常规板坯连铸机结晶器技术(知识学习)

合集下载

连铸连轧生产:结晶器

连铸连轧生产:结晶器

双锥度、多锥度甚至抛物线型锥度,以便更符合钢液凝固时体
积的变化规律,但是这种结晶器加工困难,使用并不普遍。
2.4.2 结晶器的重要参数
2 结晶器倒锥度
实际生产过程中要根据铸坯断面、拉速和钢的高温收缩率综 合选定合适的结晶器倒锥度,如果倒锥度选取过小,则坯壳与 结晶器铜板之间的气隙过大,可能导致铸坯变形,产生角部纵 裂纹等缺陷;如果倒锥度选取过大,会增加拉坯阻力,容易产 生横裂纹。
谢谢同学们!
对于板坯连铸机,目前都是采用宽度可调的结晶器。
2.4.1 结晶器的类型与构造
(3)多级结晶器:随着连铸技术的不断发展进步,连铸机 的拉速不断提高,出结晶器下口时坯壳的厚度越来越薄,为了 避免因坯壳厚度过薄导致漏钢等恶性事故,在结晶器下口安装 足辊、冷却板或冷却格栅,称为多级结晶器。
2.4.1 结晶器的类型与构造
1605
8
1702
1685
8.5
1803
1785
9
2007
1985
11ቤተ መጻሕፍቲ ባይዱ
2.4.2 结晶器的重要参数
3 结晶器断面 (3)板坯结晶器
B 结晶器窄边,与结晶器的辊缝制度以及动态轻压下工艺密
切相关,不同连铸机差别很大,所以无法推荐普遍适用的计算
公式。对于具有全程动态轻压下连铸机,可以参考
250mm 300mm 400mm
2.4 结晶器
2.4.2 结晶器的重要参数
1 长度 作为一次冷却,结晶器长度是一个非常重要的参数,它是保 证连铸坯出结晶器时能否具有足够安全坯壳厚度的重要因素。 如果长度太短,出结晶器下口时铸坯厚度达不到安全厚度,容 易产生漏钢事故;如果长度太长,拉坯阻力大,加工也困难。 所以,确定结晶器长度的主要依据是铸坯出结晶器下口时的坯 壳最小安全厚度,具体计算过程如下:

板坯连铸机结晶器的设计及计算

板坯连铸机结晶器的设计及计算

油缸卸压后 , 靠碟形弹簧的压力使窄边夹紧。 ( 6 ) 各种冷却水配管 结晶器冷却水及板坯二次冷却喷水配管, 通过振
动 台上 的平 面密封 使水路 自行接通 。 ( 7 ) 润滑及液 压
3 6 2 0 1 / m i n
5 0 5 1 / m i n
大连华锐重工集团股份有限公 司设计研 究院
摘 要: 通过 一 系列说 明 、 计算 , 概 述 了板 坯连 铸机结 晶器
张梁敬


的型式 、 功能特点及设计 要点。
关键词: 板坯连铸 ; 结 晶器 ; 冷却水量 ; 调宽装置 ; 内腔尺寸
板整体拆除刨修。 水箱内设有供结晶器冷却用的水冷 通道 , 在与背板贴合 的铜板表面上开有水槽 , 连续铸 钢期 间与宽 面铜板 接触 的钢水 热量通 过 这些水 槽 中
流动 的冷 却水导走 。
l 概 述
结晶器是连铸机 中的铸坯成型设备。其作用是
将连续 不断 地 注入其 内腔 的钢 液通过 水冷 铜壁 强制
冷却 , 导出钢液的热量 , 使之逐渐凝固成为具有所要 求 的断面形状和一定坯壳厚度的铸坯 ,并使这种芯 部仍为液相的铸坯连续从结晶器下 口拉出,为其在 以后的二冷区域内完全凝固创造条件。文章围绕板 坯连铸机结晶器型式及功能予以阐述 ,并针对相关 应 用进行分 析计算 。
是通过长螺栓与内、 外弧水箱把合的, 在发生漏钢事 故或安装调整时操作方便 。用于冷却铸坯的喷水配 管分别安在内、外弧水箱 的底部通过喷嘴从两侧冷
却铸坯 。
( 3 ) 左、 右窄边及窄边导向装置 左、 右窄边铜 板与背板把合后通 过卡板 与螺栓与 压板连在一起, 冷却水从窄面压板进出。与宽面铜板 样, 窄边铜 板也开有冷却水槽 对铜板进行 冷却 。

连铸圆坯结晶器

连铸圆坯结晶器

连铸机结晶器总成1、结晶器总成组合式结晶器由结晶器本体、支撑框架以及足锟等部件组成。

结晶器本体由4块铜板及支撑板组合而成,用螺栓连接为一体;支撑框架带有定位、固定装置和冷却水通道;足锟包括支架、锟子、轴承、水管和喷嘴等。

组合式结晶器可以配置液位检测装置、外置式电磁搅拌装置。

2、结晶器结构特点A、结晶器本体两块弧面铜板和两块侧面铜板组合成结晶器内腔,铜板上加工有若干冷却水槽(即水缝),用螺钉将铜板与支承板(也称为背板)连接。

支承板上设有冷却水通道,冷却水从振动台上的供水孔进入支撑框架再进入支承板,再通过支撑框架流回到振动台上的回水孔。

设计时,需要根据冷却水压强核算螺钉连接的受力及强度,并调整连接螺钉数量,直至满足要求。

一般情况下,两排螺钉之间布置5~6条水缝。

结晶器内腔角部的倒角一般采用早弧面和侧面铜板的结合部位垫有带45°斜面的铜质垫板形成;也有直接在侧面铜板上加工出倒斜角斜面的。

铜板厚度一般为45~50mm,主要取决于水缝深度和再加工要求。

可采用的材质有Cu—Ag和Cu—Cr—Zr。

如果连铸机拉速不高,相应铜板热面温度不超过250℃,可以采用Cu—Ag。

随着连铸技术发展和操作水平提高,连铸机拉速也相应提高,结晶器铜板有必要采用Cu—Cr—Zr合金,可以满足热面温度为350℃甚至更高的工况。

目前,国内方坯结晶器铜板次用Cu—Ag和Cu—Cr—Zr的都有,采用Cu—Cr—Zr的日趋增多。

为了提高结晶器使用寿命,铜板都会经过表面处理,即镀层。

典型的镀层材料有Cr、Ni、Ni—Fe、Ni—Co、Co—Ni。

Cr的硬度高,督促呢个化学稳定性好,但Cr与Cu的线膨胀系数差距较大,镀层结合力差,镀层易剥落。

Ni与Cu的结合力好,但其镀层硬度相对较低,高温耐磨性差。

现已很少采用单独镀Cr或Ni得铜板。

Ni—Fe、Ni—Co、Co—Ni都有硬度高、耐磨性好的特点,其中Ni—Fe的化学稳定性较差,其镀层韧性随着硬度增加会降低;Ni—Co的抗热交变性稍差;Co—Ni的材料成本较高。

