基于融合社交网络相似度的群体推荐算法研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于融合社交网络相似度的
群体推荐算法研究
1课题来源、研究意义和目的
1.1课题来源
本课题来源于实验室项目,旨在研究电子商务中的推荐系统。
1.2 研究意义和目的
近年来,Web2.0 技术的兴起更进一步拓展了用户与计算机之间的交互作用,提高了用户的使用体验,但也进一步加快了互联网信息资源的增长速度。海量的信息在给广大互联网用户带来更多选择的同时也使得其不得不花费大量的时间和精力从偌大的信息库中找到自己感兴趣或者对自己有用的信息,由此便导致了“信息过载”和“信息爆炸”的问题。个性化推荐作为目前解决信息过载问题的主要技术,个性化推荐技术已经在诸多领域得到了应用,如电子商务、社交网站、搜索引擎等。作为全球率先研究个性化推荐系统的企业之一的Amazon[1]错误!未找到引用源。[2][3],也早已将个性化推荐服务放到了网站中的各个角落,成为目前应用个性化推荐系统的成功案例之一。
迄今为止,关于个性化推荐技术的研究已有很多,但是已有的推荐系统大多都旨在为单个用户提供推荐,而现实生活中,有时却需要向一个群体提供推荐。比如一个家庭的所有成员同时观看电影、一个群体需要选择旅游目的地以及一个群体需要选择用餐地点等。由于群体成员的兴趣爱好具有差异性、多样性与复杂性,因此为一个群体提供推荐,同时要求推荐列表能够最大化群体用户的满意程度是相当困难的,传统的个性化推荐算法已经不能很好地适应于群体推荐系统的情景,因此研究更为有效的群体推荐系统算法就显得尤为迫切与重要。群体推荐系统的研究对于互联网企业寻找新的盈利模式也有积极的指导意义,它能够借助于用户的兴趣偏好与社交网络关系扩大企业产品或者服务的接触面,从而获得更
好的产品或服务推广效果。与此同时,用户也能够通过群体推荐系统建立更为广泛的人际关系,享受到更为个性化的信息推荐服务。
群体推荐系统能够利用多目标决策的方法权衡目标用户邻居集中多个用户或者多个属性的重要性,为单个用户提供更好的个性化信息服务;群体推荐系统还能够根据每个用户在群体中的重要性来提供推荐,因此能够启示个性化推荐系统综合考虑各个方面的影响因素,从而提高用户满意程度与推荐结果的可靠性。 2 国内外研究现状
卡耐基·梅隆大学的 Robert Armstrong 等学者首次提出了个性化推荐系统,
其在 1995年3月所展示的个性化导航系统Web Watcher 错误!未找到引用源。
[4][5][6]标志着推荐系统领域中相关技术研究的兴起。随着信息技术的飞速发展以及Web2.0技术的出现,人们迫切需要信息服务的系统来解决日益严重的信息过载问题。当一个群体需要获取信息的时,现有的个性化推荐系统难以满足实践的需求,于是群体推荐系应运而生。
2.1社交网络相似度的研究现状
社交网络[7]是一种用户可以建立公开或半公开账户,并且彼此之间通过链接相连的网络服务。社交网络在中国已成为覆盖用户最广、传播影响最大和商业价值最高的Web2.0业务。社交网络中用户之间的关系异常的复杂和特殊,可以用社交网络进行群体推荐研究。社交网络的形成是基于用户网络的形式呈现的,不同的用户是网络中不同的节点,可以使用(),,G V E W 表示一个社交网络,V 是用户集合,E 表示边的集合,如果两个用户i V 和j V 有关系,就有一条边(),i j e V V ,W 表示权重,权重的大小可以根据需要进行不同的设定。
根据目前社交网络的发展情况,有三种不同形式的社交网络数据:双向确认好友关系类型,这类的网络好友需要双方互认,否则不能成功组建好友关系,代表的有Facebook 、人人网等,该形式的好友可以使用无向图来表示关系;第二类是单向关注类型,用户关注其他用户的同时不需要对方必须关注自己,可以根
据自己兴趣喜好选择,代表有Twitter、新浪微博等,这种形式可以使用有向图表示关系;第三种是社区小组类型,用户之间没有明确的关系,但来至于同一个“社区”并拥有某些相似的特征[8]。传统的个性化推荐方法假设用户是独立、恒等分布的,它忽略了用户之间基于社会关系的信任。社交网络是人们在线交流的平台,也是信息传播的媒介,激发了对社交网络个性化推荐的研究和发展[9][10]。
2010年在文献[11]中,Song等提出了基于“信息扩散”理论的个性化推荐方法,将社交网络中的朋友关系看成是信息传播的路径,并从理论上证明了该信息传播模型的收敛性,还提出了社会相似度的概念。在实际应用中,该推荐方法产生的推荐结果优越传统推荐方法的推荐结果。
2011年在文献[12]中,张光卫等针对传统相似性度量方法存在的不足,利用云模型在定性知识表示及定性、定量知识转换时的桥梁作用,提出一种在知识层面比较用户相似度的个性化推荐方法,该方法克服了传统基于向量的相似度比较方法严格匹配对象属性的不足。
2012年在文献[13]中,Eytan Bakshy等分析了推荐网络和社交网络中常见的传播模式,根据概率图模型,给出了推荐网络中传播路径的算法。并提出社交网络相似度可以用评分相似度和社会相似度共同表示。
2013年在文献[14]中,朱锐等提出了一种基于偏好推荐的服务选择方法,该方法首先搜索一组偏好相似的推荐用户,通过皮尔逊相关系数计算用户的评价相似度,然后基于用户的推荐等级、领域相关度和评价相似度等对用户的推荐信息进行过滤,使推荐信息更为可靠,实验表明该方法能够有效地解决推荐算法中冷启动、推荐信息不准确等问题。
2013年在文献[15]中,Ma等人提出运用VSS和PCC来计算用户之间的相似度,从而进行相应的社会化推荐。由于这两个相似度计算方法均基于用户之间的共同评分项目集,而在现实世界中可能存在两个用户各自都有很多评分项,但这两个用户之间没有共同评分项目集,因此不能运用这两个函数来计算相应的用户间的相似度,从而导致这两个用户之间的社交网络信息丢失。为了解决该问题,李改[16]等,于2014年提出了一种新的社会化相似度计算函数NSS使其能计算没有共同评分的用户间的相似度。
2014年在文献[17]中,荣辉桂等提出了用户相似度。该相似度由两部分构成: