蛋白质结构与功能的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质结构与功能的关系
(The relationship between protein structure and function)
摘要蛋白质特定的功能都是由其特定的构象所决定的,各种蛋白质特定的构象又与其一级结构密切相关。天然蛋白质的构象一旦发生变化,必然会影响到它的生物活性。由于蛋白质的构象的变化引起蛋白质功能变化,可能导致蛋白质构象紊乱症,当然也能引起生物体对环境的适应性增强!现而今关于蛋白质功能研究还有待发展,一门新兴学科正在发展,血清蛋白组学,生物信息学等!本文仅就蛋白质结构与其功能关系进行粗略阐述。
关键词:蛋白质结构;折叠/功能关系;蛋白质构象紊乱症;分子伴侣
Keywords:protein structure;fold/function relationship;protein conformational disorder;molecular chaperons
虽然蛋白质结构与生物功能的关系比序列与功能的关系更加紧密,但结构与功能的这种关联亦若隐若现,并不能排除折叠差别悬殊的蛋白质执行相似的功能,折叠相似的蛋白质执行差别悬殊功能的现象的存在。无奈,该领域仍不得不将100多年前Fisher提出的“锁一钥匙”模型(“lock—key”model)和50多年前Koshand提出的诱导契合模型(induce fitmodel)作为蛋白质实现功能的理论基础。这2个略显粗糙的模型只是认为蛋白质执行功能的部位局限在结构中的一个或几个小区域内,此类区域通常是蛋白质表面上的凹洞或裂隙。这种凹洞或裂隙被称为“活性部位(active site)”或“别构部位(fallosteric site)”,凹陷部位与配体分子在空间形状和静电上互补。此外,在酶的活性部位中还存在着几个作为催化基团(catalyticgroup)的氨基酸残基。对蛋白质未来的研究应从实验基本数据的归纳和统计入手,从原始的水平上发现蛋白质的潜藏机制【1】。
蛋白质结构与功能关系的研究主要是以力求刻画蛋白质的3D结构的几何学为基础的。蛋白质结构既非规则的几何形,又非完全的无规线团(randomcoil),而是有序(α一螺旋和β一折叠)与无序(线团或环域loop)的混合体。理解蛋白质3D结构的技巧是将结构简化,只保留某种几何特征或拓扑模式,并将其数字化。探求数字中所蕴含的规律,且根据这一规律将蛋白质进行分类,再将分类的结构与蛋白质的功能进行比较,以检验蛋白质抽象结构的合理性。如果一种对蛋白质结构的简化、比较和分类能与蛋自质的功能有较好地对应关系,那么这就是一种对蛋白质结构的有价值的理解。蛋白质结构中,多种弱力(氢键、范德华力、静电相互作用、疏水相互作用、堆积力等)和可逆的二硫键使多肽链折叠成特定的构象。从某种意义上说,共价键维系了蛋白质的一级结构;主链上的氢键维系了蛋白质的二级结构;而氨基酸侧链的相互作用和二硫桥维系着蛋白质的三级结构。亚基(subunit)内部的侧链相互作用是构象稳定的基础,蛋白质链之间的侧链的相互作用是亚基组装(四级结构)的基础,而蛋白质中侧链与配体基团问的相互作用是蛋白质行使功能的基础。