连铸工艺与设备结晶器PPT学习教案

连铸工艺与设备结晶器PPT学习教案
第19页/共85页
20/86
4.2 结晶器的新形式新技术
热顶结晶器 ➢在结晶器弯月面区域镶嵌导热材料,以减少热流密度 ,延缓坯壳收缩,即热顶结晶器。 喷淋式结晶器 ➢喷淋式结晶器是将管式结晶器隔离水缝改为喷淋水冷 却,即由喷嘴喷出的喷淋水直接喷到结晶器铜管上实现 冷却。冷却效率高,有较显著的节水效果。
连铸工艺与设备结晶器
会计学
1
4.1 结晶器
结晶器是连铸机的关键部件。它的作用是: ➢在尽可能高的拉速下,保证出结晶器坯壳厚度,防 止拉漏; ➢通过结晶器的振动,使坯壳脱离结晶器壁而不被拉 断和漏钢; ➢保证坯壳均匀稳定的生成,铸坯周边厚度均匀; ➢使钢液逐渐凝固成所需要规格、形状的坯壳; ➢通过调整结晶器的参数,使铸坯不产生脱方、鼓肚 和裂纹等缺陷。
第9页/共85页
10/86
4.1 结晶器形式和结构-构造
➢弧形结晶器(curved mold)用在全弧形和超低头型( 椭圆形)连铸机上。对弧形结晶器来说,两块侧面复 合板是平的,内外弧复合板做成弧形的。弧形结晶 器在导热性能方面不如直结晶器,且非金属夹杂物 上浮时,易在内弧侧1/4处集聚,夹杂物分布不均, 影响铸坯内部质量。弧形结晶器的内壁沿坯壳移动 方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导 热性比直形结晶器差;弧形结晶器用在全弧形和椭 圆形连铸机上。所以,目前新建大型板坯连铸机多 采用直结晶器。
67~134kJ/kg。结晶器长度又较短,一般不超过1m
,在这样短的距离内要能带走大量的热量,要求它必
须具有良好的导热性能。若导热性能差,会使出结晶
器的铸坯坯壳变薄,为防止拉漏,只好降低拉速,因
此结晶器具有良好的导热性是实现高拉速的重要前提

第5页/共85页

连铸知识概述技师教程(二)

连铸知识概述技师教程(二)

第九章连铸知识概述9.1 连铸简介连铸即连续铸钢,就是将钢包内注入中间包,减压、稳压后不断地通过水冷结晶器,凝成坯壳后从结晶器下方出口连续拉出,经气雾/喷水冷却,全部凝固后切成定尺坯料的铸造工艺。

连铸成上启下的作用,其将合格的钢水转变定尺钢坯,为轧钢提供原料。

9.1.1 连铸原理金属凝固:在一定过冷度和结晶核心存在的条件下,液态中无规则的原子集团转变为按一定规则排列的固体结晶体的过程。

凝固需要两条件:过冷度、有结晶核心(形核粒子)。

过冷度越大,形核粒子越多,结晶过程越易进行。

连铸过程的热量传输:要将钢水的显热(从浇注温度到凝固点温度需放出的热量)和结晶潜热(在凝固点由液态转变为固态须放出的热量)释放到冷却介质中去。

热量的传导方式:传导、对流、辐射三中传热方式。

连铸工艺中的传热也就是以上三种方式。

9.1.2 连续铸钢的发展历史最早提出连续铸钢:1886年美国炼钢工程师B·Atha和1887年德国工程师R·M·Dlaelm。

并进行相关的工业性试验。

20世纪40年代试验开发。

20世纪50年代,连续铸钢开始步入工业生产。

20世纪60年代,弧形连铸机问世。

20世纪80年代,连续铸钢技术已经成熟,并得到大规模的应用。

马钢84年分别在二钢、三钢各建设1台小方坯连铸机起步,经过近18年的发展,三个炼钢厂实行了全连铸,现在马钢四个炼钢厂连铸坯产量达到1500万吨规模。

9.1.3 连铸坯质量9.1.3.1 铸坯质量表面急冷层:细等轴晶,中间枝状晶(比较发达)、中心等轴晶。

连铸坯轧出的钢材:屈服强度、抗拉强度、冲击韧性与模铸锭经开坯、轧制的钢材相当,甚至略有提高。

随着结晶器、结晶末端电磁搅拌、连铸坯轻压下技术的应用,连铸能生产几乎所有的钢种。

9.1.3.2连铸坯的压缩比对一般要求的板带材,连铸坯的压缩比4~6就可满足。

对特殊要求的板带材和表面缺陷敏感的钢种,连铸坯的压缩比要相应提高。

在保证一定压缩比的情况下,满足钢材性能要求,连铸坯的厚度减小,可减少轧制道次,提高轧制生产率,节约能源。

连铸结晶器相关技术

连铸结晶器相关技术
连铸技术的发展趋势
• 洁净钢生产重要组成环节
(保护浇注,中间包冶金)
• 高效连铸
• 铸坯质量在线监控 • 近终形连铸连轧
连铸结晶器技术
• 原理:结晶器钢水凝固传热
• 结晶器设计、参数优化与应用维护
• 操作:低温、恒速技术;异常及对策
• 结晶器振动控制 • 结晶器钢液流量控制及控流装置
连铸结晶器技术
• 漏钢报警发出后,漏钢预报系统向拉矫驱动系统发出
自动降速指令,拉矫驱动系统自动将拉坯速度降低为 0.1m/min,从而有效地防止漏钢事故的发生。
• 停浇操作
操作异常及对策

