圆与方程小结与复习

合集下载

4.1.2圆的一般方程

4.1.2圆的一般方程

4.1.2 圆的一般方程教学目标1.正确理解圆的一般式方程及其特点,会求圆的一般方程;2.熟练圆的一般式方程与标准方程的互化;3.初步掌握求动点的轨迹方程的思想方法。

教学重难点重点:根据圆的一般方程,熟练地求出圆心和半径。

难点:能根据某些具体条件,运用待定系数法确定圆的方程。

复习回顾:圆的标准方程是什么?思考:若把圆的标准方程(x -a )2+(y -b )2=r 2展开后,会得出怎样的形式?探究一、圆的一般方程思考:方程x 2+y 2+Dx +Ey +F =0在什么条件下表示圆?一、圆的一般方程二元二次方程x 2+y 2+Dx +Ey +F =0,当D 2+E 2-4F >0时,该方程叫做圆的一般方程。

圆心为_⎝⎛⎭⎫-D 2,-E 2_,半径长为__D 2+E 2-4F 2__. 圆的一般方程的特点:(1)x 2,y 2项的系数相等且不为零; (2)没有xy 项; (3)D 2+E 2-4F >0.思考:给出二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0,若该方程表示圆的方程,可否根据圆的一般方程确定成立的条件?二、圆的一般方程与标准方程的关系(1)标准方程易于看出圆心与半径,一般方程突出了方程形式上的特点.(2)a =2D -,b =2E-,r =D 2+E 2-4F 2.问题:圆是否还可以用其他形式的方程来表示呢?探究二、圆的参数方程思考:如图,设⊙O 的圆心在原点,半径是r ,与x 轴正半轴的交点为P 0,在圆上任取一点P ,若将OP 0按逆时针方向旋转到OP 位置所形成的角∠P0OP =θ,求P 点的坐标.3.圆的参数方程(1)圆心在原点,半径为r 的圆的参数方程是:⎩⎨⎧==θθsin cos r y r x (θ是参数)(2)圆心在(a ,b ),半径为r 的圆的参数方程是:⎩⎨⎧+=+=θθsin cos r b y r a x (θ为参数)典例讲解题型一、圆的一般方程的概念例1.圆x 2+y 2-2x +4y =0的圆心坐标为( )A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2) 例2.方程x 2+y 2+4mx -2y +5m =0表示圆的条件是( )A.14<m <1B.m >1C.m <14D.m <14或m >1 例3.已知方程x 2+y 2-2(m +3)x +2(1-4m 2)y +16m 4+9=0表示一个圆.(1)求实数m 的取值范围. (2)求该圆半径r 的取值范围; (3)求圆心的轨迹方程.题型二、求圆的方程例4.根据下列条件求圆的方程:(1)过三点A (1,12),B (7,10),C (-9,2);(2)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上;(3)求与x 轴相切,圆心在直线03=-y x 上,且截直线0=-y x 的弦长为72的圆的方程.题型三、圆的参数方程 例5.已知圆O 的参数方程是⎩⎨⎧==θθsin 5cos 5y x (0≤θ<2π),如果圆上点P 所对应的参数θ=5π3,则点P 的坐标是________.例6.若直线y =x ﹣b 与曲线2cos ,sin x y θθ=+⎧⎨=⎩(θ∈[0,2π])有两个不同的公共点,则实数b 的取值范围为( )A.(2B.[2C.(,2(22,)-∞++∞D.(2例7.已知实数x ,y 满足x 2+y 2+2x ﹣23y =0.(1)求x 2+y 2的最大值; (2)求x +y 的最小值.题型三、与圆相关的轨迹问题例8.已知:一个圆的直径的两端点是A (x 1,y 1)、B (x 2,y 2),证明:圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.例9.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,求线段AB 的中点M的轨迹方程.变式:如图,已知点A (-1,0),与点B (1,0),C 是圆x 2+y 2=1上的动点,连结BC 并延长至D ,使|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.探究!到两定点的距离之比为定值的点的轨迹到两定点F 1、F 2的距离之比为定值λ(λ>0)的点的轨迹是圆.例10.已知一曲线是与两定点O (0,0)、A (3,0)距离的比为12的点的轨迹,求这个曲线的方程.题型四、与圆相关的最值问题(数形结合,巧解“与圆有关的最值问题”)例11.已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求yx 的最大值与最小值;(2)求y -x 的最大值与最小值;(3)求x 2+y 2的最大值和最小值.变式:实数x ,y 满足x 2+y 2+2x -4y +1=0,求下列各式的最大值和最小值:(1)4-x y;(2)2x +y .课堂小结1.本节课的主要内容是圆的一般方程,其表达式为⎪⎩⎪⎨⎧>-+=++++0402222F E D F Ey Dx y x 2.圆的一般方程与圆的标准方程的联系一般方程配方得标准方程,标准方程(圆心,半径)展开得一般方程。

