九年级数学锐角三角函数的应用
锐角三角函数的实际应用
解:(1)在Rt△BCD中,∠DBC=15°,sin∠DBC= CD,
∴CD=BDsin∠DBC≈20×0.26=5.2 m,
BD
∴CD的值为5.2 m;
(2)如解图,作DH⊥AB,垂足为H. 则FH=ED=1.6 m, 在Rt△BCD中, ∵∴解∠c得oCsB1=5C°9≈01=°9.,4BBDCm∠=,CBB2DC0 =≈01.59°7,,BD=20 m, ∴EF=BC≈19.4 m, 在Rt△AEF中, ∵∠AEF=45°,∠AFE=90∴AF=EF=BC≈19.4 m, ∴AB=AF+FH+BH≈19.4+1.6+5.2=26.2 m, 即楼房AB约为26.2 m.
满分技法 锐角三角函数的实际应用常见模型
抱 子 型
满分技法
锐角三角函数的实际应用常见模型
背靠背型
注:在“抱子型”及“背靠背型”中,若只知两个直角 三角形两条直角边之和或之差,则需要列方程求解.
m,
∴∠DCF=∠EDC=60°,
∴∠ADC=∠ADE+∠EDC=90°,
∴在Rt△ADC中,AD2+CD2=AC2,
∴( 2 3 x+ 4 3 解得x31=4+34
)2+42=( 2x)2, 3,x2=4-4 3 (舍去),
∴AB=4+4 3≈10.8 m.
∴电线杆的高AB约10.8 m.
练习1、如图是一座人行天桥的示意图,天桥的高是10米,
练习3、如图是某儿童乐园为小朋友设计的滑梯平面图.已 知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、 CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB= 31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离 BM的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52, cos 31°≈0.86,tan 31°≈0.60)
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)
九年级数学第二十八章《锐角三角函数——应用举例》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在综合实践活动中,小明在学校门口的点C处测得树的顶端A仰角为37°,同时测得BC=15米,则树的高AB(单位:米)为A.15tan37︒B.15sin37︒C.15tan 37°D.15sin 37°【答案】C【解析】如图,在Rt△ABC中,∠B=90°,∠C=37°,BC=15,∴tan C=ABBC,则AB=BC•tan C=15tan37°.故选C.【名师点睛】本题考查了解直角三角形的应用﹣仰角俯角问题.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.2.如图,在海拔200米的小山顶A处,观察M,N两地,俯角分别为30°,45°,则M,N两地的距离为A.200米B.2003米C.400米D.200(3+1)米【答案】D【解析】过A作AB⊥MN于B,在Rt △ABM 中, 90,200,30ABM AB M ∠==∠=,tan AB M BM∴∠=, 2003BM ∴=,在Rt △ABN 中, 90,45ABN N BAN ∠=∠=∠=,∴BN =AB =200,()200320020031MN ∴=+=+米.故选D.3.如图是一张简易活动餐桌,测得30cm OA OB ==,50cm OC OD ==,B 点和O 点是固定的.为了调节餐桌高矮,A 点有3处固定点,分别使OAB ∠为30,45,60,问这张餐桌调节到最低时桌面离地面的高度是(不考虑桌面厚度)A .402cmB .40cmC .403cmD .30cm【答案】B【解析】过点D 作DE ⊥AB 于点E ,∵∠OAB =30时,桌面离地面最低, ∴DE 的长即为最低长度, ∵OA =OB =30cm ,OC =OD =50cm , ∴AD =OA +OD =80cm , 在Rt △ADE 中,∵∠OAB =30,AD =80cm , ∴140cm.2DE AD ==故选:B.4.如图,某水库堤坝横截面迎水坡AB的坡度是1:3,堤坝高为40m,则迎水坡面AB的长度是A.80m B.803mC.40m D.403m【答案】A5.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.409秒B.16秒C.403秒D.24秒【答案】B【解析】如图,以点A为圆心,取AB=AD=200米为半径,过点A作AC⊥MN,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时开始对A处产生噪音影响,到点D时结束影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得: BC=160米∴BD=2BC=320米,∵72千米/小时=20米/秒,∴影响时间应是320÷20=16 (秒),故选B.6.如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是A.6千米B.8千米C.10千米D.14千米【答案】B【解析】∵∠ABG=48°,∠CBE=42°,∴∠ABC=180°-48°-42°=90°,∴A到BC的距离就是线段AB的长度,∴AB=8千米.BE=,她7.如图,小颖利用有一锐角是30的三角板测量一棵树的高度,已知她与树之间的水平距离6mAB=,那么这棵树高的眼睛距地面的距离 1.5m23 1.5mA.23m B.()32 1.5m D.4.5mC.()【答案】B【解析】在直角三角形ACD中,∠CAD=30°,AD=6m,∴CD=AD tan30°=6×33=23,∴CE=CD+DE=23+1.5(m).故选B.8.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B 两点间的距离为多少米.A.7502B.3752C.3756D.7506【答案】A二、填空题:请将答案填在题中横线上.9.如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后楼梯AC长为_____m.【答案】26【解析】在Rt△ABD中,∵sin∠ABD=AD AB,∴AD=4sin60°=23(m),在Rt△ACD中,∵sin∠ACD=AD AC,∴AC=23sin45=26(m).故答案是:26.10.我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A 的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+3)nmile处,则海岛A,C之间的距离为______nmile.【答案】2【解析】作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=22x,则CD=22x,在Rt△ABD中,BD=6 tan2ADABD=∠x,则22x+62x=18(1+3),解得,x=182,答:A,C之间的距离为182海里.故答案为:182.11.如图,一轮船由南向北航行到O处时,发现与轮船相距40海里的A岛在北偏东33方向.已知A岛周围20海里水域有暗礁,如果不改变航向,轮船________(填“有”或“没有”)触暗礁的危险.(可使用科学记算器)【答案】没有【解析】已知OA=40,∠O=33°,则AB=40•sin33°≈21.79>20.所以轮船没有触暗礁的危险.故答案为: 没有.12.数学组活动,老师带领学生去测塔高,如图,从B点测得塔顶A的仰角为60,测得塔基D的仰角为45,已知塔基高出测量仪20m,(即20mDC=),则塔身AD的高为________米.【答案】()2031-【解析】在Rt △ABC 中,AC =3BC .在Rt △BDC 中有DC =BC =20,∴AD =AC−DC =3BC−BC =20(3−1)米. 故答案为:20(3−1).三、解答题:解答应写出文字说明、证明过程或演算步骤.13.某中学九年级数学兴趣小组想测量建筑物AB 的高度.他们在C 处仰望建筑物顶端A 处,测得仰角为45,再往建筑物的方向前进6米到达D 处,测得仰角为60,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米,3 1.732≈,2 1.414)≈【解析】设AB x =米, ∵∠C =45°,∴在Rt ABC △中,BC AB x ==米,60ADB ∠=, 6CD =米,∴在Rt ADB △中tan ∠ADB =ABBD, tan60°=6xx -, 解得)333114.2x =≈米答,建筑物的高度为14.2米.14.如图,一个热气球悬停在空中,从热气球上的P点测得直立于地面的旗杆AB的顶端A与底端B的俯角分别为34°和45°,此时P点距地面高度PC为75米,求旗杆AB的高度(结果精确到0.1米).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67)15.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少.(结果保留根号)【解析】如图所示,延长BA交FD延长线于点G,过点A作AH⊥DG于点H.由题意知,AB=300cm,BE=AC=50cm,AH=50cm,∠AGH=30°.在Rt△AGH中,∵AG=2AH=100cm,∴CG=AC+AG=150cm,则CD=12CG=75cm.∵EG=AB﹣BE+AG=300﹣50+100=350(cm).在Rt△EFG中,EF=EG tan∠EGF=350tan30°=350×33503(cm).答:支撑角钢CD的长为75cm,EF 3503.。
【中考数学考点复习】第六节 锐角三角函数及其应用 课件(共33张PPT)
返回目录
第1题图
第六节 锐角三角函数及其应用
返回目录
改编条件:题干改变“测量点的高度”;“两个非特殊角”改为“两个 特殊角” 2.(2020 贺州)如图,小丽站在电子显示屏正前方 5 m 远的 A1 处看“防溺 水六不准”,她看显示屏顶端 B 的仰角为 60°,显示屏底端 C 的仰角为 45°,已知小丽的眼睛与地面距离 AA1=1.6 m, 3.求电子显示屏高 BC 的值.(结果保留一位小数. 4.参考数据: 2≈1.414, 3≈1.732).