• •
注流失控
漏钢:开浇漏钢,注中漏钢,粘结漏钢 水口堵塞

结晶器设备故障
结晶器振动
1 、振动防止粘结的原理 粘结— 拉断— 填充— 受压— 愈合— 脱模 (上振) (下振)
※负滑脱:拉坯时MD下振速度有一段时间大于拉速,坯壳 相对于MD产生向上的运动。
2 、振动的作用:
防止铸坯粘结拉裂漏钢
有利于保护渣渗入,改善润滑,改善铸坯表面质量
结晶器振动波形与参数优化
• 非正弦振动:非正弦振动通过增加上振时间缩短
下振时间,以缩小结晶器向上振动速度与拉坯 速度差,且增加保护渣的渗入,来防止粘结和 改善润滑。 • 非正弦振动具有增加保护渣用量、改善结晶器 润滑、减轻铸坯表面振痕、减小坯壳的拉应力、 减小粘结性漏钢等作用
坯壳的不均匀性是大部分表面缺陷的起源
结晶器设计、参数优化与应用维护
按形状:
• 板坯 • 方坯、圆坯 • 薄板坯
按结构:
• 套管式结晶器、 • 可调宽度结晶器
MD性能要求:
(1)良好的导热性; (2)结构刚性要好; (3)装拆和调整方便; (4)工作寿命长; (5)振动时惯性力要小。

连铸工艺知识点总结

连铸工艺知识点总结

连铸工艺知识点总结一、概述连铸是指在一台设备上同时进行浇铸和凝固过程的一种工艺。

它可以大幅度提高生产效率,减少材料浪费,提高产品质量。

在现代工业中,连铸工艺已经被广泛应用于钢铁、铝、铜等金属的生产中,成为了重要的生产工艺之一。

二、连铸的原理连铸的基本原理是利用连铸机,在一个连续的过程中,将金属液直接浇注至坯料模具中,然后通过顺序凝固、切割、堆垛等工序,最终产生坯料产品。

整个连铸过程中,金属液会先经过结晶器的处理,实现坯料的凝固,在这个过程中,还会进行一系列的拉伸、抽拉和冷却等操作,使得坯料的形状和尺寸得以控制和稳定。

三、连铸的优势1. 提高生产效率:相对于传统浇铸工艺,连铸可以大幅度提高生产效率。

因为它可以在同一个设备上连续进行浇铸和凝固过程,减少了生产过程中的空闲时间,从而实现了生产效率的提升。

2. 减少材料浪费:连铸工艺可以减少金属的二次加工过程,大大减少了金属的浪费,减少了材料的消耗,同时也减少了对环境的污染。

3. 提高产品质量:由于连铸工艺可以控制金属的凝固过程,使得坯料的材料结构更加均匀,从而提高了产品的质量。

4. 节省能源:相对于传统的浇铸工艺,连铸工艺可以在生产过程中更好地利用能源,降低能源的消耗。

四、连铸的工艺流程1. 铸坯模具的准备:连铸的第一步是准备好适用于连铸工艺的铸坯模具,通常采用的是一种特殊的铸坯模具,可以确保坯料的形状和尺寸的准确度。

2. 结晶器处理:在连铸的过程中,金属液会通过结晶器进行处理,实现坯料的凝固。

3. 拉伸、抽拉和冷却:在结晶器处理完后,金属液会经过一系列的拉伸、抽拉和冷却等操作,以控制坯料的形状和尺寸。

4. 切割和堆垛:最后,坯料会被切割为所需的尺寸,然后进行堆垛,完成整个连铸工艺的过程。

五、连铸的应用领域1. 钢铁生产:连铸工艺在钢铁生产中得到了广泛的应用,可以高效地生产出各种规格的钢铁坯料。

2. 铝合金生产:在铝合金生产中,连铸工艺可以提高产品质量,降低生产成本。

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术【保护视力色】【打印】【进入论坛】【评论】【字号大中小】2006-12-0711-07杨拉道刘洪王永洪刘赵卫邢彩萍田松林 (西安重型机械研究所)结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。

其作用是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部仍为液相的铸坯连续不断地从结晶器下口拉出.为其在以后的二冷区域内完全凝固创造条件。

在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中.结晶器一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响.使结晶器同时处于机械应力和热应力的综合作用之下.工作条件极为恶劣.在此恶劣条件下结晶器长时间地工作.其使用状况直接关系到连铸机的性能.并与铸坯的质量与产量密切相关。

因此.除了规范生产操作、选择合适的保护渣和避免机械损伤外.合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础和关键。

板坯连铸机一般采用四壁组合式(亦称板式)结晶器.也有一个结晶器浇多流铸坯的插装式结构。

结晶器主要参数的确定1 结晶器长度H结晶器长度主要根据结晶器出口的坯壳最小厚度确定。

若坯壳过薄.铸坯就会出现鼓肚变形.对于板坯连铸机.要求坯壳厚度大于10~15mm。

结晶器长度也可按下式进行核算:H=(δ/K)2Vc+S1+S2 (mm)式中δ——结晶器出口处坯壳的最小厚度.mmK——凝固系数.一般取K=18~22 mm/min0.5Vc——拉速.mm/minS1——结晶器铜板顶面至液面的距离.多取S1=100 mmS2——安全余量.S=50~100 mm对常规板坯连铸机可参考下述经验:当浇铸速度≤2.0m/min时.结晶器长度可采用900~950mm。

当浇铸速度2.0~3.0m/min时.结晶器长度可采用950~1100mm。

当浇铸速度≥3.0m/min时.结晶器长度可采用1100~1200mm。

结晶器班培训

结晶器班培训
• ⑴、圆度:足辊用百分表检测时跳动量>1.5mm,必须更 换足辊。 • 原因:大于1.5mm足辊会使辊间距调整精度失真,并且转 动时对铸坯施加不均匀的压力 ,也使辊间距变化,辊间 距不断变化使铸坯的断面尺寸随之变化,铸坯产生压坑。 • ⑵、足辊表面光洁度:足辊表面小坑的面积<2mm*2mm、 深度<0.5mm。 • 原因:足辊表面有龟裂、小坑等缺陷,会给铸坯表面带来 裂纹、小坑、麻点等缺陷。
• 1、通常用结晶器的过钢量来标定结晶器寿命,结晶器铜 管到期寿命的判定主要依据两个重要参数,即倒锥度和磨 损量,而实际上这两个参数也是相互影响的。 • 2、倒锥度的存在改进了结晶器的传热效率,但同时也加 大了结晶器下部铸坯与铜管间的摩擦力,这就要求铜管内 表面应具备良好的耐磨性,生产上一般在铜管内表面增加 了厚度为0.06~0.08mm的镍基镀层,当下口磨损量超过 1mm时认为结晶器寿命到期。
3、为什么在结晶器铜管内腔有时出现不规则烧坑?
• 由于连铸坯由于夹渣、局部黏钢及烧氧等原因,造成局部 坯壳减薄,使已经形成的坯壳再次被撕裂,形成“内出血 ”,大多数发生在内外弧面上,高温钢水在静压力作用下 喷射在结晶器铜管内表面,就形成烧坑;有时吹氧管操作 瞬间冲向结晶器铜管内表面也形成烧坑,这一般发生在弯 月面。
结晶器水缝有异物
足辊调整尺寸精确度
因水缝堵塞或烧氧造成铜管变形烧伤
结晶器软水水质及铜管存放时间
谢谢
2、为什么结晶器铜镀铬层有时会不耐磨,甚至铬层 全部脱落而变成粉末状?
• 因为结晶器铜管母材和镀层之间存在电位差,存放时间长 了的结晶器铜管从镀铬层微裂纹中进行电流释放,造成镀 层剥落、粉化;在结晶器铜管弯月面处由于钢水温度高, 热流大,保护渣、润滑油分解和钢水中的有害元素容易对 该部位的镀层产生很强的腐蚀;在结晶器铜管下口,由于 二冷段的水汽上升进入连铸坯和结晶器铜管之间的气隙, 在高温下急剧膨胀,水滴爆炸轰击结晶器铜管内壁产生汽 蚀。