(完整word版)《圆的一般方程》教学设计与反思

(完整word版)《圆的一般方程》教学设计与反思

《圆的一般方程》教学设计与反思一、教材分析:《圆的一般方程》是解析几何的内容,是在学习了直线方程后,继圆的标准方程之后学习的,圆是一种特殊的曲线。

在现行职业学校的教材中,圆是唯一一种必修的曲线,也是职业学校学生认识曲线和方程的途径,在解析几何中占有重要的地位。

二、学情分析:对于职业学校的学生来说,数学属于“难攻”的科目,基础差,学习兴趣不高,缺乏主动性。

因此在教学设计上要多考虑学生的实际因素,由易到难,层层递进,激发并引导学生自主学习是教师教学的主要目的之一。

三、教学目标:(一)知识与技能:1.理解并掌握圆的一般方程的形式,会将圆的标准方程化为一般方程;2.明确圆的标准方程和一般方程的常数之间的关系,会用这种关系求圆的圆心坐标和半径;3.逐步学会用配方法将圆的一般方程表示为标准方程.(二)过程与方法:1.从不同的角度得出圆的方程表示形式,培养学生从多角度认识事物、研究问题的习惯和能力;2.随着探索研究的不断推进,逐步让学生发现圆的一般方程的特点,培养学生观察、归纳能力;3.通过一题多解,培养学生发散思维;4.在合作交流中采用问题呈现的方式,引导学生积极探索,主动学习,培养合作精神.(三)情感态度与价值观:借助于多媒体课件,让学生感受数与式之间的内部的和谐美,提高学习数学的兴趣.四、教学重点:1.圆的一般方程的形式;2.在圆的一般方程中,求圆心坐标和半径.五、教学难点:用配方法求圆心坐标和半径.六、 教学过程:教学环节教师活动预设学生活动 设计意图 一、复习回顾: 1.圆的标准方程 2.写出圆心为(2,-1),半径为3的圆的标准方程 二.探索研究: 1.问题引入: 方程(x-2)2+(y+1)2=9为几元几次方程? (展开整理) 2.将圆的标准方程展开整理: (x-a)2+(y-b)2=r 2⇒x 2+y 2-2ax-2by+(a 2+b 2-r 2)=0 令D=-2a ,E=-2b ,F= a 2+b 2-r 2,则 x 2+y 2+Dx+Ey+F=0 注意: ①圆的方程是二元二次方程; ②x 2、y 2的系数相等;③不含xy 项。