第 6 题图
第六节 锐角三角函数及其应用
解:如解图,延长 BC 交 MN 于点 F, 由题意得 AD=BE=3.5 米,AB=DE=FN=1.6 米,
在 Rt△MFE 中,∠MEF=45°,∴MF=EF,
在 Rt△MFB 中,∠MBF=33°,
∴MF=BF·tan33°=(MF+3.5)·tan33°,
第六节 锐角三角函数及其应用
返回目录
3. .如图,为测量电视塔观景台 A 处的高度,某数学兴趣小组在电视塔 附近一建筑物楼顶 D 处测得塔 A 处的仰角为 45°,塔底部 B 处的俯角为 22°.已知建筑物的高 CD 约为 61 米,请计算观景台的高 AB 的值.(结果 精确到 1 米,参考数据:sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)
形的边角 1. 三边关系:a2+b2=c2
关系
2. 两锐角关系:∠A+∠B=90° 3. 边角关系:sinA=cosB= a ;cosA=sinB= b;
tanA=
a
c
;tanB=
b
c
图②用
返回思维导图
返回目录
1.仰角、俯角:如图③,当从低处观测高处的目标时,视线与水平线 锐角三角 所成的锐角称为__仰__角____,当从高处观测低处的目标时,视线与水平 函数的实 线所成的锐角称为___俯__角___ 际应用 2.坡度(坡比)、坡角:如图④,坡面的铅直高度h和水平宽度l的比叫坡
九年级(下)数学教案:锐角三角函数的简单应用(全3课时)
主备人用案人授课时间年月日总第课时课题7.6锐角三角函数的简单应用(1)课型新授教学目标1.进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、2.俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
重点进一步掌握解直角三角形的方法难点进一步掌握解直角三角形的方法教法及教具自主学习,合作交流,分组讨论多媒体教学过程教学内容个案调整教师主导活动学生主体活动一.指导先学:如右图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?显然,斜坡A1B l的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出ACBCCACB'''',即tanA l>tanA。
在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度。
新授:坡度的概念,坡度与坡角的关系。
如下图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,例如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。
从三角函数的概念可以知道,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡学生回顾相关所学知识学生按照老师要求完成自学内容,有难度的可以组内交流,达成统一意见教学过程教学内容个案调整教师主导活动学生主体活动四.检测巩固:如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角。
和坝底宽AD。
(i=CE:ED,单位米,结果保留根号)2.如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?五.小结反思:通过本节课的学习,你有何收获?你还存在什么疑惑?学生独立完成,有难度的可以组内交流,教师巡视,指导学生分组讨论交流,总结归纳,教师补充板书设计7.6锐角三角函数的简单应用(1)坡度的概念,坡度与坡角的关系。
坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i,即i=ACBC,坡度通常用l:m的形式,坡度与坡角的关系是i=tanB,显然,坡度越大,坡角越大,坡面就越陡布置作业补充习题教学札记教学过程教学内容个案调整教师主导活动学生主体活动1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?三.释疑拓展:如图,东西两炮台A、B相距2000米,同时发现入侵敌舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离(精确到l米)。
九年级数学寒假专题—锐角三角函数的应用冀教版知识精讲
九年级数学寒假专题—锐角三角函数的应用冀教版【本讲教育信息】一. 教学内容:寒假专题——锐角三角函数的应用1. 理解锐角三角函数的定义,弄清楚直角三角形中的边、角关系.2. 熟练掌握特殊角的锐角三角函数值.3. 运用锐角三角函数解决实际问题.二. 知识要点:1. 直角三角形中除直角外的五个元素之间的关系 (1)三边之间的关系:a 2+b 2=c 2(勾股定理); (2)两锐角之间的关系:∠A +∠B =90°;(3)边角之间的关系:sinA =a c ,cosA =b c ,tanA =ab (锐角三角函数).(4)在锐角三角函数sinA =a c ,cosA =b c ,tanA =ab中,实际上分别给出了三个量的关系:a 、b 、c 是边的长,sinA 、cosA 、tanA 是由∠A 用不同方式来决定的三角函数值,它们都是实数,但它与代数式的不同点在于三角函数的值是有一个锐角的数值参与其中.当这三个实数中有两个是已知数时,它就转化为一个方程,解这个方程,就求出了一个直角三角形的未知的元素.如:已知直角三角形ABC 中,∠C =90°,AC =6,∠A =30°,求BC 边的长.ABCD630°画出图形,可知边AC ,BC 和∠A 三个元素的关系是正切函数的定义给出的,所以有等式tan30°=BC 6,由于tan30°=33,它实际上已经转化成了以BC 为未知数的代数方程,解这个方程,得BC =6tan30°=6·33=2.即得BC 的长为2.3. 非直角三角形的图形向直角三角形转化的途径和方法(1)作高线可以把锐角三角形或钝角三角形转化为两个直角三角形.(2)作高线可以把平行四边形、梯形转化为含直角三角形的图形.(3)连结对角线,可以把矩形、菱形和正方形转化为含直角三角形的图形.4. 把实际问题转化为解直角三角形问题很多实际问题都可以归结为图形的计算问题,而图形计算问题又可以归结为解直角三角形问题.例如:我们知道,机器上用的螺丝钉,它的圆柱部分的侧面可以看作是长方形围成的(如图).螺纹是以一定的角度旋转上升,使得螺丝旋转时向前推进,问直径是6mm 的螺丝钉,若每转一圈向前推进mm ,螺纹的初始角应是多少度多少分?ACB据题意,螺纹转一周时,把侧面展开可以看作一个直角三角形,直角边AC 的长为AC=2π·(62)=6π(mm ),另一条直角边为螺钉推进的距离,所以BC =1.25(mm ),设螺纹初始角为θ,则在Rt △ABC 中,有tan θ=BCAC =6π≈0.0663,∴θ≈3°47′,即螺纹的初始角约为3°47′.三. 