连铸工艺与设备知识培训

连铸工艺与设备知识培训

连铸工艺与设备知识培训概述连铸工艺是现代钢铁生产中的重要环节,通过连铸工艺可以将熔融钢水以连续的方式铸造成坯料,为后续的轧制、锻造等工序提供原料。

连铸设备是实现连铸工艺的关键,它包括多个组成部分,如铸机、结晶器、钢包、冷却设备等。

本文将对连铸工艺与设备的相关知识进行介绍和培训。

一、连铸工艺1.1 连铸工艺流程连铸工艺主要包括以下几个步骤: 1. 钢水准备:将原料熔炼成钢水,并通过脱气和脱渣等工序进行净化处理。

2. 钢水调质:根据需要,对钢水进行调质处理,以达到所需的成分和性能。

3. 连铸坯料的形成:通过铸机将熔融钢水连续地铸造成坯料。

4. 结晶器冷却:通过结晶器对连铸坯料进行冷却,使其逐渐凝固。

5. 坯料切割:将凝固的连铸坯料切割成所需长度的坯料。

6. 坯料除渣:通过除渣设备对切割后的坯料进行除渣处理。

7. 坯料输送:将除渣后的坯料输送到后续加工工序。

1.2 连铸工艺的优点连铸工艺相比传统铸造工艺具有以下优点: - 高效快速:连铸工艺可以实现钢水的连续铸造,节省了铸造时间。

- 节约资源:连铸工艺可以通过循环使用冷却水和回收废料等措施,减少资源的消耗。

- 产品质量好:由于连铸坯料经过冷却和凝固处理,具有均匀的组织和较高的密度,产品质量好。

- 环境友好:连铸工艺减少了烟尘、废水等污染物的排放,对环境友好。

二、连铸设备2.1 铸机铸机是连铸设备中最重要的组成部分,它主要负责将熔融的钢水铸造成坯料。

铸机通常由铸包、浇口、剪切机构等部分组成。

铸机可以根据需要进行调整,以适应不同尺寸和形状的坯料铸造。

2.2 结晶器结晶器是连铸设备中的另一个重要组成部分,它通过冷却作用使得熔融的钢水逐渐凝固成坯料。

结晶器的结构设计和冷却方式会直接影响坯料的质量和性能。

2.3 钢包钢包是存放熔融钢水的容器,它通常由耐热材料制成。

钢包在连铸过程中起到储存钢水、调质和保温的作用。

2.4 冷却设备冷却设备用于对连铸坯料进行冷却,常见的冷却设备包括水冷器、风冷器等。

连铸连轧知识点

连铸连轧知识点

连铸连轧知识点一、连铸工艺的发展连铸是钢铁生产中重要的工艺环节,其发展历程与钢铁工业的整体发展密切相关。

自20世纪50年代初连铸技术诞生以来,它一直是提高钢铁生产效率和降低成本的重要手段。

随着科技的进步和环保要求的提高,连铸工艺也在不断发展和改进。

二、连铸工艺的基本原理连铸是一种连续铸造的工艺,其基本原理是将熔融的钢水通过结晶器冷却并形成凝固的铸坯,然后将铸坯连续地从结晶器中拉出,通过轧机进行轧制,最终得到所需的钢材。

三、连铸工艺的特点1、高效性:连铸工艺可以实现连续生产,提高生产效率,降低能耗。

2、节能性:相比传统的模铸工艺,连铸工艺可以节约能源,降低生产成本。

3、灵活性:连铸工艺可以根据市场需求生产不同规格、不同种类的钢材。

4、环保性:连铸工艺可以减少废弃物的产生,降低环境污染。

四、连铸工艺的应用范围连铸工艺广泛应用于各种钢铁产品的生产,包括板材、带材、型材、管材等。

随着技术的发展,连铸工艺也逐渐应用于有色金属、稀有金属等领域。

五、连铸工艺的未来发展方向随着科技的不断发展,连铸工艺的未来发展方向主要集中在以下几个方面:1、智能化:利用先进的自动化技术和智能化设备,提高生产过程的自动化水平和生产效率。

2、绿色化:进一步降低能耗和废弃物排放,实现生产过程的环保和可持续发展。

3、高效化:研发更高效的连铸技术,提高生产速度和产品质量。

薄板坯连铸连轧轧制区组织模拟薄板坯连铸连轧是一种高效、节能的钢材生产工艺,具有较高的生产效率和产品质量。

在轧制过程中,钢材的组织形态和性能特点对产品的质量和使用性能具有重要影响。

因此,薄板坯连铸连轧轧制区组织模拟成为了一个备受的研究领域。

通过组织模拟,可以深入了解轧制过程中材料的组织变化和性能特点,为工艺优化和产品性能提升提供理论支持和实践指导。

薄板坯连铸连轧轧制区背景及基础概念薄板坯连铸连轧是指将液态钢水倒入薄板坯连铸机中进行连续铸造,然后将连铸坯送入轧机进行连续轧制。

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术

常规板坯连铸机结晶器技术结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。

其作用是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部仍为液相的铸坯连续不断地从结晶器下口拉出,为其在以后的二冷区域内完全凝固创造条件。

在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中,结晶器一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响,使结晶器同时处于机械应力和热应力的综合作用之下,工作条件极为恶劣,在此恶劣条件下结晶器长时间地工作,其使用状况直接关系到连铸机的性能,并与铸坯的质量与产量密切相关。

因此,除了规范生产操作、选择合适的保护渣和避免机械损伤外,合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础和关键。