《一元一次方程小结复习(第二课时)》教案

《一元一次方程小结复习(第二课时)》教案

《一元一次方程小结复习(第二课时)》教案我们主要复习列方程解实际问题。

列方程解实际问题的过程一般例1 某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg 面粉.现共有面粉4500kg ,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?分析一:等量关系:小月饼的块数=2×大月饼的块数.解:设用x kg 面粉生产大月饼,则用(4500-x )kg 面粉生产小月饼.45002.0.020.05x x-= x =2500.4500-x =2000.检验: x =2500是原方程的解且符合实际意义.答:用2500kg 面粉生产大月饼,用2000kg 面粉生产小月饼,能生产最多的盒装月饼.分析二:可列方程为 450020.020.05x x -=⨯ 分析三:解:设生产y 块大月饼,则生产2y 块小月饼. 0.05y+0.02×2y=4500.y=50000. 0.05y=2500. 0.02×2y=2000.答:用2500kg 面粉生产大月饼,用2000kg 面粉生产小月饼,能生产最多的盒装月饼.例2 为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒),该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元,经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款_____元,在乙商店付款_____元;(2)这个班购买多少盒乒乓球时,在甲、乙两商店付款相同?并求出此时需付款多少元?(3)若这个班购买乒乓球的数量暂时未定,选择哪家商店购买更合算?同学们能给出建议吗?分析:商店优惠方式甲商店:一副乒乓球拍送一盒乒乓球;乙商店:乒乓球拍和乒乓球全部九折.(1)在甲商店付款=5副乒乓球拍的价钱+(6-5)盒乒乓球的价钱=5×100+25=525(元),在乙商店付款=(5副乒乓球拍的价钱+6盒乒乓球的价钱)×0.9 =(5×100+6×25)×0.9=585 (元).(2)解:设购买x 盒乒乓球时,在甲、乙两商店付款相同.5×100+25(x-5)=(5×100+25x)×0.9 .x=30.(检验:x=30是原方程的解,且符合实际情况.)综合训练一、选择题(在每小题给出的四个选项中,只有一项是符合要求的) 1.将方程5x+2=x -5通过移项得5x -x=-5-2的根据是( ) A.加法交换律 B.分配律 C.等式的性质1D.等式的性质22.当x 取不同的值时,整式ax -b (其中a ,b 是常数)的值也不同,具体情况如表所示:则关于x 的方程ax=b -4的解为( ) A.x=-2 B.x=-1C.x=0D.x=13.在等式2×□-6=□中的“□”内填上一个数字,可使等式成立.则“□”内数字为( )A.4B.5C.6D.74.给出下列各说法:①3x+5是方程;②2x+5y=9是一元一次方程;③如果a=b ,那么ac=bc ;④x=-1是方程3x+22-1=2x -14−2x+15的解.正确的有( )A.②④B.①④C.②③D.③5.小文同学晚上写数学作业,在解方程“-5x+1=2x -a ”时,将“-5x ”中的负号抄漏了,解得x=2,则方程正确的解为( )A.x=87 B.x=78C.x=-67D.x=-766.下面解一元一次方程3(x+1)=x 的步骤中,3(x+1)=x 3x+3=x3x -x=-32x=-3x=-32没有依据“等式的性质”变形的是( )A.第①步和第②步B.第①步和第③步C.第②步和第③步D.第③步和第④步7.下列方程变形正确的是( ) A.由y0.3-1=1.2-0.3y 0.2,得10y 3-10=12-30y2B.方程3m=2m+3,移项,得3m -2m=3C.方程-75y=79,系数化为1,得y=-7579D.方程3-m -2=-5(m -1),去括号,得3-m -2=-5m -18.用200张彩纸制作圆柱,每张彩纸可制作圆柱侧面20个或底面60个,一个圆柱侧面与两个底面组成一个圆柱.为使制作的圆柱侧面和底面正好配套,设用x 张彩纸制作圆柱侧面,则可列方程为( )A.60x=20(200-x )B.20x2=60(200-x ) C.60x=20(200-x )2D.20x=60(200-x )29.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c 对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为( )A.4,5,6B.6,7,2C.7,2,6D.2,6,710.一项工程,甲公司单独完成需要40天,乙公司单独完成需要60天.现在两公司合作,中途甲公司另有任务离开10天,完成这项工程需要的天数为( )A.25B.30C.24D.45二、填空题(将结果填在题中横线上)11.已知方程(m -3)x |m|-2+4=0是关于x 的一元一次方程,则m= . 12.已知关于x 的方程(m -1)x -3m=x 的解是x=4,则m 的值为 . 13.当x=4时,代数式5(x+2a )-3与ax+5的值相等,则a= . 14.如果方程2-x+13=x+76的解也是关于x 的方程2-a -x 3=0的解,那么a 的值是 .15.某超市规定,购买不超过50元的商品时,按全额收费;购买超过50元的商品时,超过部分按六折收费.某顾客在一次消费中,支付212元,那么在此次消费中该顾客购买了价值为 元的商品.三、解答题(解答应写出文字说明、证明过程或演算步骤) 16.解下列方程: (1)2(1-2x )=5x+8; (2)2x+13=1-x -14.17.某工厂生产一批太空漫步器(如图),每套设备包含3根立柱和4个脚踏板.工厂现有40名工人,每人每天平均生产36根立柱或48个脚踏板,应如何分配工人才能使每天生产的立柱和脚踏板恰好配套?18.小明解关于x 的方程2x -13=x+a2-3,由于粗心大意,在去分母时,方程右边的-312没有乘6,由此求得的解为x=2,试求a 的值,并求出原方程的解.19.下表是某次篮球联赛部分球队的积分表:(1)直接写出胜一场的积分和负一场的积分;(2)进行16场比赛后,某队说他们的总积分为45分,你认为可能吗?为什么?综合训练1.C2.D3.C4.D5.C6.B7.B8.D9.B 解析:由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2. 10.B 11.-3 12.8 13.-2 14.7 解析:2-x+13=x+76, 去分母,得12-2(x+1)=x+7. 去括号,得12-2x -2=x+7. 移项、合并同类项,得-3x=-3. 系数化为1,得x=1. 将x=1代入2-a -x3=0,得2-a -13=0. 去分母,得6-(a -1)=0. 去括号,得6-a+1=0.解得a=7.15.320 解析:设购买了价值为x 元的商品,根据题意得,50+60%(x -50)=212,解得x=320.16.解:(1)2(1-2x )=5x+8. 去括号,得2-4x=5x+8. 移项,得-4x -5x=8-2. 合并同类项,得-9x=6. 系数化为1,得x=-23. (2)2x+13=1-x -14. 去分母,得4(2x+1)=12-3(x -1). 去括号,得8x+4=12-3x+3. 移项,得8x+3x=12+3-4. 合并同类项,得11x=11. 系数化为1,得x=1.17.解:设安排x 名工人生产立柱, 则有(40-x )名工人生产脚踏板,由题意,得4×36x=3×48(40-x ),解得x=20,40-x=20.答:安排20名工人生产立柱,20名工人生产脚踏板恰好配套. 18.解:去分母时方程右边的-3漏乘了6, 此时变形为2(2x -1)=3(x+a )-3. 将x=2代入,得2(2×2-1)=3(2+a )-3. 解得a=1. 则原方程应为2x -13=x+12-3. 去分母,得2(2x -1)=3(x+1)-18. 去括号,得4x -2=3x+3-18. 解得x=-13.19.解:(1)设胜一场积x 分,则由A 球队积分知负一场积36-10x6分,根据B 球队的积分,得9x+7×36-10x6=34,=1,解得x=3,此时36-10x6所以胜一场积3分,负一场积1分.(2)不可能.理由如下:设胜y场,则负(16-y)场,.3y+16-y=45,解得y=292因为y为非负整数,所以y=29不符合题意.所以总积分不可能为45分.214。

4.1.2圆的一般方程(精品)

4.1.2圆的一般方程(精品)


x2 y2 1 ,
(x 3)2 y2 2
化简得x2+y2+2x-3=0.即(x+1)2+y2=4, 所以动点P的轨迹是以点(-1,0)为圆心,以2为半径 的圆.
求动点轨迹的步骤:
1.建立坐标系,设动点坐标M(x, y); 2.列出动点M满足的等式并化简; 3.说明轨迹的形状.
求轨迹方程的方法:
解 由方程表示圆得, D2+E2-4F=12+22-4(a-1)=9-4a>0,
解得a<
9 4

即a的取值范围是
(, 9) 4
.
典例探究
例2、 已知线段AB的端点B的坐标是(-4,3),端点A在
圆 (x 1)2 y2 4上运动,点M满足 BA 2BM ,求
点M的轨迹方程.
解:设M (x, y), A(x0, y0 ), B(4,3), BA 2BM,
若生成轨迹的动点 P( x, y)随另一动点 Q( x0, y0 )
的变动而有规律地变动,可把Q点的坐标 x0 , y0
分别用动点P的坐标x, y 表示出来,代入到Q点 满足的已有的等式,得到动点P的轨迹方程
关键:列出P,Q两点的关系式.
课本P134 6/平面直角坐标系中有A(0,1),B(2,1), C(3,4),D(-1,2)四点,这四点能否在同一圆上?
思考:当D=0,E=0或F=0时,
圆 x2 y2 Dx Ey F 0 的位置分别
有什么特点?
y
y
y
C
C
C
o
x
o
x
o
x
D=0
E=0
F=0
练习1:判别下列方程表示什么图形,如果是圆,就
找出圆心和半径.