重点难点:本讲重点是掌握直角三角形中三边之间的关系,两锐角之间的关系,边角之间的关系(锐角三角函数).难点是正确选用直角三角形中的这些关系求出其它未知元素.四. 考点分析:解直角三角形的知识是近几年各地中考命题的热点之一,考查内容以基础知识与基本技能为主,应用意识进一步增强,联系实际、综合运用知识、技能的要求越来越明显,考查题型为选择题、填空题、解答题、应用题等.【典型例题】例1. 如图所示,P 是α角OA 边上的一点,且点P 的坐标为(3,4),则sin α=( )A .35B .45C .34D .43OAP B34αx y分析:本题比较容易,考查坐标的意义和求三角函数的值.由图可知,因为点P 的坐标为(3,4),所以OB =3,PB =4,根据勾股定理可得OP =OB 2+PB 2=5,所以sin α=PBOP=45,所以答案选择B . 解:B例2. 如图所示,在△ABC 中,AD 是BC 边上的高,tanB =cos ∠DAC . (1)求证:AC =BD ;(2)若sinC =1213,BC =12,求AD 的长.ABCD分析:对于第(1)问中AC 、BD 分别是Rt △ADC 中的斜边和Rt △ABD 中的一直角边,可根据直角三角形中的边角关系和已知条件tanB =cos ∠DAC 进行转换.对于第(2)问,因为BD =AC ,可根据勾股定理和三角函数求出AD 的长.(1)证明:在Rt △ABD 和Rt △ADC 中,∵tanB =AD BD ,cos ∠DAC =ADAC ,又tanB =cos ∠DAC ,∴AD BD =ADAC,∴AC =BD . (2)解:在Rt △ADC 中,由sinC =1213,可设AD =12k ,则AC =13k .由勾股定理,得CD 2=(13k )2-(12k )2=25k 2,∴CD =5k . 又由(1)知BD =AC =13k .∵BC =BD +DC ,∴12=13k +5k ,解得k =23.∴AD =12k =12×23=8.例3. 如图所示,X 伯伯利用假日在某钓鱼场钓鱼.风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来时,假设铅锤P不动,鱼漂移动了一段距离BC,且顶端恰好与水面平齐(即PA=PC),水平线l与OC夹角α=8°(点A在OC上).请求出铅锤P处的水深h.(参考数据:sin8°≈210,cos8°≈7210,tan8°≈17)lO分析:将实际问题转化成数学问题即:已知AP=PC,BC⊥AP于B,AB=6cm,∠ACB =∠α=8°,求BP的长.在Rt△ABC中应用三角函数可求出BC,再根据PB+AB=AP =PC和勾股定理可求出BP的长.解:根据题意∠ACB=∠α=8°,在Rt△ABC中,∵ABBC=tan∠ACB=tan8°,AB=6cm,∴BC=6tan8°=42cm,在Rt△BCP中,PC2=PB2+BC2,∵PC=AP=PB+AB=PB+6,∴(PB+6)2=PB2+422,即:12PB+36=422,解得PB=144,即h=144cm.答:铅锤P处的水深h为144cm.例4.如图所示,河流两岸a、b互相平行,C、D是河岸a上间隔50m的两个电线杆,某人在河岸b上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=60°.求河流的宽度CF的值(结果精确到个位).A BCDFab分析:在△BCF中,∠CBF=60°,要求CF必须求出BC或BF.∠DAB=30°和AB =100米、CD=50米与问题没有直接联系,需将它们进行适当的转化,转化到相关的直角三角形中,应用三角函数求解.解:过点C作CE∥AD交b于点E,则∠DAB=∠CEB=30°,AE=CD=50米,BE=AB-AE=50米.在Rt△BCF中,BF=CFtan∠CBF=CF3=33CF,在Rt△CEF中,EF=CFtan∠CEF=3CF.∵EF-BF=BE=50,∴3CF-33CF=50,即CF=253≈43(m).A B CD E Fab例5.如图,山脚下有一棵树AB ,小华从点B 沿山坡向上走50米到达点D ,用高为的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高.(精确到0.1米)(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈.)分析:延长CD 交PB 于点F ,在Rt △BDF 中求出DF .树高AB 可分为三段AE 、CD 、DF 来求.解:延长CD 交PB 于F ,则DF ⊥PB . ∴DF =BD ·sin15°≈50×0.26=13.0. ∴CE =BF =BD ·cos15°≈50×=. ∴AE =CE ·tan10°≈×=.∴AB =AE +CD +DF =++13=(米). 答:树高约为米.例6.某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东45°、B 地北偏西60°方向上有一牧民区C .一天,甲医疗队接到牧民区的求救,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C .方案II :从A 地开车穿越草地沿AC 方向到牧民区C .已知汽车在公路上行驶的速度是在草地上行驶速度的3倍. (1)求牧民区到公路的最短距离CD .(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由. (结果精确到0.1.参考数据:3取1.73,2取1.41)ABCD北45°60°分析:(1)AD 的长可以用含CD 的式子表示出来,BD 的长也可以用含CD 的式子表示出来,因为AB 长为40,所以由AD +BD =40可得含CD 的方程.(2)分别计算两种方案所用时间,时间短的救助方案较合理.解:(1)设CD 为x 千米,由题意得,∠CBD =30°,∠CAD =45°, ∴AD =CD =x .在Rt △BCD 中,tan30°=xBD,∴BD =3x ,AD +DB =AB =40,∴x +3x =40,解得x ≈14.7, ∴牧民区到公路的最短距离CD 为14.7千米.(2)设汽车在草地上行驶的速度为v ,则在公路上行驶的速度为3v , 在Rt △ADC 中,∠CAD =45°,∴AC =2CD ,方案I 用的时间t 1=AD 3v +CD v =4CD3v ;方案II 用的时间t 2=2CDv.∴t 2-t 1=(32-4)CD3v.∵32-4>0,∴t 2-t 1>0,∴方案I 用的时间少,方案I 比较合理.【方法总结】解决锐角三角函数的综合问题时,应根据题目中给出的有关信息构建图形,经过整理数据、加工信息、抽象概念,建立数学模型,然后用解直角三角形的知识解决问题.运用三角函数知识解题时,尽量选择用乘法计算的关系式.可归纳为“有弦用弦,无弦用切;求对用正,求邻用余,宁乘勿除”的基本方法.【预习导学案】 (34.1认识二次函数) 一. 预习前知1. 一次函数的一般表达式是__________.2. 反比例函数的一般表达式是__________. 二. 预习导学1. 