等差数列单元测试题含答案 百度文库(1)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个

B .3个

C .2个

D .1个

2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21

2

,则该数列的项数是( ) A .8

B .4

C .12

D .16

3.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1

B .2

C .3

D .4

4.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200

B .100

C .90

D .80

5.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .

825

两 B .

845

两 C .

865

两 D .

885

两 6.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 7.在等差数列{a n }中,a 3+a 7=4,则必有( )

A .a 5=4

B .a 6=4

C .a 5=2

D .a 6=2

8.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列

D .S 2,S 4+S 2,S 6+S 4必成等差数列

9.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2

10.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8

B .13

C .26

D .162

11.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( )

A .132项

B .133项

C .134项

D .135项

12.已知等差数列{}n a 中,前n 项和2

15n S n n =-,则使n S 有最小值的n 是( )

A .7

B .8

C .7或8

D .9

13.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60

B .11

C .50

D .55

14.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103

B .107

C .109

D .105

15.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21

B .15

C .10

D .6

16.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )

A .7

B .9

C .21

D .42

17.已知递减的等差数列{}n a 满足22

19a a =,则数列{}n a 的前n 项和取最大值时n =( )

A .4或5

B .5或6

C .4

D .5

18.在数列{}n a 中,11a =,且11n

n n

a a na +=+,则其通项公式为n a =( ) A .

21

1n n -+

B .2

1

2n n -+

C .22

1

n n -+

D .2

2

2

n n -+

19.在1与25之间插入五个数,使其组成等差数列,则这五个数为( ) A .3、8、13、18、23 B .4、8、12、16、20 C .5、9、13、17、21

D .6、10、14、18、22

20.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231

n n a n b n =+,则2121S T 的值为( )

A .

13

15

B .

2335

C .

1117 D .

49

二、多选题

21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}

F n ,则(){}

F n 的通项公式为( )

A .(1)1()2

n n F n -+=

相关文档
最新文档