九年级数学上册第二十四章章圆小结与复习课件

九年级数学上册第二十四章章圆小结与复习课件
2
∵∠P+∠AOB=180°,∠P=70°, ∴∠DOE=55°.
(2)若PA=4 cm,求△PDE的周长.
(2)∵⊙O分别切PA、PB、DE于A、B、C, ∴AD=CD,BE=CE. ∴△PDE的周长=PD+PE+DE =PD+AD+BE+PE=2PA=8(cm)
考点四 圆中的计算问题
例5 如图,四边形OABC为菱形,点B、C在以点O为圆 心的圆上, OA=1,∠AOC=120°,∠1=∠2,则扇形 OEF的面积?
三、 圆的基本性质 1. 圆的对称性 圆是轴对称图形,它的任意一条___直__径__所在的直
线都是它的对称轴.
2. 有关圆心角、弧、弦的性质. (1)在同圆中,如果圆心角相等,那么 它们所对的弧相等,所对的弦也相等.
圆心角 相等
(2)在同圆或等圆中,如果两个圆心角、 弧

两条弧和两条弦中有一组量相等,那么 相等
3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这 条半径的直线是圆的切线.
(2)性质定理:圆的切线垂直于经过切点的半径.
(3)切线长定理:经过圆外一点所画的圆的两条 切线,它们的切线长相等.这一点和圆心的连线 平分这两条切线的夹角.
四、 圆中的计算问题 1.弧长公式
n R
半径为R的圆中,n°圆心角所对的弧长l=__18_0_____. 2.扇形面积公式 半径为R,圆心角为n°的扇形面积S= _n_36_R0_2或____12_l_R__. 3.弓形面积公式
n
(2)正n边形的边长a,半径R,边心距r之间的关系
R2 r2 (a)2. 2
(3)边长a,边心距r的正n边形的面积为
S 1 nar 1 lr. 22
其中l为正n边形的周长.

高中数学必修二第四章小结与复习课件(1)

高中数学必修二第四章小结与复习课件(1)
z
P1(x1 , y1 , z1 )
O
P2 (x2 , y2 , z2 )
x
y
本章易错点
1.在使用圆的一般方程 x2+y2+Dx+Ey+F=0时, 必须确保 D2+E2-4F否>则0 ,方程不表示圆. 2.判断圆与圆的位置关系时,不能只看交点个数, 两圆有一个公共点,可能是外切,也可能是内切; 两圆没有公共点,可能是外离,也可能是内含.
2.联立两圆方程,看截得解得个数.
△<0
n=0
两个圆相离
△=0
n=1
两个圆相切
△>0
n=2
两个圆相交
4.2.3直线与圆的方程的应用
坐标法解决平面几何问题的“三步曲” • 第一步:建系,几何问题代数化; • 第二步:解决代数问题; • 第三步:还原结论.
4.3空间直角坐标系
4.3.1空间直角坐标系
3.建立直角坐标系,满足建系规则才能建立右手坐 标系.
第四章 圆与方程
4.1圆的方程 4.2直线、圆的位置关系 4.3空间直角坐标系
学法指点
1.要学会根据题目条件,恰当选择圆方程情势: ①若知道或涉及圆心和半径,我们一般采用圆的
标准方程较简单. ②若已知三点求圆的方程,我们常常采用圆的一
般方程用待定系数法求解.
2. 直线与圆的位置关系可以通过公共 点的个数来来判断,但圆与圆的位置关系 不能只通过公共点的个数来判断.
高考热点
1.用圆的标准方程和一般方程解决问题.
(x a)2 (y b) 2 r2 x2+y2+Dx+Ey+F=0 (D2+E2-4F>0)
y
M r
A
O
x
2.直线与圆的位置关系,及圆与圆位置关系 的判定.

人教版高中数学必修二圆与方程小结与复习

人教版高中数学必修二圆与方程小结与复习

(1)标准方程:以(a,b)为圆心,r(r>0) 为半径的圆的标准方程为(x-a)2+(y-b)2=r2.
(2)一般方程:x2+y2+Dx+Ey+F=0. 当D2+E2-4F>0时,表示圆的一般方程,其
D E 圆心的坐标为 ( , ),
半径 r 1
2
2
当D2+E2-4F=0时,只表示一个点;
d PC
2 2 1 4 25 r, 2
1 1
2
4 20 故所求
2
所以点P在圆外.
(Ⅱ)设圆的方程为x2+y2+Dx+Ey+F=0,
因为三点 A(4,1) , B(6 , -3) , C(-3,0) 都 在圆上, 所以它们的坐标都是方程的解,将它们 的坐标代入方程得,
因为圆过A(1,4),B(3,2)两点,
42 为kAB= =-1,故l的斜率为1, 1 3
所以圆心必在线段AB的中垂线l上,又因 又AB的中点为(2,3),故线段AB的中
垂线l的方程为x-y+1=0.
又知圆心在直线y=0上,故圆心为C(-1,0), 所以半径 r AC 圆的方程为(x+1)2+y2=20. 又点P(2,4)到圆心(-1,0)的距离为
题意,
设圆C2的圆心为(a,b),则依
a 1 b1 1 0 a=2 2 2 ,解得: b1 b=-2. 1 a 1

对称圆的半径不变,为1,故填(x-2)2+ (y+2)2=1.
5.若圆x2+y2+(a2-1)x+2ay-a=0关于直线xy+1=0对称,则实数a= 3 .