下列函数中,__________是一次函数,__________是反比例函数,__________是二次函数.(1)y =3x ;(2)y =3x -1;(3)y =3x 2-1;(4)y =13x ;(5)y =13x2;(6)y =3x 3+2x 2;(7)y =(x +2)2-x 2;(8)y =x 2+1x2.2. 正方形的周长为l ,则这个正方形的面积S 与周长l 之间的函数表达式是__________.3. 若y =(m 2-1)x 2+(m +2)x 是关于x 的二次函数,求m 的值. 反思:(1)二次函数的一般表达式有什么特征?(2)一次函数、反比例函数、二次函数有什么区别与联系?【模拟试题】(答题时间:50分钟)一. 选择题1. 正方形网格中,∠AOB 如图所示放置,则cos ∠AOB 的值为( )A. 55B. 25 5C. 12D. 2AOB2. 如图所示,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)位于她家北偏东60°的500m 处,那么水塔所在的位置到公路的距离AB 是( )A. 250mB. 2503mC. 50033m D. 2502mABO 东北3. 如图所示,已知直角三角形ABC 中,斜边AB 的长为m ,∠B =40°,则直角边BC 的长是( )A. m sin40°B. m cos40°C. m tan40°D. mtan40°ABC40°4.在直角坐标系中,点P (4,y )在第一象限内,且OP 与x 轴正半轴的夹角为60°,则y 的值是( )A. 433 B.4 3 C. -3 D. -1 °,又知水平距离BD =10m ,楼高AB =24m ,则树高CD 为( )A. (24-103)mB. (24-1033)mC. (24-53)mD. 9m*6. 如图所示,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP =2cm ,则tan ∠OPA 等于( )A. 32B. 23C. 2D. 12OABP**7. 如图所示,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE =α,且cos α=35,AB =4,则AD 的长为( )A. 3B. 163C. 203D. 165ABCDE二. 填空题1. 如图所示的半圆中,AD 是直径,且AD =3,AC =2,则sinB 的值是__________.OABCD2. 如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE =125,则河堤的高BE 为__________米.BCDEA**3. 如图,矩形纸片ABCD ,BC =2,∠ABD =30°.将该纸片沿对角线BD 翻折,点A 落在点E 处,EB 交DC 于点F ,则点F 到直线DB 的距离为__________.A BCDEF**4. 如图,X 华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部B 点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE =9米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为__________米(结果保留根号).三. 解答题1. 如图,在△ABC 中,∠C =90°,sinA =45,AB =15,求△ABC 的周长和tanA 的值.A BC2. 小明站在A 处放风筝,风筝飞到C 处时的线长为20米,这时测得∠CBD =60°,若牵引底端B 离地面,求此时风筝离地面的高度.(计算结果精确到,3≈1.732)3. 如图所示,一条细绳系着一个小球在平面内摆动,摆动偏离竖直方向最大角度为60°.已知细绳从悬挂点O 到球心的长度为50厘米,你能求出小球在摆动的过程中最高位置和最低位置的高度差吗?OB*4. 如图,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD =CD ,cosB =513,BC =26.求(1)cos ∠DAC 的值;(2)线段AD 的长.ABCD*5. 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66m ,这栋高楼有多高?(结果精确到m ,参考数据:3≈)ABC【试题答案】一. 选择题 1. A2. A 【根据题意OA =500,∠AOB =30°,则AB =500sin30°=250】3. B 【∵cos40°=BC AB =BCm ,∴BC =m cos40°】4. B5. A6. D 【作OC ⊥AP 于C ,则AC =BC =4,OC =3,PC =6,∴tan ∠OPA =OC PC =36=12】7. B 【由题意知∠BAC =α,则cos ∠BAC =35=AB AC ,∵AB =4,∴AC =203,∴BC =AC 2-AB 2=(203)2-42=163.】二. 填空题1. 23【∵AD 是直径,∴∠ACD =90°.∵∠B =∠D ,sinD =AC AD =23,∴sinB =23】2. 123. 233【由题意可知,DF =BF ,∠ABD =∠EBD =30°,BD =2AD =4,过点F 作FG⊥DB 于点G ,则DG =BG =2,在Rt △BGF 中,点F 到直线DB 的距离FG =BG ·tan30°=233】 4. 10+33【过点C 作CD ⊥AB 于D ,在Rt △ACD 中,AD =CDtan30°=9×33=33;在Rt △BCD 中,BD =CDtan45°=9.所以旗杆顶点A 离地面的高度为33+9+1=10+33】三. 解答题1. BC =ABsinA =12,AC =AB 2-BC 2=9,所以△ABC 的周长是36,tanA =BC AC =43.2. 在Rt △BCD 中,CD =BC ×sin60°=20×32=103,又DE =AB =1.5,∴CE =CD+DE =CD +AB =103+1.5=18.8(米)3. 过点A 作AD ⊥OB 于D ,因为OA =OB =50,∠AOB =60°,所以OD =25,BD =OB -OD =25厘米,即小球在摆动的过程中最高位置和最低位置的高度差是25厘米.4. (1)在Rt △ABC 中,∵cosB =513,BC =26,∴AB =BC ·cosB =10,∴AC =BC 2-AB 2=24.∵AD ∥BC ,∴∠DAC =∠ACB .∴cos ∠DAC =cos ∠ACB =AC BC =2426=1213.(2)过点D 作DE ⊥AC 于E ,∵AD =CD ,∴AE =12AC =12,∴AD =AEcos ∠DAC =13.5. 过点A 作AD ⊥BC ,垂足为D ,BD =ADtan30°=223,CD =ADtan60°=663,BC =BD +CD =223+663=883≈152.2(米).这栋楼高约为m .。
初中锐角三角函数及应用