板坯连铸机一般采用四壁组合式(亦称板式)结晶器,也有一个结晶器浇多流铸坯的插装式结构。

ﻫ结晶器主要参数的确定ﻫ1 结晶器长度Hﻫ结晶器长度主要根据结晶器出口的坯壳最小厚度确定。

若坯壳过薄,铸坯就会出现鼓肚变形,对于板坯连铸机,要求坯壳厚度大于10~15mm。

结晶器长度也可按下式进行核算:ﻫﻫH=(δ/K)2Vc+S1+S2 (mm)ﻫﻫ式中δ——结晶器出口处坯壳的最小厚度,mmﻫK——凝固系数,一般取K=18~22 mm/min0.5ﻫ Vc——拉速,mm/minS1——结晶器铜板顶面至液面的距离,多取S1=100 mmﻫﻫS2——安全余量,S=50~100 mmﻫﻫ对常规板坯连铸机可参考下述经验:ﻫﻫ当浇铸速度≤2.0m/min时,结晶器长度可采用900~950mm。

ﻫﻫ当浇铸速度2.0~3.0m/min 时,结晶器长度可采用950~1100mm。

当浇铸速度≥3.0m/min时,结晶器长度可采用1100~1200mm。

ﻫﻫ 2 结晶器铜板厚度hﻫﻫ铜板厚度的确定是依据热量传热原理和高温下的使用性能,具体说,与铜板材质、镀层、机械性能、拉速、冷却水量的大小和分布等有关。

板坯连铸机结晶器

板坯连铸机结晶器
我国的连续铸钢技术起步并不算晚,而且初期发展较快,与国外差距不大,但是在此后十年(文革期间),速度减缓,与主要产钢国家差距逐渐增大。20世纪80年代中后期,随着改革开放政策的推动,我国连铸技术迅速发展,引进了成套连铸设备和技术,为我过自主连铸技术开发创了条件。在消化吸收引进技术的基础上,我国研制的小方坯铸机性能达到了国外同类产品的水平,大型板坯铸机取得了飞速的发展。例如,与日立造船合作设计的1900mm连铸机,舞阳1900mm连铸机,济钢1400mm连铸机,武钢1900mm自行设计连铸机。目前,国内连铸机的核心设备注入钢包回转台、中间罐车、结晶器、结晶器震动装置,支撑导向段,扇形段等设计制造已经达到国际先进末、80年代初,它是在收缩棍=辊缝技术的机基础上发展而来的,是近年来推广较快的板坯连铸机技术之一。对常规板坯连铸机来讲,是指凝固末端的轻压下,而对中厚板坯和薄板坯连铸机来讲。有的几乎是凝固过程中的的全程轻压下。90年代处的概念认为,常规板坯连铸机轻压下目的在于消除板坯中心疏松和偏折.而个厚板坏和薄板坯连铸机轻压下目的在于减薄板坯厚度,从而提高连铸机的工艺操作性,并与后续轧机更好地匹配而取得最佳经济效益:目前的观点认为,中厚板坯和薄板坯的轻压下不仅具有上述效果,它也是减小中心疏松和偏析的手段之一。轻压厂技术20世纪90年代中期之前,尚无静态、动态之分.到了90年代中后期,才出现动动态轻压下。静态轻压下是在浇注前预先设定好辊缝,然后按照设定的拉速和工艺条件进行浇铸的一种方法,而动态轻压下是在浇铸过程当中随着凝固终点的位置变化调整辊缝及辊缝收缩程度的一种浇铸方法,动态轻压下技术是近几年发展最快的板坏连持机技术。
李小博
燕 山 大 学
2010年6月
本科毕业设计(论文)
板坯连铸机结晶器设计
学院(系):里仁学院机械工程系

连铸结晶器

连铸结晶器

连铸结晶器连铸结晶器结晶器是连铸机非常重要的部件,是一个强制水冷的无底钢锭模,它的性能对连铸机的生产能力和铸坯质量起着十分重要的作用,因此,被称之为连铸设备的“心脏”。

1、结晶器的作用结晶器是连铸机的心脏,它的重要作用表现在:1)在尽可能高的拉速下保证出结晶器时形成足够的坯壳厚度,以抵抗钢水静压力而不拉漏;2)结晶器周边坯壳厚度能均匀稳定生长;3)结晶器内的钢水——渣相——坯壳——铜壁之间的相互作用,对铸坯表面质量有决定性影响。

上述第1)个作用决定了连铸机的生产率;2)、3)作用决定了铸坯表面质量。

2、结晶器的性能1)有较好的导热性能,能迅速形成足够厚度的初生坯壳;2)有良好的结构刚度和结构工艺性,便于加工制造,易于拆装和调整;3)有较好的耐磨性及较高的热疲劳性;4)重量轻、以便在振动时有较小的惯性力。

