虚拟现实技术概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
虚拟现实技术
——让所有的“白日梦”得以“实现”
F0503028 5050309224 龚启豪
摘要:本文介绍了虚拟现实技术的基本概念、该技术的系统组成、还有实现该技术所需要的一些设备、并重点论述了分布式虚拟现实系统的应用和发展前景。
关键字:虚拟现实技术 虚拟现实前景 虚拟技术的代表设备
导读:人类有许多梦想,一些梦想已经变为现实,而有一些梦想也许永远都不可能实现。
然而,有一种技术却能使一切梦想全部实现,这就是虚拟现实技术(Virtual Reality,简称VR)。
正如其它新兴科学技术一样,虚拟现实技术也是许多相关学科领域交叉、集成的产物。
就像电影《黑客帝国》里描述的那样,未来的我们竟可以生活在一个由电脑控制的虚拟世界里。
在这个世界里,我们同样拥有各种感觉,同样拥有亲戚朋友,同样拥有工作,同样拥有现实世界的一切“真实”。
只是,这一切都是虚拟的。
人类有许多梦想,一些梦想已经变为现实,而有一些梦想也许永远都不可能实现。
然而,有一种技术却能使一切梦想全部实现,这就是虚拟现实技术(Virtual Reality,简称VR)。
基本概念
概括地说,虚拟现实是人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式,与传统的人机界面以及流行的视窗操作相比,虚拟现实在技术思想上有了质的飞跃。
虚拟现实中的“现实”是泛指在物理意义上或功能意义上存在于世界上的任何事物或环境,它可以是实际上可实现的,也可以是实际上难以实现的或根本无法实现的。
而“虚拟”是指用计算机生成的意思。
从本质上来说,虚拟现实就是一种先进的计算机用户接口,它通过给用户同时提供诸如视觉、听觉、触觉等各种直观而又自然的实时感知交互手段,最大限度地方便用户的操作。
虚拟现实的定义可以归纳如下:虚拟现实是利用计算机生成一种模拟环境(如飞机驾驶舱、操作现场等),通过多种传感设备使用户“投入”到该环境中,实现用户与该环境直接进行自然交互的技术。
虚拟现实技术因此具有以下四个重要特征:
多感知性 :所谓多感知性就是说除了一般计算机所具有的视觉感知外,还有听觉感知、力觉感知、触觉感知、运动感知、甚至包括味觉感知、嗅觉感知等。
理想的虚拟现实就是应该具有人所具有的感知功能。
存在感:又称临场感,它是指用户感到作为主角存在于模拟环境中的真实程度。
理想的模拟环境应该达到使用户难以分辨真假的程度。
交互性:交互性是指用户对模拟环境内物体的可操作程度和从环境得到反馈的自然程度(包括实时性)。
例如,用户可以用手去直接抓取环境中的物体,这时手有握着东西的感觉,并可以感觉物体的重量,视场中的物体也随着手的移动而移动。
自主性:是指虚拟环境中物体依据物理定律动作的程度。
例如,当受到力的推动时,物体会向力的方向移动、或翻倒、或从桌面落到地面等。
虚拟现实系统的构成
虚拟现实系统的模型表示如图(1)。
用户通过传感装置直接对虚拟环境进行操作,并得到实时三维显示和其它 反馈信息(如触觉、力觉反馈等)。
当系统与外部世界通过传感装置构成反馈闭环时,在用户的控制下,用户与虚拟环境间的交互可以对外部世界产生作用(如遥操作等)。
图(1)虚拟现实系统的模型
一般来说,一个完整的虚拟现实系统由虚拟环境、以高性能计算机为核心的虚拟环境处理器、以头盔显示器为核心的视觉系统、以语音识别、声音合成与声音定位为核心的听觉系统、以方位跟踪器、数据手套和数据衣为主体的身体方位姿态跟踪设备,以及味觉、嗅觉、触觉与力觉反馈系统等功能单元构成。
这里,虚拟环境处理器是VR系统的心脏,完成虚拟世界的产生和处理功能。
输入设备给VR系统提供来自用户的输入,并允许用户在虚拟环境中改变自己的位置、视线方向和视野,也允许改变虚拟环境中虚拟物体的位置和方向。
而输出设备是由VR系统把虚拟环境综合产生的各种感官信息输出给用户,使用户产生一种身临其境的逼真感。