初中锐角三角函数及应用锐角三角函数是指角度小于90度的三角函数,包括正弦、余弦和正切。
这些函数在数学和物理学中有着广泛的应用。
首先,我们来介绍一下锐角三角函数的定义和性质。
在一个直角坐标系中,对于一个锐角ABC(角A小于90度), 我们可以定义正弦函数sinA 为点B的纵坐标除以斜边AC的长度,余弦函数cosA 为点B的横坐标除以斜边AC的长度,正切函数tanA 为点B的纵坐标除以横坐标。
其中,sinA、cosA和tanA都是角A的函数。
这些函数有许多重要的性质。
首先,它们的定义域都是锐角的正数集合,即(0,90)。
其次,它们的值域都是(-1,1),即在定义域内,这些函数的值都在-1到1之间变化。
此外,正弦函数和余弦函数还具有周期性,周期为360度或2π弧度。
也就是说,对于一个锐角A,sin(A+360k) = sinA,cos(A+360k) = cosA,其中k 为整数。
在应用方面,锐角三角函数有着广泛的作用。
首先,它们被广泛应用于三角计算。
例如,我们可以利用正弦定理或余弦定理,通过已知边和角来求解三角形的其他未知边和角。
这在测量、建筑、工程等领域都有着重要的应用。
其次,锐角三角函数在物理学中也有着重要的应用。
例如,对于一个斜抛运动的物体,我们可以利用正弦函数和余弦函数来分析其垂直和水平方向上的运动。
它们可以帮助我们计算物体的落点、飞行时间、最大高度等。
另外,锐角三角函数还与周期函数和图像有着密切的关系。
它们的图像可以通过函数的周期性来得到。
例如,正弦函数的图像是一个周期为2π的曲线,具有对称性和单调性,而余弦函数的图像是一个周期为2π的曲线,也具有对称性和反单调性。
此外,锐角三角函数还与三角恒等式有着重要的联系。
三角恒等式是指对于锐角A和B,成立的恒等关系。
利用三角恒等式,我们可以化简复杂的三角函数表达式,简化计算过程。
总的来说,锐角三角函数是数学中一类重要的函数,具有广泛的应用。
它们不仅在三角计算和几何题目中有着重要作用,还与物理学、周期函数和三角恒等式等有着紧密的联系。
锐角三角函数的简单运用
锐角三角函数的计算方法包括直接计算、利用三角恒等式化简、利用同角关系式化简等。 掌握这些计算方法是解决三角函数问题的基本技能。
对未来学习锐角三角函数的建议
01
深入理解概念
在学习锐角三角函数的过程中,要深入理解其概念,掌握其性质和定理,
这样才能更好地运用它们解决实际问题。
02 03
利用三角函数求长度
在直角三角形中,已知角度和一边长度,可以利用正弦、余弦、正切等三角函数 求出另一边的长度。
利用三角函Байду номын сангаас求距离
在平面几何问题中,可以利用三角函数求两点之间的距离,或者点到直线的距离 。
判断三角形形状问题
利用三角函数判断三角形形状
通过比较三角形的三个内角的三角函数值,可以判断三角形是锐角三角形、直角三角形还是钝角三角 形。
正弦函数的性质
01
02
03
定义域
正弦函数在第一象限和第 二象限有定义,即角度范 围在0到180度之间。
值域
正弦函数的值域为[-1,1], 表示角度的正弦值永远不 会超过1或小于-1。
单调性
正弦函数在第一象限和第 二象限内是单调递增的, 随着角度的增加,正弦值 也会增加。
余弦函数的性质
定义域
余弦函数在第一象限和第 四象限有定义,即角度范 围在0到180度之间。
锐角三角函数的 简单运用
目录
• 引言 • 锐角三角函数的性质 • 锐角三角函数的计算方法 • 锐角三角函数在几何问题中的应
用 • 锐角三角函数在实际问题中的应
用 • 总结与展望
01
引言
锐角三角函数的定义
锐角三角函数是三角函数中的一种, 主要研究锐角的角度与其边长之间的 关系。常见的锐角三角函数有正弦、 余弦和正切。
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。
2020中考数学 九年级下册锐角三角函数在实际问题中的应用(含答案)
2020中考数学 锐角三角函数在实际问题中的应用(含答案)1.如图,小军和小兵要去测量一座古塔的高度,他们在离古塔60米的A 处用测角仪测得塔顶的仰角为30°,已知测角仪AD=1.5米,则塔CB 的高为多少米?参考答案:解:过A 作AE ∥DC 交BC 于点E 则AE=CD=60米,则∠AEB=90°,EC=AD=1.5 在Rt △ABE 中, 即tan 3060BE=∴60tan 3060BE === 所以,古塔高度为: 1.5CB BE EC =+=米2.如图,小强在家里的楼顶上的点A 处,测量建在与小明家楼房同水平线上相邻的电梯楼的高,在点A 处看电梯楼顶点B 处的仰角为60°,看楼底点C 的俯角为45°,两栋楼之间的距离为30米,则电梯楼的高BC 为多少米?参考答案:解:过A 作AD ∥地面,交BC 于D 则在Rt △ABD 中,tan 60BD AD ∠=,即tan 6030BD∠=,∴BD =在Rt △ACD 中,tan 45DC AD ∠=,即tan 6030DC ∠=,∴30DC = ∴楼高BC 为:30BD DC +=+AD BC3.小明在热气球A 上看到正前方横跨河流两岸的大桥BC ,并测得B ,C 两点的俯角分别为45°,35°。
已知大桥BC 与地面在同一水平面上,其长度为100米,请求出热气球离地面的高度。
(结果保留整数,参考数据:7sin 3512≈,5cos356≈,7tan 3510≈)参考答案:解:过A 作AD ⊥BC 于点D则AD 即为热气球的高度,且∠1=∠2=45∴可设AD=BD=x 则CD=x+100 在Rt △ADC 中tan AD C DC =,即tan 35100xx =+得:7003x =即热气球的高度为7003AD =米 4.如图,某建筑物BC 顶部有一旗杆AB ,且点A ,B ,C 在同一直线上.小红在D 处观测旗杆顶部A 的仰角为47°,观测旗杆底部B 的仰角为42°.已知点D 到地面的距离DE 为1.56m ,EC=21m ,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位,参考数据:tan47°≈1.07,tan42°≈0.90).参考答案:解:根据题意,DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D 作DF ⊥AC,垂足为F .则∠DFC=90°,∠ADF=47°,∠BFD=42°.1.41≈ 1.73≈)参考答案:解:过C 作CD ⊥AB 于点D , 则∠DBC=45°=∠BCD ∴可设BD=CD=x在Rt △ACD 中可得:tan DCDAC AD∠=即:tan 302x x =+得1 2.73x =≈即,点C 与探测面的 距离大约为2.73米。
人教版九年级下册数学第28章 锐角三角函数 利用解直角三角形解含方位角、坡角(坡度)的应用
感悟新知
知1-练
1. 如图,海中有一个小岛A,它周围8nmile内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏
东60°方向上,航行12nmile到达D点,这时测得小 岛A在北偏东30° 方向上.如果渔船不改 变航线继续向东航行, 有没有触礁的危险?
