多元线性回归SPSS实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 输入
a. 已输入所有请求的变量。
模型汇总
模型
R
R 方 调整 R 方 标准 估计的误差
1
.999a
.998
.997
a. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 普通高校数(所), 发表科技论文数 量(篇), 在校学生数(万人)。
注解:模型的拟合优度检验:
回归分析基本分析: 将毕业生人数移入因变量,其他解释变量移入自变量。在统计量中选择估计和模型拟合度, 得到如图
输入/移去的变量
模型
输入的变量 移去的变量
方法
1
教职工总数(万
人), 专利申请授
权数(件), 研究
与试验发展机构
数(个), 普通高
校数(所), 发表
科技论文数量
(篇), 在校学生
数(万人)a
模型 1
维数 1 2
共线性诊断a
方差比例
特征值
条件索引
(常量)
研究与试 发表科技 专利申请
普通高校 验发展机 论文数量 授权数 在校学生
数(所) 构数(个) (篇)
(件) 数(万人)
教职工总数 (万人)
.00
.00
.00
.00
.00
.00
.00
.352
.00
.00
.00
.00
.04
.00
.00
3
.015
.997
.998 .000 .000 .000 .000
.111 .440
6
7
.000
1
7
.749
1
8
.526
1
9
.135
1
10
.304
a. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 普通高校数(所), 发表 科技论文数量(篇), 在校学生数(万人)。
.693
.511
a. 因变量: 毕业生数(万人)
注解:回归系数的显着性检验以及回归方程的偏回归系数和常数项的估计值 第二列:常数项估计值=;其余是偏回归系数估计值。
第三列:偏回归系数的标准误差。 第四列:标准化偏回归系数。 第五列:偏回归系数T检验的t统计量。 第六列:t统计量对应的概率p值;小于显着性水平,拒接原假设(回归系 数与0不存在显着性差异),认为回归系数部位0,被解释变量与解释变量的线性 关系是显着的;大于显着性水平,接受原假设(回归系数与0不存在显着性差异), 认为回归系数为0被解释变量与解释变量的线性关系不显着的。 于是,多元线性回归方程为:
注解:利用向后筛选策略建立回归模型,经过四步完成回归方程的建立,最终模 型为第五个模型,依次剔除的变量是在校学生数(万人),普通高校数(所),研究 与试验发展机构数(个),专利申请授权数(件)
模型五的负相关系数R=。
判别系数 =.
调整判别系数 =,若将作用不显着的变量引入方程,则该系数会减少。
估计的标准误差=。 模型二中偏F检验的概率P值=,对于显着性水平,接受原假设(剔除变量的 偏回归系数与0无显着性差异),认为:剔除的变量在校大学生人数的偏回归系 数与0无显着性差异。该变量对被解释变量的线性解释没有显着性贡献,不应保 留在回归方程中。 模型三中偏F检验的概率P值=,对于显着性水平,接受原假设(剔除变量的 偏回归系数与0无显着性差异),认为:剔除的变量普通高校数的偏回归系数与0 无显着性差异。该变量对被解释变量的线性解释没有显着性贡献,不应保留在回 归方程中。 模型四中偏F检验的概率P值=,对于显着性水平,接受原假设(剔除变量的 偏回归系数与0无显着性差异),认为:剔除的变量研究与试验发展机构数(个) 的偏回归系数与0无显着性差异。该变量对被解释变量的线性解释没有显着性贡 献,不应保留在回归方程中。 模型五中偏F检验的概率P值=,对于显着性水平,接受原假设(剔除变量的 偏回归系数与0无显着性差异),认为:剔除的变量专利申请授权数(件)的偏回 归系数与0无显着性差异。该变量对被解释变量的线性解释没有显着性贡献,不 应保留在回归方程中。 最终保留的回归方程的变量有:教职工总数和发表论文数 回归方程的DW检验值=,表现残差序列存在正相关。说明该回归方程没有充 分说明被解释变量的变化规律,可能方程中遗漏了一些重要的解释变量
.00
.00
.00
.00
.09
.00
.00
4
.004
.00
Baidu Nhomakorabea.00
.35
.00
.65
.00
.00
5
.001
.00
.96
.09
.02
.15
.00
.00
6
.000
.00
.00
.08
.96
.06
.01
.00
7
.99
.04
.49
.02
.00
.98
a. 因变量: 毕业生数(万人)
注解:第二列:特征根 第三列:条件指数 从条件指数看,第3、4、5、6、7个条件指数都大于10,说明变量之间存
b. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 普通高校数(所), 发表 科技论文数量(篇)。 c. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 发表科技论文数量(篇)。 d. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 发表科技论文数量(篇)。 e. 预测变量: (常量), 教职工总数(万人), 发表科技论文数量(篇)。 f. 因变量: 毕业生数(万人)
机构数(个)
F-to-remove >=
.100 的概率)。
5
. 专利申请授权数 向后(准则:
(件)
F-to-remove >=
.100 的概率)。
a. 已输入所有请求的变量。
b. 因变量: 毕业生数(万人)
注解:引入/剔除变量表
分别剔除在校学生数(万人),普通高校数(所),研究与试验发展机构数(个),专
t
Sig.