圆的一般方程

圆的一般方程

结论
先将方程配方, 先将方程配方,变形为
D E D 2 + E 2 − 4F x+ + y+ = 2 2 4
2 2
1当 D 2 + E 2 − 4 F > 0时,方程表示 D E 1 2 2 为圆心, 以( − ,− ) 为圆心,以 D + E − 4F 为半径长的圆 2 2 2
变式:已知平面内某动点M到两个定点 变式:已知平面内某动点 到两个定点 O(0,0),A(3,0)的距离之比等于 :2,求 的距离之比等于1: 求 , 的距离之比等于 的轨迹方程. 点M的轨迹方程 的轨迹方程
探究: 、平面内动点P(x,y)与两个定点 探究:2、平面内动点 与两个定点 A(1,1),B(3,5)的连线的斜率之积等于 , 的连线的斜率之积等于-1, 的连线的斜率之积等于 求点P的轨迹方程。 求点 的轨迹方程。 的轨迹方程
4.1.2 圆的一般方程
复习 1 圆的标准方程的形式是什么? 圆的标准方程的形式是什么?
( x − a) + ( y − b) = r
2 2
2 2
2
2 以(1,-2)为圆心 为半径的圆的 )为圆心,2为半径的圆的 标准方程是什么? 标准方程是什么?
( x − 1) + ( y + 2) = 4
练习:已知三角形AOB的顶点坐标分别是 练习:已知三角形AOB的顶点坐标分别是 A(4,0),B(0,3),O(0,0),求三角形 A(4,0),B(0,3),O(0,0),求三角形AOB外接圆 求三角形AOB外接圆 的方程。 的方程。
已知定点M( , ),动点N在圆 ),动点 在圆C: 已知定点 (-3,4),动点 在圆 : 2: x2+y2=4上运动,O为坐标原点,以OM、 上运动, 为坐标原点 为坐标原点, 上运动 、 ON为边作平行四边形 为边作平行四边形MONP, 为边作平行四边形 求点P的轨迹 的轨迹。 求点 的轨迹。

高三-圆的标准方程和一般方程

高三-圆的标准方程和一般方程

复习课:圆的标准方程和一般方程教学目标重点:掌握圆的标准方程和一般方程,能根据题目条件选择恰当的形式求圆的方程,理解圆的一般方程和标准方程之间的关系,并能互化.灵活运用圆的几何性质解决问题.了解参数方程的概念,理解圆的参数方程.难点:与圆有关的综合题的求解方法.能力点:等价转化的数学思想、数形结合的数学思想的应用,逻辑推理能力的培养和训练. 自主探究点:了解参数方程的概念,理解圆的参数方程,利用参数方程解决求最值问题. 易错点:运算出现错误,对问题分析不全面导致漏解. 学法与教具1.学法:学生动脑、动手总结规律,梳理知识,解决问题.2.教具:投影仪. 一、【知识梳理】1.圆的定义:平面内与定点的距离等于定长的点的集合(轨迹)叫圆.在平面直角坐标系内确定一个圆需要三个独立条件:如三个点,半径和圆心(两个坐标)等. 2.圆的方程(1)标准式:222()()x a y b r -+-= ,其中r 为圆的半径,(,)a b 为圆心. (2)一般式:22220 (40)x y Dx Ey F D E F ++++=+->,其中圆心为(,)22D E--,半径. (3)过圆与直线(或圆)交点的圆系方程:i) 22()0x y Dx Ey F Ax By C λ+++++++=,ii) 2222111222()0x y D x E y F x y D x E y F λ+++++++++=(1-=λ时为一条过两圆交点的直线,该方程不包括圆C 2)(4)二元二次方程220 Ax By Cxy Dx Ey F +++++=表示圆的充要条件:220,0,40A B C D E AF =≠=+->.二、【范例导航】 题型1:求圆的方程【例1】(1)求经过点(5,2),(3,2)A B ,圆心在直线230x y --=上的圆的方程;(2)求圆心在直线30x y -=上,与y 轴相切,且被直线y x =截得的弦长为. 【分析】本题可以设圆的标准方程,建立关于圆心(,)a b 和半径r 的三个方程构成的方程组. 【解析】(1)解法一:设圆的标准方程为222()()x a y b r -+-=根据题意可得222222(5)(2)(3)(2)230a b r a b r a b ⎧-+-=⎪-+-=⎨⎪--=⎩,解得45a b r ⎧=⎪=⎨⎪=⎩所求圆的方程为22(4)(5)10x y -+-=.解法二:因为圆过(5,2),(3,2)A B 两点,所以圆心在线段AB 的中垂线4x =上,又因为圆心在直线230x y --=上,联立解得4,5a b ==.进而求得圆的半径r =, 圆方程为:22(4)(5)10x y -+-=.(2)因为圆与y 轴相切,且圆心在直线30x y -=上, 故圆方程可设为222(3)()9x b y b b -+-=又因为直线y x =截圆得弦长为,则有2229b +=,解得1b =±, 故所求圆方程为:22(3)(1)9x y -+-=或22(3)(1)9x y +++=【点评】求圆的方程时,根据题目条件选择合适的方程形式,同时注意圆的几何性质的充分利用,如在第(1)问解法二中,利用圆心在线段AB 的中垂线上,可以使简化运算.第(2)问求解时注意两组结果.变式训练:求半径为4,与圆22:4240A x y x y +---=相切,且和直线0y =相切的圆的方程.【解析】由题意,设所求圆的方程为圆222:()()C x a y b r -+-=.圆C 与直线0y =相切,且半径为4,所以圆心C 的坐标为1:(,4)C a 或2:(,4)C a -. 又已知圆22:4240A x y x y +---=的圆心A 的坐标为(2,1),半径为3. 若两圆相切,则两圆心之间的距离437CA =+=或431CA =-=.(1) 当1:(,4)C a 时,222(2)(41)7a -+-=,或222(2)(41)1a -+-= (无解),故可得2a =±.∴所求圆方程为22(2(4)16x y -++-=或22(2(4)16x y --+-=.(2) 当2:(,4)C a -时,222(2)(41)7a -+--=,或222(2)(41)1a -+--= (无解),故2a =±∴所求圆的方程为22(2(4)16x y -+++=或22(2(4)16x y --++=.【点评】对本题,易发生以下误解:(1)忽略圆心在x 轴下方的情形,(2)只考虑两圆相外切的情况.题型2:轨迹问题【例2】(1)已知点M 与两个定点(0,0),(3,0)O A 的距离的比为12,求点M 的轨迹方程. (2) 已知线段AB 的端点B 的坐标是(4,3),端点A 在圆22(1)4x y ++=上运动,求线段AB 的中点M 的轨迹方程.【分析】第(1)问用直接法求轨迹方程,第(2)问用相关点代入法求轨迹方程,所得轨迹都是圆. 【解析】(1)设所求轨迹上任意一点(,),M x y 根据题意:12MO MA =,即:2MO MA =,即= 故所求轨迹方程为:22(1)4x y ++=.(2)设AB 的中点(,)M x y ,点00(,)A x y ,则004232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得 002423x x y y =-⎧⎨=-⎩,又因为A 在圆周上运动,故可得:22(241)(23)4x y -++-=,所求轨迹方程为:2233()()122x y -+-=.【点评】本题是比较简单的两道题目,分别用了直接法和相关点代入法求轨迹方程,旨在让学生复习求轨迹方程的方法,同时更进一步了解哪些点的运动轨迹是圆。