感悟新知
解:如图,过点A作AC⊥直线BD,垂足为点C.
C.200D3.300
3
感悟新知
知识点 2 用解直角三角形解坡角问题
探究
B
一、如图是某一大坝的横断面:
坡面AB的垂直高度与 水平宽度AE的长度之 比是α的什么三角函数?
Aα
E
知2-练
C
D
tan
BE 坡面AB与水平面的夹角叫做坡角.
AE
感悟新知
坡度的定义:
知2-练
坡面的垂直高度与水平宽度之比
B
叫做坡度,记作i.
感悟新知
例1 如图, 一艘海轮位于灯塔P的北 偏东65°方向,距离灯塔 80nmile的A处,它沿正南方向 航行一段时间后,到达位于灯
塔P的南偏东34°方向上的B处. 这时,B处距离灯塔P有多远 (结果取整数)?
北 65°
P 34°
知1-练
A
C
B
感悟新知
解:如图,在Rt△APC中, PC=PA•cos(90°-65°) =80×cos25° ≈72. 505. 在Rt△BPC中,∠B=34°,
第二十八章锐角三角函数
28.2解直角三角形及其应用
第6课时利用解直角三 角形解含方位角、坡角 (坡度)的应用
学习目标
1 课时讲解 用解直角三角形解方位角问题
用解直角三角形解坡角(或坡度) 问题
锐角三角函数的实际应用
锐角三角函数的实际应用一、仰角、俯角问题例1. 某数学课外活动小组利用课余时间,测量了安装在一幢楼房顶部的公益广告牌的高度.如图,矩形CDEF 为公益广告牌,CD为公益广告牌的高,DM为楼房的高,且C、D、M三点共线.在楼房的侧面A处,测得点C与点D的仰角分别为45°和37.3°,BM=15米.根据以上测得的相关数据,求这个广告牌的高(CD的长).(结果精确到0.1米,参考数据:sin37.3°≈0.6060,cos37.3°≈0.7955,tan37.3°≈0.7618)例2.如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成57.5°角,在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB的高为1.5米,求拉线CE的长.(结果精确到0.01米,参考数据:sin57.5°≈0.843,cos57.5°≈0.537,tan57.5°≈1.570,3≈1.732,2≈1.414)二、坡度、坡角问题例3. 如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度.(结果精确到1米,参考数据:2≈1.414,3≈1.732)例4. 如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB,BC表示连接缆车站的钢缆,已知A,B,C 三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米,310米,710米,钢缆AB的坡度i1=1∶2,钢缆BC的坡度i2=1∶1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)三、测量问题例5、为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)例6、如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于A B的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)四、方向角问题例7:某海域有A、B两个港口,B港口在A港口北偏西30°的方向上,距A港口60海里.有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处.求该船与B港口之间的距离即CB的长(结果保留根号).例8:如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为612千米,且位于临海市(记作点B)正西方向603千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?巩固练习:1、如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)2. 张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,如图,山坡与水平面成30°角(即∠MAN=30°),在山坡底部A处测得大树顶端点C的仰角为45°,沿坡面前进20米,到达B处,又测得树顶端点C的仰角为60°(图中各点均在同一平面内),求这棵大树CD的高度.(结果精确到0.1米,参考数据:3≈1.732)3.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20)4、如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.5、如图,某军港有一雷达站,军舰停泊在雷达站的南偏东方向36海里处,另一艘军舰位于军舰的正西方向,与雷达站相距海里.求:(1)军舰在雷达站的什么方向?(2)两军舰的距离.(结果保留根号)6、(某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45°。
人教版九年级数学下册28.1:锐角三角函数(教案)
这些核心素养目标的实现将有助于学生形成完整的数学知识体系,提高数学思维品质,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
-锐角三角函数的定义:正弦、余弦、正切函数的概念是本节课的核心,需确保学生理解函数定义的几何意义。
在总结回顾环节,我强调了锐角三角函数在实际生活中的应用,希望学生们能够学以致用。但从学生的反馈来看,他们对这部分内容的掌握程度仍有待提高。为此,我计划在下一节课中增加一些与实际应用相关的练习题,让学生们在实践中巩固所学知识。
最后,我认识到教学过程中要关注学生的个体差异,因材施教。在今后的教学中,我会更多地关注每个学生的学习需求,努力提高教学质量,使每位学生都能在课堂上收获满满。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对锐角三角函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我们探讨了锐角三角函数的概念和应用。回顾整个教学过程,我觉得有几个方面值得反思。
首先,关于导入新课的部分,通过提出与日常生活相关的问题,我发现学生们对锐角三角函数产生了浓厚的兴趣。这样的导入方式有效地激发了学生的好奇心和求知欲,为后续的学习打下了良好的基础。
其次,在新课讲授环节,我尝试以直观的方式解释锐角三角函数的定义和性质,并通过案例分析让学生了解其在实际中的应用。但我也注意到,部分学生对函数名称和函数值之间的对应关系仍存在一定的混淆。在今后的教学中,我需要更加重视这一点,通过丰富多样的教学手段帮助学生更好地理解和记忆。
九年级数学人教版下册第二十八章锐角三角函数 解直角三角形及其应用 解直角三角形课件
=20,解这个直角三角形(结果保留小数点后一位).
解: A = 9 0 º - B = 9 0 º - 3 5 º = 5 5 º ,A
∵ tanB=b ,
c
b
a
20
∴ a = tan bB = tan 20 35°≈ 28. 6 . C
35° a
B
二、探究新知
∵ sinB=b , c
A. b=a·tan A
B. b=c·sin A
C. b=c·cos A
D. a=c·cos A
四、课堂训练
3.如图,在菱形 ABCD 中,AE⊥BC 于点 E,EC=4, sin B= 4 ,则菱形的周长是( C ).
5 A.10 B.20 C.40 D.28
A
D
B
EC
四、课堂训练
4.如图,已知 AC=4,求 AB 和 BC 的长.
一般地,由直角三角形中的已知元素,求出其余未知元 素的过程,叫做解直角三角形.
二、探究新知
(1)在直角三角形中,除直角外还有哪几个元素? (2)结合右图说一说这几个元素之间有哪些关系? (3)知道这几个元素中的几个,就可以求其余元素? 解:(1)在 Rt△ABC 中除直角外还有五个元素,三边: AB,AC,BC 或 a,b,c 两锐角:∠A ,∠B.