其主要的研究内容包括以下几个方面:
(1)动态环境建模技术
虚拟环境的建立是虚拟现实技术的核心内容。
动态环境建模技术的目的是获取实际环境的三维数据,并根据应用的需要,利用获取的三维数据建立相应的虚拟环境模型。
三维数据的获取可以采用CAD技术(有规则的环境),而更多的环境则需要采用非接触式的视觉建模技术,两者的有机结合可以有效地提高数据获取的效率。
(2)实时三维图形生成技术
三维图形的生成技术已经较为成熟,其关键是如何实现“实时”生成。
为了达到实时的目的,至少要保证图形的刷新率不低于15桢/秒,最好是高于30桢/秒。
在不降低图形的质量和复杂度的前提下,如何提高刷新频率将是该技术的研究内容。
(3)立体显示和传感器技术
虚拟现实的交互能力依赖于立体显示和传感器技术的发展。
现有的虚拟现实还远远不能满足系统的需要,例如,数据手套有延迟大、分辨率低、作用范围小、使用不便等缺点;虚拟现实设备的跟踪精度和跟踪范围也有待提高,因此有必要开发新的三维显示技术。
(4)应用系统开发工具
虚拟现实应用的关键是寻找合适的场合和对象,即如何发挥想象力和创造力。
选择适当的应用对象可以大幅度地提高生产效率、减轻劳动强度、提高产品开发质量。
为了达到这一目的,必须研究虚拟现实的开发工具。
例如,虚拟现实系统开发平台、分布式虚拟现实技术等。
(5)系统集成技术
由于虚拟现实中包括大量的感知信息和模型,因此系统的集成技术起着至关重要的作用。
集成技术包括信息的同步技术、模型的标定技术、数据转换技术、数据管理模型、识别和合成技术等等。
代表性设备
在VR系统中,有许多有趣的、功能不同的专用设备,下面选一些代表性的设备加以介绍。
BOOM可移动式显示器:它是一种半投入式视觉显示设备。
使用时,用户可以把显示器方便地置于眼前,不用时可以很快移开。
BOOM使用小型的阴极射线管,产生的像素数远远小于液晶显示屏,图像比较柔和,分辨率为1280×1024像素,彩色图像。
数据手套:数据手套是一种输入装置,它可以把人手的动作转化为计算机的输入信号。
它由很轻的弹性材料构成。
该弹性材料紧贴在手上,同时附着许多位置、方向传感器和光纤导线,以检测手的运动。
光纤可以测量每个手指的弯曲和伸展,而通过光电转换,手指的动作信息可以被计算机识别。
TELETACT手套:它是一种用于触觉和力觉反馈的装置,利用小气袋向手提供触觉和力觉的刺激。
这些小气袋能被迅速地加压和减压。
当虚拟手接触一件虚拟物体时,存储在计算机里的该物体的力模式被调用,压缩机迅速对气袋充气或放气,使手部有一种非常精确的触觉。
数据衣是为了让VR系统识别全身运动而设计的输入装置。
数据衣对人体大约50多个不同的关节进行测量,包括膝盖、手臂、躯干和脚。
通过光电转换,身体的运动信息被计算机识别。
通过BOOM显示器和数据手套与虚拟现实交互数据衣。
虚拟现实技术的应用前景
虚拟现实的本质是人与计算机的通信技术,它几乎可以支持任何人类活动,适用于任何领域。
所以虚拟现实技术的应用前景是很广阔的。
它可应用于建模与仿真、科学计算可视化、设计与规划、教育与训练、遥作与遥现、医学、艺术与娱乐等多个方面。
下面我们分别讨论几个典型的应用例子。
较早的虚拟现实产品是图形仿真器,其概念在60年代被提出,到80年代逐步兴起,90年代有产品问世。
1992年世界上第一个虚拟现实开发工具问世,1993年众多虚拟现实应用系统出现,1996年NPS公司使用惯性传感器和全方位踏车将人的运动姿态集成到虚拟环境中。
到1999年,虚拟现实技术应用更为广泛,涉足航天、军事、通信、医疗、教育、娱乐、图形、建筑和商业等各个领域。
专家预测,随着计算机软、硬件技术的发展和价格的下降,预计本世纪虚拟现实技术会进入家庭。
VR技术在医疗领域也大有作为。
该技术可用于解剖教学、复杂手术过程的规划,在手术过程中提供操作和信息上的辅助,预测手术结果等。
另外,在远程医疗中,虚拟现实技术也很有潜力。
例如在偏远的山区,通过远程医疗虚拟现实系统,患者不进城也能够接受名医的治疗。