选择性必修第一册2.4.2圆的一般方程课件(人教版)

选择性必修第一册2.4.2圆的一般方程课件(人教版)

∴2D+4E-F-20=0 ② ,8D+6E+F+100=0. ③
联立①②③,解得 D=-11,E=3,F=-30,
故所求圆的方程为 x2+y2-11x+3y-30=0.
思考 满足什么条件时,二元二次方程 表示圆.
二元二次方程
表示圆
(1) x2 和 y2 的系数相同且不为 0,即A=C ≠ 0;
(2) 没有 xy 这样的二次项,即B=0;
方程特征:直接体现了圆上点的坐标x, y的间接关系, 体现了变元(改 变变量情势)和换元思想.
例5 已知线段AB的端点B的坐标是(4, 3), 端点A在圆(x+1)2+y2=4上运动, 求线段AB
的中点M的轨迹方程.
y
解2:(参数法) 设 M(x, y), A(x0, y0). ∵点 A 在圆(x+1)2+y2=4上 ,
2.4.2 圆的一般方程
复 习: 1. 圆心为C(a,b),半径为r 的圆的标准方程为 (x-a) 2 + (y-b) 2 = r2 当圆心在原点时(a=b=0),圆的标准方程为: x2 + y2 = r2 2. 由于圆的标准方程中含有 a , b , r 三个参数,因此必须具备三个独立
的条件才能确定圆;对于由已知条件容易求得圆心坐标和圆的半径或需 利用圆心坐标列方程的问题一般采用圆的标准方程.
课本P88
解:(1) 方程表示一个点(0, 0);
(2) 方程表示圆心坐标为(1, -2), 半径长为1的圆;
(3) 当a2 b2 0时,方程表示圆心坐标为(a,0), 半径长为 a2 b2 . 当a2 b2 0时,方程表示一个点(0, 0).
例4 求过三点 O(0, 0), M1(1, 1), M2(4, 2) 的圆的方程及圆的半径和圆心坐标.

圆与方程小结 优秀教案

圆与方程小结 优秀教案

【课题】:圆与方程小结【教学目标】:(1)知识与技能:掌握圆的标准方程与圆的一般方程与互相转化;根据圆的一般方程求圆心和半径;用待定系数法求圆的方程。

(2)过程与方法:让学生经历复习过程,使学生掌握数学结合等学习数学的方法,养成既能自主探索,又能合作探究的良好学习习惯。

(3)情感态度与价值观:让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

【教学重点】:圆的方程,直线与圆的位置关系的复习,以及解题思路的总结【教学难点】:直线与圆的方程的应用的复习。

【教学突破点】:熟悉直线与圆的位置关系的判定方法以及一些基本的公式。

【课前准备】:投影Powerpoint【教学过程设计】:练习与测试: (基础题)1、过点A )1,1(-,B )1,1(-,且圆心在直线02=-+y x 上的圆的方程是( ) A 、4)1()3(22=++-y x B 、4)1()3(22=-++y x C 、4)1()3(22=++-y x D 、4)1()3(22=++-y x 解:设圆方程为222)()(r b y a x =-+-,由题意得:⎪⎩⎪⎨⎧=-+--=--+-=-+222222)1()1()1()1(02r b a r b a b a 解得⎪⎩⎪⎨⎧===211r b a 故选C 。

2、若022=++-+r y x y x 表示一个圆,则r 的取值范围是( ) A 、0<r B 、21<r C 、2≤r D 、21≤r解:将022=++-+r y x y x 配方得:r y x -=++-21)21()21(22, 故021>-r ,所以21<r ,选B.3、圆0114222=---+y x y x 关于P (-2,1)对称的圆的方程是 。

解:将圆方程配方得:16)2()1(22=-+-y x ,圆心为(1,2)半径r =4,圆心关于点P (-2,1)的对称点为(-5,0)。

圆的一般方程(用)

圆的一般方程(用)