∴ c= sin bB = sin 23 05°≈ 34. 9. 注意:选取函数关系求值时尽可能用原始数据,减少因 为近似产生的累积误差.
二º,∠B=72º,c=14,解这个
直角三角形. A
解: A = 9 0 º - 7 2 º = 1 8 º ,
, B
二、探究新知
在 Rt△ABC 中,∠C=90º,a=30,b=20.解这个直 角三角形. 在 Rt△ACD 中,
初中九年级数学中考锐角三角函数知识点总结
九年级数学中,锐角三角函数是一个重要的知识点。
锐角三角函数是指对于锐角的正弦、余弦和正切函数。
下面我将对锐角三角函数的基本概念、性质和应用进行总结。
一、基本概念1.弧度和角度:角度是常用的角度度量单位,弧度是角度的另一种度量单位。
1个弧度对应360°/2π≈57.3°。
角度和弧度之间的关系式:弧度=角度×π/180°。
2.锐角:指角度小于90°的角。
3. 三角函数:对于一个锐角A,定义其正弦(sin A)为对边与斜边的比值,余弦(cos A)为邻边与斜边的比值,正切(tan A)为对边与邻边的比值。
二、性质1.正弦函数的性质:(1)对于锐角A,0 < A < 90°,sin A > 0;(2)sin A = sin (180° - A) = sin (A + 360°);(3)sin (90° - A) = cos A;(4)sin A ≠ 0,当且仅当A是锐角。
2.余弦函数的性质:(1)对于锐角A,0 < A < 90°,cos A > 0;(2)cos A = cos (180° - A) = cos (360° + A);(3)cos (90° - A) = sin A;(4)cos A ≠ 0,当且仅当A是锐角。
3.正切函数的性质:(1)对于锐角A,0 < A < 90°,tan A > 0;(2)tan A = tan (180° + A);(3)tan (90° - A) = 1/tan A;(4)tan A ≠ 0,当且仅当A是锐角。
4.三角函数的关系:(1)sin^2 A + cos^2 A = 1;(2)tan A = sin A / cos A。
三、应用1.解三角形:利用已知角的正弦、余弦和正切的值,可以求解未知边长或角度的三角形问题。
人教版九年级数学下册锐角三角函数《解直角三角形及其应用(第1课时)》示范教学课件
一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.
在直角三角形中,除直角外的五个元素之间有哪些关系?
如图,在 Rt△ABC 中,∠C 为直角,∠A,∠B,∠C 所对的边分别为 a,b,c,那么除直角∠C 外的五个元素之间有如下关系:
解直角三角形的类型及方法
图示
已知类型
已知条件
方法与步骤
两边
斜边,一条直角边(如 c,a)
(1) ;(2)由 ,求∠A;(3)∠B=90°-∠A
两条直角边 a,b
(1) ;(2)由 ,求∠A;(3)∠B=90°-∠A
解直角三角形及其应用
(第1课时)
人教版九年级数学下册
sin A=____________=____.
如图,在 Rt△ABC 中,∠C=90°. 我们把锐角 A 的_________________叫做∠A 的正弦,记作 sin A,即
对边与斜边的比
把∠A 的________________叫做∠A 的余弦,记作 cos A,即
在 Rt△ABC 中,有哪些未知元素?如何求这些未知元素?求解的依据是什么?
例1 如图,在 Rt△ABC 中,∠C=90°,AC= ,BC= ,解这个直角三角形.
例2 如图,在 Rt△ABC 中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).
cos A=____________=____;
邻边与斜边的比
把∠A 的_________________叫做∠A 的正切,
记作 tan A,即
tan A=__________=____.
2024九年级数学下册第28章锐角三角函数28.1锐角三角函数(正切函数)说课稿(新版)新人教版
- 角度计算
- 实际测量问题
5. 正切函数与其他锐角三角函数的关系
- tanθ = sinθ/cosθ
6. 正切函数的诱导公式
- tan(θ + π/2) = -cotθ
- tan(θ - π/2) = cotθ
- tan(π - θ) = -tanθ
7. 正切函数的求值方法
- 查表或计算器
鼓励学生相互讨论、互相帮助,共同解决问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍正切函数在工程测量、天文学等领域的拓展应用,拓宽学生的知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索பைடு நூலகம்神。
情感升华:
结合正切函数的内容,引导学生思考数学与生活的联系,培养学生的社会责任感。
鼓励学生分享学习正切函数的心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的正切函数内容,强调重点和难点。
肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的正切函数内容,布置适量的课后作业,巩固学习效果。
在教学管理方面,我尽力确保每位学生都备有教材和辅助材料,并在课堂上进行及时的练习和订正。我发现这种及时反馈和指导能够帮助学生巩固知识,提高解题能力。然而,我也意识到在课堂管理中,有时会出现一些意外情况,如学生分心或纪律问题,这提示我在今后的教学中需要更加注重课堂纪律的维护和管理。
1. 加强学生的实践操作能力的培养,通过更多的实例和练习,让学生更好地理解和掌握正切函数的图像绘制方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公司注册流程及费用 https:///zt/business/ 公司注册流程及费用 jzh18kbe
有限责任公司增加注册资本的主要途径是股东增加出资,情况比较简单;股份有限公司可以通过发行新股来增加注册资本,也可以将公积金 转为注册资本,情况比较复杂。下面主要介绍一下股份有限公司增加注册资本的程序和要求。.
30°
练习1、某住宅小区高层建筑均为正南正北向,楼高都 是16米,某时太阳光线与水平线的夹角为30 °,如果南 北两楼间隔仅有20米,试求:(1)此时南楼的影子落 在北楼上有多高?(2)要使南楼的影子刚好落在北楼 的墙脚,两楼间的距离应当是多少米?
练习1、我市某住宅小区高层建筑均为正南正北向,楼 高都是16米,某时太阳光线与水平线的夹角为30 °,如 果南北两楼间隔仅有20米,试求:(1)此时南楼的影 子落在北楼上有多高?(2)要使南楼的影子刚好落在 北楼的墙脚,两楼间的距离应当是多少米?