1
(常量)
.141
普通高校数(所)
.032
.047
.068
.683
.516
研究与试验发展机构数(个)
.009
.008
.142
.313
发表科技论文数量(篇)
.001
.000
.632
.007
专利申请授权数(件)
.000
.000
.189
在校学生数(万人)
.301
.749
教职工总数(万人)
.556
.001
.000 .632
.007
.008
专利申请授权数(件)
.000
.000
.189
.043
在校学生数(万人)
.301
.749
.000
教职工总数(万人)
.556
.693
.511
.000
a. 因变量: 毕业生数(万人)
从容差和方差膨胀因子来看,在校学生数和教职工总数与其他解释变量的多重共 线性很严重。在重新建模中可以考虑剔除该变量
在多重共线性。 第4-10列:各特征根解释各解释变量的方差比。 从方差比看,第5个特征根解释投入普通高校人数96%;发表科技论文数
49%;可以认为:这些变量存在多重共线性。需要建立回归方程。
2.重建回归方程
模型
输入/移去的变量b
输入的变量
移去的变量
方法
1
教职工总数(万
人), 专利申请授
权数(件), 研究
第五列:回归方程的估计标准误差=
Anovab
模型
平方和
df
均方
F
Sig.
1
回归
6
.000a
残差
7
总计
13
a. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构 数(个), 普通高校数(所), 发表科技论文数量(篇), 在校学生数(万人)。 b. 因变量: 毕业生数(万人)
利申请授权数(件)四个变量
模型汇总f
更改统计量
模型
标准 估计
Sig. F 更 Durbin-Wa
R
R 方 调整 R 方 的误差 R 方更改 F 更改
df1
df2

tson
1
.999a
.998
.997
2
.999b
.998
.998
3
.999c
.998
.998
4
.999d
.998
.997
5
.999e
.998
与试验发展机构
数(个), 普通高
校数(所), 发表
科技论文数量
(篇), 在校学生
数(万人)a
. 输入
2
. 在校学生数(万 向后(准则:
人)
F-to-remove >=
.100 的概率)。
3
. 普通高校数(所) 向后(准则:
F-to-remove >=
.100 的概率)。
4
. 研究与试验发展 向后(准则:
=+ +
+
回归分析的进一步分析: 1.多重共线性检验
系数a
非标准化系数
标准系 数
共线性统计量
模型
标准 误
B
差 试用版 t
Sig.
容差
VIF
(常量)
.141
普通高校数(所)
.032
.047 .068
.683
.516
.022
研究与试验发展机构数(个)
.009
.008 .142
.313
.012
发表科技论文数量(篇)
第二列:两变量(被解释变量和解释变量)的复相关系数R=。 第三列:被解释向量(毕业人数)和解释向量的判定系数 =。
第四列:被解释向量(毕业人数)和解释向量的调整判定系数 =。在多个 解释变量的时候,需要参考调整的判定系数,越接近1,说明回归方程对样本数 据的拟合优度越高,被解释向量可以被模型解释的部分越多。
回归方程的显着性检验-回归分析的方差分析表 F检验统计量的值=,对应的概率p值=,小于显着性水平,应拒绝回归方程显着性 检验原假设(回归系数与0不存在显着性差异),认为:回归系数不为0,被解释 变量(毕业生人数)和解释变量的线性关系显着,可以建立线性模型。
系数a
非标准化系数
标准系数
模型
B
标准 误差 试用版
相关文档
最新文档