵22
(1)22(x y x −++≤+y , ∴22(1)11()2x y x y −+≤+≤23()+,()y x y +≤+,故23()d ()d D D
x y x y σσ+≤+∫∫∫∫. x 62。