3、结晶器的分类按连铸机型式不同,结晶器可分为直形和弧形两大类。

1)直型结晶器。

直形结晶器的内壁沿坯壳移动方向呈垂直形,因此导热性能良好,坯壳冷却均匀。

该类型结晶器还有利于提高坯壳的质量和拉坯速度、结构较简单、易于制造、安装和调试方便;夹杂物分布均匀;但铸坯易产生弯曲裂纹,连铸机的高度和投资增加。

直形结晶器用于立式和立弯式及直弧连铸机。

2)弧形结晶器。

弧形结晶器的内壁沿坯壳移动方向呈圆弧形,因此铸坯不易产生弯曲裂纹;但导热性比直形结晶器差;夹杂物分布不均,偏向坯壳内弧侧。

弧形结晶器用在全弧形和椭圆形连铸机上。

按铸坯规格和形状来分,有小方坯、大方坯、板坯和异性坯结晶器。

按结晶器结构可分为管式、整体式和组合式三种。

连铸结晶器:就是一个钢水制冷成型设备。

其由框架,结晶器冷却背板或水箱和铜板,调整系统(调整装置,减速机等);润滑系统(油管油路),冷却系统和喷淋等设备组成。

连铸结晶器需要和连铸结晶器保护材料(渣)一同使用。

保护材料用途:1.确保连铸工艺顺行;2.改善铸坯表面质量。

连铸结晶器钢水流动控制技术1、连铸板坯的表面和内部缺陷与结晶器内钢液的流动状态密切相关。

板坯连铸机结晶器研究课件

板坯连铸机结晶器研究课件

摘要结晶器是钢坯连续铸造的关键设备,其设计和制造的优劣直接影响到连铸生产的正常与稳定。

本文就目前连铸结晶器采用的铜板材料及铜板材料表面处理技术的发展现状进行了总结和分析。

指出针对板坯结晶器窄面铜板易高温变形、磨损的情况,采用高强度、高导热率的弥散强化铜材料,进而延长结晶器的维修周期,提高生产效率。

同时针对现有结晶器铜板表面改性技术的优缺点,发展新型合金涂、镀层技术,进一步提高涂、镀层的硬度,耐磨和耐腐蚀性能。

目前结晶器铜板表面处理的几种方法:电镀法、热喷涂法、化学热处理法以及具有潜在发展前景的激光熔覆法。

激光熔覆法由于具有清洁无污染,成品率高以及性价比高等特点,具有广阔的发展和应用空间。

而且,通过优化熔覆工艺参数,设计合理的熔覆材料体系,能够形成与铜板呈冶金结合的优良抗热耐磨复合涂层,从而显著提高结晶器的使用寿命。

关键词:结晶器;化学热处理;激光熔覆;铜板AbstractThe progress of mould plates was reviewed in continuous casting. The techniques such a solution or aging or forming or fine crystal and their combination were an effect tiveme thod which benefit for high conductivity and high strengthen of copper base alloy. Copper base composite maerial through dispersion technique and composite hardening and surface strengthening have more promising for mouldes in the future.Based on the current study stat of surface strength ening on copper crystallizer, several surface treatment means,such as electro plating thermal spraying,penetration and laserclad dingte chnique with potential development are described. Because of cleanliness without any pollution, high finished product ratio and high performance costratio, laser cladding has wide development and application range. Moreover, by optimizing process parameters and designing suitable material system, fine hea-t resistant and wear-resistant coating having metallurgy bonding with copper substrate can be fabricated, therefore, it may notably improve the service life of copper crystallizer.Key words:Copper crystallizer; Electroplating; Thermal Chemical heat treatme;Copper plate目录摘要 (I)Abstract (II)第1章绪论 (1)1.1连扎连铸简介 (1)1.2工艺流程 (3)1.3板坯连铸机质量优势 (4)1.4研究背景 (5)1.5国内外状况 (6)1.6结晶器概述 (7)1.7结晶器存在的问题 (9)1.8结晶器使用前的安全检查 (9)1.9本章小结 (10)第2章结晶器夹紧装置的选择计算 (11)2.1结晶器夹紧装置简介 (11)2.2结晶器夹紧受力分析及计算选择 (12)2.3结晶器宽边调整机构的安装 (14)2.4本章小结 (14)第3章结晶器调宽装置的选择计算 (15)3.1调宽装置简介 (15)3.2调宽装置的确定和基本参数的选择 (16)3.3调宽装置驱动选择 (18)3.4窄边调整机构的安装 (18)3.5本章小结 (19)第4章结晶器铜板及水箱的选择计算 (20)4.1结晶器铜板的设计 (20)4.1.1结晶器长度的选择 (20)4.1.2结晶器断面尺寸和倒锥度 (22)4.1.3结晶器铜板材质及表面镀层的选择 (23)4.1.4铜板厚度计算 (24)4.2水箱设计 (25)4.3本章小结 (26)第五章结晶器振动装置的应用和发展 (27)5.1振动装置的概述 (27)5.2结晶器的振动方式 (27)5.3总结 (30)5.4本章小结 (31)结论 (32)参考文献 (33)致谢 (35)第1章绪论1.1连扎连铸简介连铸连轧全称连续铸造连续轧制(Continue Casting Direct Rolling,简称CCDR),是把液态钢倒入连铸机中轧制出钢坯(称为连铸坯),然后不经冷却,在均热炉中保温一定时间后直接进入热连轧机组中轧制成型的钢铁轧制工艺。

板坯连铸机结晶器内电磁搅拌技术

板坯连铸机结晶器内电磁搅拌技术

板坯连铸机结晶器内电磁搅拌技术摘要:连铸电磁搅拌技术在冶金工业中的应用可以提高钢坯的质量,降低成本消耗,提高连铸钢的等级,降低了芯部收缩,避免了芯部偏聚,改善了铸锭内等轴晶粒。

因此,将电磁搅拌技术引入到炼钢生产中,将大大提升炼钢产品的品质,为炼钢工业带来新的生机。

今后,工业计算机控制技术将与连铸电磁搅拌技术、冶金技术、信息技术等相融合,开拓冶金产业发展新方向,逐渐实现了电磁搅拌的可视化和自动化。

同时,要充分利用新设备和新技术,大力研发新设备和新技术,以增加产品的技术含量和产品的使用效率;节能减排,节能增效,高质量钢铁产品的产量不断增加,为中国钢铁行业与国际接轨做出了重要贡献。

关键词:板坯连铸机;结晶器;电磁搅拌技术引言连铸坯的中心偏析、夹杂物和中心收缩是连铸坯的关键问题,严重影响连铸坯的内部质量。

电磁搅拌是最常用的连铸技术,它可以通过电磁力优化和消除模具中钢水的过热。

电磁搅拌后,坯料的等轴晶粒率显著提高,使坯料固化良好,提高了产品性能。

本发明可以有效地解决连铸坯的中心收缩和清洁度问题。

1结晶器电磁搅拌及连铸坯概述连铸坯是由钢水通过连铸机制成的坯段。

连铸技术可以简化从钢水到钢坯的整个生产过程,而无需连铸。

因此,连铸坯具有生产成本低、金属获取率高、劳动条件好等一系列优点。

目前,连铸坯已成为轧制生产的重要原料。

但是连铸坯也存在一些缺陷。

例如,一般孔隙率、中心孔隙率、一般点偏析、皮下气泡、铸锭偏析、边缘偏析、内部气泡、残余收缩、剥落、白点、轴向晶体裂纹、非金属夹杂物和芯部裂纹。

在低倍率检查中,可能会出现中心气孔、收缩、中心偏析、表面角裂纹和表面边缘裂纹等缺陷。

电磁搅拌是通过在铸坯液空腔中产生的电磁力来强化钢液在空腔中的移动,进而强化了钢液的传热、对流和传质,进而实现对铸坯的凝结进程的控制,这对改善铸坯的品质具有重要的意义。

目前,模具电磁搅拌是最常见的设备,适用于各种连铸机。

它可以改善钢坯的表面质量,细化晶粒尺寸,减少钢坯的夹杂物和中心孔隙率。

连铸基础知识及提高连铸坯质量措施

连铸基础知识及提高连铸坯质量措施

连铸基础知识及提高连铸坯质量措施1.钢水由液体转变为固体的条件是什么?我们把一杯水(如20℃)放在-20℃的冷库里,当水的温度降到0℃时,杯子里就有晶体出现,此时是水和水的晶体共存,温度仍是0℃,只有当水完全结冰后,杯子整个温度下降到与冷库温度相同。

