人脸检测的基本原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人脸检测的基本原理
1引言
2人脸检测的基本知识
2.1人脸特征
2.2 预处理技术
3图像处理的基本运算方法
3.1数字图像的表示
3.2区域分割与合并的原理
3.3膨胀与腐蚀
1引言
人脸检测是指给定静止图像或视频序列,不管图像中人脸的位置、大小、方向、姿势、光照等如何变化,找到并定位所有人脸确切位置的技术。有很多与人脸相关的研究领域与人脸检测技术紧密相关,比如人脸定位(Face Localization),经过简化的、仅针对包含单个人脸图像的检测技术;人脸跟踪(Face Tracking),在连续的视频序列中实时定位并跟踪人脸的位置;面部特征检测(Facial Feature Detection),准确定位人脸区域内的眼睛、眉毛、鼻子、嘴、嘴唇、耳朵等面部器官的位置;人脸识别(Face Recognition),比较输入图像与已经建好的人脸数据库内各图像间的差异,找到差异最小的作为识别结果输出;面部表情识别(Facial Expression Recognition),识别人脸面部的感情状态,比如高兴、沮丧、悲伤等等。
上述这些人脸处理技术的第一步都是要求准确定位好图像中的人脸,因此一个鲁棒、高效的人脸检测算法对这些技术的发展起着关键的作用。
2人脸检测的基本知识
人脸检测从本质上讲是目标检测的一种,也就是将目标(人脸,Target)与干扰(背景,Clutter)区分开来的过程。
2.1人脸特征
人脸图像中包含的特征非常丰富。人脸检测利用的是人脸的共性特征,大致分为基本特征、肤色特征、变换域特征、统计特征等。
①基本特征
1)灰度特征
人脸区域内具有明显的灰度分布特征。眉、眼和嘴等区域的灰度值较低,前额、脸颊、鼻梁和下颌等区域的灰度值较高。利用这些信息,可以建立简单的人脸模板,用于粗检。例如,多个人脸图像的平均就是一个简单的人脸模板,类似的眼模板和嘴模板也常常使用。
人脸具有明显的灰度梯度分布特征。在人脸区域进行水平和垂直方向的灰度投影,根据极小点的位置可以得到眉、眼、鼻和嘴等器官所处的大致区域。
光照不均对灰度特征有很大的影响。但在偏光的情况下,眼和嘴、鼻和嘴、鼻和脸颊等区域灰度的比值会保持一定的比率。根据这个特点,可采用线性光照拟合和直方图均衡的方法来补偿光照的影响。Log、Exp和LogAbout等一些非线性变换也可用于光照补偿。
2)边缘和形状特征
人脸及人脸器官具有典型的边缘和形状特征,如人脸轮廓、眼睑轮廓、虹膜轮廓、眉毛边缘、鼻侧线和嘴唇轮廓等均可近似视为椭圆、圆、弧线或线段等简单的几何单元。可采用Sobel、Laplacian和Canny等算子或小波变换提取这些边缘特征。
噪声的存在会导致边缘的不连续,常采用边缘跟踪器把属于同一轮廓的各段边缘连接起来,并通过约束搜索范围防止边缘跟踪失败。数学形态学的腐蚀与膨胀运算与Hough变换也常用于提取人脸轮廓特征,并对噪声有较好的适应性。应用Snakes模型或主动形状模型(ASM,Active Shape Model)能够较好地抽取人脸的边缘特征,但这些模型需要一个较好的初始化位置。
尽管在强光照变化下也会产生一些伪边缘,但相对于灰度特征,边缘特征对光照变化具有一定的鲁棒性。
3)结构特征
结构特征主要表现在人脸的对称性和各个器官的空间位置分布。
人脸在结构上的对称性是十分有用的特征。正面人脸左右对称,对应位置上的边缘和灰度特征基本一致;同时,各个器官也具有自身的对称性,比如双眼、鼻子、耳朵等。
面部器官如眉毛、眼睛、鼻子、嘴等,是按一定位置关系组织在一起的。各器官按照从上而下的顺序排列,相对位置保持不变。各器官间还存在着一些几何关系,比如两眼和嘴中心构成一个三角形、鼻子的中心大致位于这个三角形的中心等。
根据这些结构特征,配合前面介绍的灰度特征和边缘、形状特征,可以建立基本的规则,区分人脸区域与背景。
4)纹理特征
人脸具有特定的纹理分布特征,基于灰度共生(SGLD,Space Grey Level Dependency)矩阵建立人脸纹理特征模型,得到表征人脸的一系列纹理特征。
②肤色特征
肤色特征按类别划分应属于人脸基本特征,但其在彩色图像人脸检测中所起到的作用非常重要。
肤色是脸部区别于其他区域的重要特征,不依赖于面部细节特征,不受旋转、姿势、表情等变化的影响,具有相对稳定性并和大多数背景物体颜色相区别,已成为彩色图像人脸检测中的一个非常重要的特征。
尽管不同种族、不同年龄、不同光照条件下,肤色区域呈现不同的颜色,但相关研究证明,不同类的肤色点间的差别更多的在于颜色中的亮度分量,而色度分量在各肤色点间变化不大。由此,可以在特定的色彩空间中建立肤色模型,描述人脸肤色的特征,有效去除图像中复杂背景的干扰、减小待搜索范围。
常用的色彩空间有RGB、归一化RGB、HSV、YCbCr、YIQ、YES、CIE XYZ、CIE LUV、CIE Lab、CIE DSH、TSL等,常用的肤色模型有直方图模型、高斯模型、混合高斯模型等。
③变换域特征
基于FFT、DCT、小波、K-L等变换,根据能量规则选择一系列系数作为表征人脸图像的特征。
人脸识别中广泛使用的本征脸(Eigen Face)以及最近流行的类Haar特征(Haar-like feature)均属于变换域特征。
目前图像大多以压缩的格式存在,各个图像压缩标准广泛地应用了DCT和小波变换,因此,研究如何有效地提取这些变换域下的人脸特征,具有很强的实际意义,已成为目前一个很受重视的研究方向。
④统计特征
由于人脸图像模式的复杂性,能够用来描述人脸共性特点的显式特征是有限的,而由此建立起的人脸规则的有效性也有很大的局限性。解决这个问题的办法就是更多地使用人脸图像的统计特征,也可称为隐式特征。