对于危急病人,还可以实施远程手术。
医生对病人模型进行手术,他的动作通过卫星传送到远处的手术机器人。
手术的实际图像通过机器人上的摄像机传回医生的头盔立体显示器,并将其和虚拟病人模型进行叠加,为医生提供有用的信息。
美国斯坦福国际研究所已成功研制出远程手术医疗系统。
在航天领域,VR技术也非常重要。
例如,失重是航天飞行中必须克服的困难,因为在失重情况下对物体的运动难以预测。
为了在太空中进行精确的操作,需要对宇航员进行长时间的失重仿真训练。
为了逼真地模拟太空中的情景,美国航天局NASA在“哈勃太空望远镜的修复和维护”计划中采用了VR仿真训练技术。
在训练中,宇航员坐在一个模拟的具有“载人操纵飞行器”功能并带有传感装置的椅子上。
椅子上有用于在虚拟空间中作直线运动的位移控制器和用于绕宇航员重心调节宇航员朝向的旋转控制器。
宇航员头戴立体头盔显示器,用于显示望远镜、航天飞机和太空的模型,并用数据手套作为和系统进行交互的手段。
训练时宇航员在望远镜周围就可以进行操作,并且通过虚拟手接触操纵杆来抓住需要更换的“模块更换仪”。
抓住模块更换仪后,宇航员就可以利用座椅的控制器在太空中飞行。
在对象可视化领域中,VR技术应用的例子是模拟风洞。
模拟风洞可以让用户看到模拟的空气流场,使他感到就像真的站在风洞里一样。
虚拟风洞的目的是让工程师分析多旋涡的复杂三维性和效果、空气循环区域、旋涡被破坏的乱流等。
例如,可以将一个航天飞机的CAD模型数据调入模拟风洞进行性能分析。
为了分析气流的模式,可以在空气流中注入轨迹追踪物,该追踪物将随气流飘移,并把运动轨迹显示给用户。
追踪物可以通过数据手套投降到任意指定的位置,用户可以从任意视角观察其运动轨迹。
在军事领域中,VR技术应用的一个例子是作战仿真系统
各个国家在传统上习惯于通过举行实战演习来训练军事人员和士兵,但是这种实战演练,特别是大规模的军事演习,将耗费大量资金和军用物资,安全性差,而且还很难在实战演习条件下改变状态,来反复进行各种战场态势下的战术和决策研究。
近年来,虚拟现实技术的应用,使得军事演习在概念上和方法上有了一个新的飞跃,即通过建立虚拟战场来检验和评估武器系统的性能。
例如一种虚拟战场环境,它能够包括在地面行进的坦克和装甲车,在空中飞行的直升机、歼击机、导弹等多种武器平台,并分别属于红、兰交战双方。
图(2)为一多机空仿真系统,它除了多台有人驾驶的飞机模拟器和“数字”飞机外,在网上还连着地面威胁环境、空中威胁环境、背景干扰环境等结点。
该系统的主要研究目的是对飞机的飞行、火控、航空电子系统进行综合研究,同时研究多机协同空战战术。
图(2)多机空仿真系统
当然,虚拟现实技术的应用远不止以上这些。
随着计算机技术的进一步发展,虚拟现实与我们的生活将日益密切。
虚拟现实技术的进一步展望
正如其它新兴科学技术一样,虚拟现实技术也是许多相关学科领域交叉、集成的产物。
它的研究内容涉及到人工智能、计算机科学、电子学、传感器、计算机图形学、智能控制、心理学等。
我们必须清醒地认识到,虽然这个领域的技术潜力是巨大的,应用前景也是很广阔的,但仍存在着许多尚未解决的理论问题和尚未克服的技术障碍。
客观而论,目前虚拟现实技术所取得的成就,绝大部分还仅仅限于扩展了计算机的接口能力,仅仅是刚刚开始涉及到人的感知系统和肌肉系统与计算机的结合作用问题,还根本未涉及“人在实践中得到的感觉信息是怎样在人的大脑中存储和加工处理成为人对客观世界的认识”这一重要过程。
只有当真正开始涉及并找到对这些问题的技术实现途径时,人和信息处理系统间的隔阂才有可能被彻底的克服了。
我们期待这有朝一日,虚拟现实系统成为一种对多维信息处理的强大系统,成为人进行思维和创造的助手和对人们已有的概念进行深化和获取新概念的有力工具。
参考文献:
1、《虚拟现实技术的应用现状及发展》 /XSLW/LGL/20 0509/21454.html
2、林京彤虚拟现实技术漫谈 images工作室
3、《走进前沿技术》 上海科学技术文献出版社 2002年。