所以,把水开始结冰的温度叫凝固温度。

钢水的凝固结晶过程也同水一样,当温度降到凝固温度(1535℃)时,就有晶体出现。

由此可知,要实现液体转变为固体的过程,必须满足两个条件,即一定的过冷度和结晶核心。

所谓过冷度,就是实际温度低于凝固温度的度数。

如纯铁,只有过冷度达到295℃时,液体金属中许多体积很小、近程有序排列的原子集团才能形成胚胎晶核作为结晶核心而逐渐长大。

然而在实际生产中,把钢水浇到模子里,结晶所需的过冷度只有几度,这是因为:1)模子温度低,钢水温度高,模壁提供了冷却动力。

2)模型表面的凸凹不平,提供了“依托”,有利晶核形成。

3)钢水中悬浮的质点也可作为结晶核心。

2.钢水凝固过程中的收缩包括哪些?钢水由液态转变为固态,随着温度下降,收缩可分为: (1)液态收缩:由浇注温度降到液相线温度的收缩。

对于低碳钢一般为1%; (2)凝固收缩:液体完全变为固体的体积收缩。

对于钢一般为3~4%。

体积收缩会在钢锭中留下缩孔。

(3)固态收缩:从固相线温度冷却到室温的收缩。

一般为7~8%。

固态收缩表现为整个钢锭的线收缩,它与钢冷却过程的相变有关。

对钢锭产生裂纹有重要影响。

液体钢密度为7.0g/cm3,固体钢密度为7.8g/cm3,则液体变为固体收缩量为:((7.8-7.0)/7.0)×100%=11.4%,其中液态收缩量约1%,凝固收缩3~6%,固态收缩7~8%。

凝固时3~4%的体积收缩在钢锭中会留下缩孔,采用保护帽使缩孔集中在钢锭头部。

而连铸时钢水不断补充到液相,故连铸坯中无集中缩孔。

而带液芯的铸坯继续凝固时的线收缩对铸坯质量和生产安全性有重要影响。

因此结晶器应保持一定的倒锥度,二次冷却区支承辊的辊缝从上到下应符合铸坯线收缩的规律。

连铸工(中级)复习题(板坯连铸)

连铸工(中级)复习题(板坯连铸)

一、填空题:1、内生夹杂,主要是指出钢时,加铁合金的脱氧产物和浇铸过程中空气中氧的二次氧化物。

2、连铸坯切割有机械切割和火焰切割。

3、钢水中2[Al]+3[FeO]→(Al2O3)+3[Fe]的反应是放热反应。

4、浇注过程中水口堵塞分两种,一是冷钢堵塞,一是夹杂堵塞。

5、钢包保护套管(长水口)的作用是防止钢水飞溅和防止钢水二次氧化。

6、Q195钢种代号中的195是指钢的屈服强度。

7、铸坯菱变属于铸坯形状缺陷。

10、电磁搅拌技术和轻压下技术可以减轻铸坯的中心疏松和中心偏析等内部缺陷。

11、钢水凝固过程的收缩包括液态收缩和固态收缩。

12、结晶器保护渣三层结构包括粉渣层、烧结层、液渣层。

13、连铸机使用的冷却水包括机械闭路水和开路水。

14、连铸生产过程中的三大工艺制度包括温度制度、拉速制度、冷却制度。

15、结晶器的主要振动参数包括振频和振幅。

16、钢按其含碳量不同,可以分为高碳钢、中碳钢、低碳钢。

17、铸坯鼓肚属于铸坯形状缺陷。

18、铸坯中的非金属夹杂按生成方式可以分为内生夹杂和外来夹杂。

19、结晶器保护渣熔化特性包括熔化温度和熔化速度。

20、结晶器保护渣的碱度是指CaO和SiO2的比值。

21、1#板坯铸机机型为全弧形连铸机,两机两流;2#板坯铸机机型为直弧形连铸机,一机一流。

22、铸坯主要表面缺陷有纵裂纹、横裂纹、龟裂、结疤、重皮、夹渣。

23、人工清理时,火焰枪口与板坯预热时角度为40º左右,与板坯清理时角度为25~30º。

24、1#板坯喷印机的喷印周期为130秒。

25、每块铸坯共有11个喷印字符。

26、铸坯摊检一般需要冷却24~36小时。

27、铸坯高温延性温度为900~700℃。

28、铸坯行与行之间应间隔1.5米以上。

29、一般情况下,宽度允许公差为±10mm,厚度允许公差为±5mm。

30、1#板坯设计铸坯宽度为750~1350mm,2#板坯设计铸坯宽度为900~1350mm,厚度均为200mm。

板坯连铸机

板坯连铸机

(3)结构稳定,适合于高频小振幅技术的应用; (4)该振动机构中,除结晶器振动台的四角外,不 使用短行程轴承,因使用平弹簧组件导向,而无 需导辊导向。
3、扇形段和拉矫机 扇形段和拉矫机的作用如下: (1)通过夹棍和侧导辊对带有液心的坯壳起 支撑和导向作用,使其沿着预定的轨道前 进,并限制它发生鼓肚变形;
(2)在二次冷却区借助水或汽水的直接冷却, 加速凝固; (3)牵引和矫直铸坯; (4)对引锭杆起导向和支承作用。 按连铸工艺的要求,扇形段和拉矫机应具 有如下特点: (1)二次冷却区支导装置在高温铸坯作用下 有足够的强度和刚度; (2)结构简单、调整方便,能适应改变铸坯 断面的要求,能快速处理事故; (3)能按要求调整二次冷却区水量,以适应 改变铸坯断面、钢种、浇铸温度和拉坯速 度的变化。
结晶器是连铸机的心脏。中间包的钢水 注入到结晶器内,钢水在结晶器中初步凝 结成铸坯的外形,生成一定厚度的坯壳, 并被连续地从结晶器下口拉拔出去,进入 二次冷却区。铸坯的外壳尺寸由结晶器的 内腔尺寸决定。结晶器浇铸时的内腔尺寸 是按照成品的板坯尺寸要求在浇铸前调整 好的。
结晶器具有如下的性能: (1)有较好的导热性能,能迅速形成足够厚 度的初生坯壳; (2)有良好的结构刚度和结构工艺性,便于 加工制造,易于拆装和调整; (3)有较好的耐磨性及较高的热疲劳性; (4)重量轻,以便在振动时有较小的惯性力。 按连铸机型式不同,结晶器可分为直形 和弧形两大类。按结晶器结构可分为管式、 整体式和组合式三种。
4、零段
零段位于结晶器和扇形段1之间,通过快 速更换台安装在连铸机上,以便在发生漏 钢事故时,与结晶器一起由快速更换台进 行更换。 零段紧靠结晶器,其作用是扶持并引导 初凝的坯壳向下运行。由于刚出结晶器的 坯壳很薄,容易受钢水静压力作用而变形, 所以它的辊距要小,这就决定了其辊子直 径要小,即呈细辊密排,而且辊子需要有 足够的刚度,夹辊与结晶器的对中误差不 能大于0.3mm。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常规板坯连铸机结晶器技术
【保护视力色】【打印】【进入论坛】【评论】【字号大中小】2006-12-07
11-07
杨拉道刘洪王永洪刘赵卫邢彩萍田松林 (西安重型机械研究所)
结晶器是连铸机中的铸坯成型设备, 是连铸机的核心设备之一。