(D2+E2-4F>0)
圆的一般方程与标准方程的关系:
(1)a=-D/2,b=-E/2,r=
1 D2 E2 4F 2
(2)标准方程易于看出圆心与半径
一般方程突出形式上的特点:
①x2与y2系数相同并且不等于0;
②没有xy这样的二次项
练习
判断下列方程能否表示圆的方程,若能写出圆心与半 径
(1) x2+y2-2x+4y-4=0 (2) 2x2+2y2-12x+4y=0 (3) x2+2y2-6x+4y-1=0 (4) x2+y2-12x+6y+50=0
设方程为 (x a)2 ( y b)2 r2 (或x2 y2 Dx Ey F 0)
求半径 到圆上一点的距离)
(圆心 列关于a,b,r(或D,E,F)的方程 组
写出圆的标准方程
解出a,b,r(或D,E,F),写出标 准方程(或一般方程)
待定系数法
a b 1 0
a 3
(1 a)2 (1 b)2 r 2 b 2
(2 a)2 (2 b)2 r 2 r 5
圆心为C的圆的标准方程为(x+3)2 ( y 2)2 25.
小结求圆的方程
几何方法
求圆心坐标 (两 条直线的交点)(常用弦
的中垂线)
待定系数法
设方程为 (x a)2 ( y b)2 r2 (或x2 y2 Dx Ey F 0)
解1: ∵A(1,1),B(2,-2)
线 线段 段AABB的 的垂 中直 点平 D(分32 ,线 1C2D),的kA方B 程2为2:11y+13.
1
(x
3 ).
23 2

圆的方程归纳总结

圆的方程归纳总结

圆与方程小结与复习教师:王光明【知识归类】1.圆的两种方程(1)圆的标准方程222()()x a y b r -+-=,表示_____________.(2)圆的一般方程022=++++F Ey Dx y x .①当D 2+E 2-4F >0时,方程 ② 表示(1)当0422>-+F E D 时,表示__________; ②当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示_______; ③当0422<-+F E D 时,方程_____________________________________________. 综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆.2.点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在_____;(2)2200()()x a y b -+-=2r ,点在______;(3)2200()()x a y b -+-<2r ,点在______.3.直线与圆的位置关系设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C ______;(2)当r d =时,直线l 与圆C ________;(3)当r d <时,直线l 与圆C ________.4.圆与圆的位置关系设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C _______;(2)当21r r l +=时,圆1C 与圆2C ______;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C ____;(4)当||21r r l -=时,圆1C 与圆2C ___;(5)当||21r r l -<时,圆1C 与圆2C ______.题型一:求圆的方程1. 以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为( ) A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=9 2. 圆x 2+y 2-2x+4y+3=0的圆心到直线x-y=1的距离为 ( ) A. 22 B. 1 C. 2 D. 23.过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是( ).A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C. (x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=44.根据下列条件求圆的方程:经过坐标原点和点P (1,1),并且圆心在直线2x+3y+1=0上.变式:求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.题型二:圆的切线问题1.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ). A. 5 B. 3 C. 10 D. 52.若直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( ).A. 1,-1B.2,-2C.1D.-13.过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为 4.已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.5.过圆(x -1)2+(y -1)2=1外一点P(2,3),向圆引两条切线切点为A 、B. 求经过两切点的直线l 方程.(圆的对称+切线问题)1.圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是2.变式练习:自点A (-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆C :x 2 + y 2 -4x -4y +7 = 0相切,求光线L 、m 所在的直线方程.题型三:有关直线与圆的线段计算问题(弦长、弧问题)1.直线3x-4y-4=0被圆(x-3)2+y 2=9截得的弦长为( ).A.22B.4C.24D.22.圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有( ).A.1个B.2个C.3个 D4个3.直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为4.已知圆02422=++-+m y x y x 与y 轴交于A 、B 两点,圆心为P ,若︒=∠90APB .求m 的值.5.求直线063:=--y x l 被圆042:22=--+y x y x C 截得的弦AB 的长.题型四:圆与圆的位置关系1.圆0222=-+x y x 和圆0422=++y y x 的位置关系是 ( )A. 相交B. 外切C. 相离D. 内切2. 圆2240x y +-=与圆2244120x y x y +-+-=的公共弦长为 .类型五:圆中的最值问题1.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是2.已知点),(y x P 在圆1)1(22=-+y x 上运动. (1)求21--x y 的最大值与最小值;(2)求y x +2的最大值与最小值.变式: 设点),(y x P 是圆122=+y x 是任一点.(1)求12+-=x y u 的取值范围.(2)求y x -2的最大值与最小值.题型六:与圆有关的动点轨迹问题1.已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程.2.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.3.长为2a 的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,求线段AB 的中点的轨迹方程.4.已知△ABC 的两个顶点A(-10,2),B(6,4),垂心是H(5,2),求顶点C 的坐标.。

人教版高中数学课件:7.8.2直线与圆的方程小结与复习(二)

人教版高中数学课件:7.8.2直线与圆的方程小结与复习(二)
解法一:利用入射角与反射角相等 以及反射光线是圆C的切线 求得入射光线的斜率,即求.
y
A
C
解法二:利用A点关于x轴的对称点A’ 过点A’的圆的切线求得反射 光线的的斜率,即求得入射 光线的斜率,即求. 解法三:利用圆C关于x轴的对称圆C1, 入射光线即为过点A与圆C1相切 的直线.
4x 3 y 3 0 或 3x 4 y 3 0
解 法 1 . 设 B ( x B , y B ) 则 A B的 中 点 D 坐 标 (
xB 2 2
,
yB 8 2