扎透薄薄皮肤血肉,直抵他的脊椎。官府会要她抵命吗?她及时跑开,把簪子洗干净插回发髻,编个谎话,说不定能把罪名推在强盗身上 吧?最近私盐贩子是很猖獗嘛!明柯赌虫斗鸡,又结交三教九流、欠下很多债,不少人都跟他有仇吧?宝音,娇滴滴的宝音,怎会杀五哥, 这是任何人的心理盲区吧!没有任何人在,小僮和车伕仍没回来。要动手,就在此刻,错过了,还能有这样好的机会?他毫无反抗呢!他 的血管在她指尖下,温暖的跳动。很快就会冷了。他浓黑的眉毛,他不整齐的尖牙。进府多年,看着他从个半大小子长成个少男,忽而某 天冒出胡髭,成了个男人。这个小小的男人还是撒娇的笑着,粘着她:“宝音姐姐……姐姐对我们最好了!”宝音抬起手,恨恨把簪子丢 开去。她在骡车车厢中。刚刚那只簪子往车板丢,落下去,掉在车座后面。“喔哟”一声,车座后面立起来一个人。宝音全身的血脉都凝 结了,只有瞪视的份。第八十四章 自毁入宫路(3)车座后头立起来的,是“黄公子”。他看好戏的青蛙眼,再没这么可恶过!宝音的血 液短暂凝结之后,哗啦啦的烧,在她耳边叫:“怎么办?怎么办!”怎么办?纵宝音聪明过人,又能怎么办!车厢很小,七王爷立起身来 之后,略略前倾,手就够着了宝音面颊。他指尖擦过宝音的面颊,替她拈住另一枚发簪:“怎么样,是想拔下来?丢掉呢,还是握紧了杀 他?”宝音向后一夺,“当啷”一声,发簪落在地上,声音震得她耳膜发疼。“说起来,这位是苏家的吧?”七王爷仔细端详明柯,“看 起来,跟明远是有些像呢。”“你认识——苏、明……远?”宝音一发绝望了。七王爷不答,只是自己数算苏家家谱:“大明远,二娘娘, 三明词,四 ,五明柯,六七又是 ——是啦,这位年龄跟苏五公子对得上,又调皮捣蛋,是明柯罢?”宝音咬唇。“你呢?看眼睛也有点 儿像,衣服穿得不如他,旁支?还说什么姓池,”七王爷展眉道,“啊,你是私生子!早听说谢二老爷在外头处处留情。”“你怎么什么 都知道!”宝音气得笑起来。七王爷也笑了,笑时,眼睛弯弯的,鼓眼珠也显得柔和了:“你真像女孩子,耳垂上还有耳环痕呢。小时候 你娘把你当女儿养?”宝音的耳环,是出来前才摘掉的。一般女儿家,略懂事了就扎耳洞,耳坠子一路戴上来,到十多岁,耳洞拉得有点 大了,细看就知道是常年戴耳环的:谁家男孩子十多岁还常戴耳环?那就蒙混不过去。但宝音经年生病,卧榻时,就不得不摘去耳环,免 得硌着,一来二去,耳洞就是那么一个小点儿,不仔细看简直看不出,跟七王爷自己右耳上那一点差不多。“我小时候也穿过,”七王爷 自己亮右耳给她看,“我是遗腹子,我娘怕我养不大,就给我穿了,大——”想说大臣劝
练习1、某住宅小区高层建筑均为正南正北向,楼高都 是16米,某时太阳光线与水平线的夹角为30 °,如果南 北两楼间隔仅有20米,试求:(1)此时南楼的影子落 在北楼上有多高?(2)要使南楼的影子刚好落在北楼 的墙脚,两楼间的距离应当是多少米?
练习1、我市某住宅小区高层建筑均为正南正北向,楼 高都是16米,某时太阳光线与水平线的夹角为30 °,如 果南北两楼间隔仅有20米,试求:(1)此时南楼的影 子落在北楼上有多高?(2)要使南楼的影子刚好落在 北楼的墙脚,两楼间的距离应当是多少米?
作业布置
1、课本课后练习,习题2、3题; 2、整理例题及其变式,总结形成规 范的书面解题过程; 3、自学下节内容,思考在应用锐角 三角函数解决实际问题时,其共同点 是什么?
谢 谢
公司增加注册资本是指在公司成立后,经权力机构决议,依法定程序在原有注册资本的基础上予以扩大,增加公司实有资本总额的法律行 为。
情境分析
如何知道这棵大树在折断之前有多高? A A A
B
方案一:
C
B 方案二:
C
B 方案三:
C
大树高度=AB+AC
勾股定理
用锐角三角函数知 识解答.
锐 角 三 角 函 数 的 应 用
例1: 操场里有一个旗杆,小明站在离旗杆 底部4.5米的D处,仰视旗杆顶端A,仰角 (∠AOC )为50°,俯视旗杆底端B,俯角(∠BOC ) 为18°,求旗杆的高度(精确到0.1米). A
你想知道小明怎 样算出的吗?
O D
50° 18°
?
C B
4.5米
试试你的基本功
练习1、某住宅小区高层建筑均为正南正北向,楼高都是16米,某 时太阳光线与水平线的夹角为30 °,如果南北两楼间隔仅有20米, 试求:(1)此时南楼的影子落在北楼上有多高?(2)要使南楼 的影子刚好落在北楼的墙脚,两楼间的距离应当是多少米?
Hale Waihona Puke 冀教版数学九年级(上)31.3 锐角三角函数的应用 sin A
A cos A C
A
B tan A
B
C
cot A
问题情境------引入新课
台风是一种空气旋涡,是破坏力很强的自然灾 害.2006年5月18日2时15分,台风“珍珠”在广东汕 头澄海和饶平之间登陆,一棵大树被吹断折倒在地上, 你知道这棵大树在折断之前有多高吗?
16
30°
20
练习1、我市某住宅小区高层建筑均为正南正北向,楼 高都是16米,某时太阳光线与水平线的夹角为30 °,如 果南北两楼间隔仅有20米,试求:(1)此时南楼的影 子落在北楼上有多高?(2)要使南楼的影子刚好落在 北楼的墙脚,两楼间的距离应当是多少米?
16 x
30°
变式1:如图楼AB和楼CD的水平距离为80米,从楼顶A 处测得楼顶C处的俯角为45°,测得楼底D处的俯角为 60°,试求两楼高各为多少? A E 80米 E A
60°
45°
E
F
E
B
C
练习2、试求炮台A、B到敌船的距离.
相 信 你 能 行 !
实际问题
数学问题
学 生活数学 用 数学生活
课堂小结:在运用锐角三角函数的知识
解决实际问题时,你是如何思考的?
主要步骤: 1 .分析实际问题中某些名词、概念的意义,正 确理解条件和结论的关系; 2 .将现实问题转化为数学问题,建立直角三角 形模型; 3 .根据条件特点,选用适当的锐角三角函数解 决问题; 4、写出解答过程与答案 .
45°
60°
C C B D D
根据题意——画出图形(构成直角三角形)—— 选择三角函数
变式2:在甲建筑物上从A点到E点挂一长为30米的宣传条幅,在 乙建筑物的顶部D点测得条幅顶端A点的仰角为60°,测得条幅底 端E点的俯角为45°.求底部不能直接到达的甲、乙两建筑物之 间的水平距离BC.
A D D A