其作用
是将连续不断地注入其内腔的钢液通过水冷铜壁强制冷却,导出钢液的热量,使
之逐渐凝固成为具有所要求的断面形状和一定坯壳厚度的铸坯,并使这种芯部
仍为液相的铸坯连续不断地从结晶器下口拉出.为其在以后的二冷区域内完全
凝固创造条件。

在钢水注入结晶器逐渐形成一定厚度坯壳的凝固过程中.结晶器
一直承受着钢水静压力、摩檫力、钢水热量的传递等诸多因素引起的的影响.
使结晶器同时处于机械应力和热应力的综合作用之下.工作条件极为恶劣.在此
恶劣条件下结晶器长时间地工作.其使用状况直接关系到连铸机的性能.并与铸
坯的质量与产量密切相关。

因此.除了规范生产操作、选择合适的保护渣和避免
机械损伤外.合理的设计是保证铸坯质量、减小溢漏率、提高其使用寿命的基础
和关键。

板坯连铸机一般采用四壁组合式(亦称板式)结晶器.也有一个结晶器
浇多流铸坯的插装式结构。

结晶器主要参数的确定
1 结晶器长度H
结晶器长度主要根据结晶器出口的坯壳最小厚度确定。

若坯壳过薄.铸
坯就会出现鼓肚变形.对于板坯连铸机.要求坯壳厚度大于10~15mm。

结晶器长
度也可按下式进行核算:
H=(δ/K)2Vc+S1+S2 (mm)
式中δ——结晶器出口处坯壳的最小厚度.mm
K——凝固系数.一般取K=18~22 mm/min0.5
Vc——拉速.mm/min
S1——结晶器铜板顶面至液面的距离.多取S1=100 mm
S2——安全余量.S=50~100 mm
对常规板坯连铸机可参考下述经验:
当浇铸速度≤2.0m/min时.结晶器长度可采用900~950mm。

当浇铸速度2.0~3.0m/min时.结晶器长度可采用950~1100mm。

当浇铸速度≥3.0m/min时.结晶器长度可采用1100~1200mm。

2 结晶器铜板厚度h
铜板厚度的确定是依据热量传热原理和高温下的使用性能.具体说.与铜板材质、镀层、机械性能、拉速、冷却水量的大小和分布等有关。

研究表明.拉速高.铜板应随之减薄;反之.拉速低.铜板应随之增厚。

在考虑上述诸多因素后.铜板的厚度可由下式确定:
h=hm+Δm+δm (mm)
式中 hm——铜板冷却水槽深度.mm
Δm——铜板加工余量.一般取Δm=10~15mm
δm——铜板最终的有效厚度.一般取δm=10mm
3 结晶器内腔最大宽度Amax
Amax=1.025×Bmax (mm)
式中 Bmax——板坯最大名义宽度.mm
4 宽边铜板最大宽度Cumax
Cumax=Amax+2h+(100~150) (mm)
5 无轻压下时.窄边铜板上、下口尺寸Zs、Zx
Zs=1.025×D+2 (mm)
Zx=1.019×D+2 (mm)
式中 D——板坯名义厚度.mm
如果考虑了凝固末端轻压下.则应再增加3~4mm。

另外.有的用户还要
求按照自己的经验进行确定.这时须尊重用户意见。

6 单边调宽行程Sd
Sd=( Amax-Bmin)/2+(30~50) (mm)
式中 Bmin——为板坯最小名义宽度.mm。

7 当用户无特殊要求时.生产当中结晶器下、上口尺寸Ax、As的确定
Ax=(1.010~1.012)×B (mm)
As= Ax×(1+Δ×H) (mm)
式中 B——板坯名义宽度.mm
Δ——结晶器锥度.一般取0.9%/m左右
H——结晶器长度.m
图1为结晶器上、下口尺寸示意图。

图1 结晶器上下口尺寸
8 结晶器夹紧力的计算
每个结晶器有4组夹紧弹簧.上方两组.下方两组.其夹紧力为:
FS1=1.5×ΣPA
FS2=1.5×ΣPB
式中 FS1——结晶器上口每个夹紧装置的夹紧力.mm
FS2——结晶器下口每个夹紧装置的夹紧力.mm
ΣPA——钢水静压力和内弧水箱移动所产生的摩擦力在上方的作用
力.kN
ΣPA——钢水静压力和内弧水箱移动所产生的摩擦力在下方的作用
力.kN
夹紧装置结构形式可采用弹簧夹紧、液压缸松开的方式.也可采用全液压夹紧方式。

9热态板坯由宽调窄时的推力
结晶器推力计算时.可参考《板坯连铸机设计与计算》一书.主要考虑下列因素:
(1)铸坯变窄时的推力。

(2)结晶器窄边钢水静压力。

(3)宽窄边铜板因弹簧夹紧引起的摩擦力。

(4)沿铸造方向窄边和铸坯之间的摩擦阻力。

10 结晶器下口与引锭头之间的间隙
引锭进入结晶器后.结晶器下口宽度与引锭头宽度之间的间隙为4~9mm
引锭进入结晶器后.结晶器下口厚度与引锭头厚度之间的间隙为4~5mm
结晶器的优化问题
1 结晶器铜板材质
结晶器铜板设计是结晶器设计的最重要环节。

铜板的导热效果及寿命主要与铜板的材质、热面镀层、结晶器冷却水水量、结晶器与足辊及二次冷却区的对弧精度有关.除此之外.合理的结构设计显得更为重要。

相关文档
最新文档