又 B , D 分 别 在 直 线 x 2 y 4 0 和 直 线 4 x 7 y 24 0 上
xB 2 yB 4 0 x 2 yB 8 B ) 7( ) 24 0 4( 2 2
k 2 k1 1 k1k 2
ta n
k 2 k1 1 k1 k 2
Page 6
高2008级数学教学课件
典型例题
例1.已知△ABC的顶点A(3,-1),AB边上的中线所在 直线方程为6x+10y-59=0,∠B的平分线所在直线 的方程为:x-4y+10=0,求BC边所在的直线的方程.
高2008级数学教学课件
解法二、 B 在直线 x 2 y 4 0 上,可设 又 AB 边上的中线所在直线方 4 2 7 8 24 4 7
2 2
B (2 y B 4, y B )
程为 4 x 7 y 24 0 0
y A

4 ( 2 y B 4 ) 7 y B 24 4 7
x x1
y y1 y 2 y1
x a

人教版高中数学选修一第二章 直线和圆的方程(复习小结)课件

人教版高中数学选修一第二章 直线和圆的方程(复习小结)课件
b=1,r=5,a=2.
∴所求圆的方程为(x-2)2+(y-1)2=25.
归纳总结
确定圆的方程的主要方法
一是定义法,二是待定系数法.定义法主要是利用直线和圆的几何性质,确
定圆心坐标和半径,从而得出圆的标准方程;待定系数法则是设出圆的方
程(多为一般式),再根据题目条件列方程(组)求出待定的系数.
跟踪训练
例4一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西
70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km
处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?
解:以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图),其中取10
2
y2 2 上
点 P 在圆(x 2)

圆心为(2,0)
,则圆心到直线距离 d1
202
2
故点 P 到直线 x y 2 0 的距离 d 的范围为 2,3 2
2
则S
ABP

1
AB d 2 2d 2 2, 6
2
2 2Biblioteka 知识框图典例解析例1圆C的圆心在l1:x-y-1=0上,与l2:4x+3y+14=0相切,且截l3:3x+4y+10=0所得的弦长为6,
1 -2 = 5,
2
y2) =25,联立上述两式可得

由此可知直线 l
1 -2 = 0,
1 -2 = 5.
的倾斜角为 0°或 90°,故所求直线的方程为 y=1 或 x=3.
点睛:本题容易产生的错误是不考虑直线斜率是否存在,从而忽略了直线x=3.

圆的一般方程

圆的一般方程
2 2
( A ) 1 B.m≥-2 D.m>-2
1 解析:由 D +E -4F=1+1+4m>0,得 m>- . 2 1 故当 m>- 时,x2+y2-x+y-m=0 表示一个圆. 2
例3.已知△ABC的三个顶点坐标分别是A(0,5),B(1,-2), C(-3,-4),求它的外接圆的方程,并求其外心坐标.
x2+y2+Dx+Ey+F=0 (D2+E2-4F>0)
方程
条件
D2+E2-4F<0 D2+E2-4F=0
图形 不表示任何图形
D E ( - ,- 表示一个点 2 2) D E 表示以(- 2 ,- 2 )
x + y + Dx +Ey+F=0
D2+E2- 4F>0
2
2
为圆 为
心,以 1
2
D2+E2-4F
用“待定系数法”求圆的方程的大致步骤:
(1)根据题意,选择一般方程或标准方程;
(2)根据条件列出关于a,b,r或D,E,F的方程组; (3)解出a,b,r或D,E,F,代入一般方程或标准方程.
1 3 法二:∵AB的中点坐标为(2,2),斜率为 -2-5 kAB= 1 =-7. 3 1 1 ∴AB边的垂直平分线的方程为y-2=7(x-2), 即x-7y+10=0. ∵BC的中点为(-1,-3),斜率为
1.将圆x2+y2-2x-4y+1=0平分的直线是 A.x+y-1=0 C.x-y+1=0 B.x+y+3=0 D.x-y+3=0
( C )
2.圆2x2+2y2+6x-4y-3=0的圆心坐标和半径分别为( C ) 3 19 19 A. -2,1 和 B.(3,2)和 4 2 3 3 19 19 C. -2,1 和 D. 2,-1 和 2 2

高中数学必修二圆的一般式方程

高中数学必修二圆的一般式方程
(x+ 4
3
)2+(y+
4
3
)2=
50
9
2、从圆x2+y2=9外一点P(3,2)向该圆引切线,求切线方程。 x=3和5x+12y-39=0
圆心:两条弦的中垂线的交点
半径:圆心到圆上一点
方法二:待定系数法
解:设所求圆的方程为:
( x a) ( y b) r
2 2
2
因为A(5,1),B (7,-3),C(2,8)都在圆上
(5 a ) 2 (1 b) 2 r 2 a2 2 2 2 (7 a ) (3 b) r b 3 (2 a) 2 (8 b) 2 r 2 r 5

设 P( x1 , y1 ) , Q( x2 , y2 )
P
O Q
x2 y 2 m 0 x y 1 0
1 m x1 x2 2
2x 2x (1 m) 0
2
1 m 同理y1 y2 2
OP OQ
x1 x2 y1 y2 0 (2)
1、求圆心C在直线 x+2y+4=0 上,且过两定点A(-1 , 1)、 B(1,-1)的圆的方程。
2
2
( D E 4 F 0)
2
思 方程Ax Bxy Cy Dx Ey F 0 考 什么时候可以表示圆? 2 2 A C 0, B 0, D E 4 AF 0.
2
[观察]:圆的标准方程与圆的一般 方程在形式上的异同点.
圆的标准方程
2 2 ( x a ) ( y b) r 2
(2) x y 2ax y a 0表示圆, 1 a R, a 则a的取值范围是 _____ 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档