牛胰核糖核酸酶(RNase)变性和复性的实验是蛋白质结构与功能关系的很好例证。蛋白质空间结构遭到破坏;,可导致蛋白质的理比性质和生物学性质的变化,这就是蛋白质变性。变性的蛋白质,只要其一级结构仍然完好,可在一定条件下恢复其空间结构,随之理化性质和生物学性质也可重现,这被称为复性。RNase是由124个氨基酸残基组成的一条肽链,分子中8个半胱氨酸的巯基构成4对二硫键,进而形成具有一定空间构象的活性蛋白质。天然RNase遇尿素和β巯基乙醇时发生变性,其分子中的氢键和4个二硫键解开,严密的空间结构遭破坏,丧失了生物学活性,但一级结构完整无损。若去除尿素和β巯基乙醇,RNase又可恢复其原有构象和生物学活性。RNase分子中的8个巯基若随机排列成二硫键可有105种方式。有活性的RNase只是其中的一种,复性时之所以选择了自
然活性酶的方式,则是由肽链中氨基酸排列顺序决定的,可见蛋白质—级结构是空间结构的基础。
在蛋白质合成过程中还需有形成空间结构的控制因子,称为分子伴侣(molecular chaperons)。在蛋白质合成时,尚未折叠的肽段有许多疏水基团暴露在外,因此具有分子内或分子间聚集的倾向,从而影响蛋白质的正确折叠。分子伴侣可以与未折叠的肽段进行可逆的结合,引导肽链的正确折叠,并集合多条肽链成为较大的结构。例如,热休克蛋白就是分子伴侣的一个家族。
蛋白质一定的结构执行一定的功能,功能不同的蛋白质总是有不同的序列;一级结构相似的蛋白质,其空间构象和功能也相近;若一级结构变化,蛋白质的功能将发生很大的变化。例如,哺乳动物胰岛素分子结构都是由A链和B链构成,且二硫键配对和一级结构均相似,它们都执行相同的调节血糖代谢等功能。比较来源不同的胰岛素的一级结构,可能有某些差异,但与功能相关的结构却总是相同。不同种属来源的胰岛素,其一级结构的差异可能是分子进化的结果。细胞色素C是研究蛋白质一级结构的种属差异与分子进化的又一例证。不同来源的细胞色素C功能相同,即参加线粒体呼吸链的组成,并在细胞色素还原酶和细胞色素氧化酶之间传递电子。比较60种不同种属来源细胞色素C的一级结构,其中有些氨基酸残基易变,但却有27个氨基酸残基不变。这27个不变的氨基酸残基是保证结合血红素、识别与结合细胞色素氧化酶和细胞色素还原酶、维持构象和传递电子所必需的。若蛋白质的—级结构发生变化影响其正常功能,进一步引起疾病,被称为分子病。镰状红细胞贫血症就是分子病典型的例子。目前已知数千种分子病与某些蛋白质的分子结构改变有关。
体内各种蛋白质都有特殊的生理功能,这与空间构象有着密切的关系。肌红蛋门和血红蛋白是阐述空间结构与功能关系的典型例子。肌红蛋门(Mb))和血红蛋白(Hb)都是含血红素辅基的结合蛋白质。Mb有一条肽链,经盘曲折折叠形成三级结构,整条肽链由A~H8段α螺旋盘曲折叠成为球状,疏水氨基酸侧链在分子内部,亲水氨基酸侧链在分子外部,形成亲水的球状蛋白,血红素辅基位于Mb分子内部的袋状空穴中。Hb有四条肽链,两条β链也有与Mb相似的A~H8段α螺旋,有两条α链只有7段α螺旋。Hb与Mb的折叠方式相似,也都能与氧进行可逆的结合。Hb的一个亚基与氧结合后可引起构象变化,是另一个亚基更易于与氧结合,这种带氧的亚基协助不带氧的亚基去结合氧的现象称为协同效应。氧与Hb结合后可引起Hb构象变化,这种蛋白质分子在表现功能的过程中引起的构象变化的现象称为变构效应。小分子的氧称为变构剂,Hb则称为变构蛋白。Hb的这种变构蛋白的氧解离曲线呈“S”形,Hb的功能主要是运输氧,而不是变构蛋白的Mb,其中氧解离曲线为矩形双曲线,功能主要是贮存氧。
蛋白质是生物体各种功能的执行者,同时也是生物体结构的构建者,蛋白质只有正确折叠并形成相应的高级结构,才能正常行使其生物学功能,因此蛋白质结构的研究一直是生物学领域的热点,蛋白质的一级结构决定其高级结构和功能。
生物体内蛋白质错误折叠概率很高,但是强大的质量控制系统,如分子伴侣、蛋白质的泛素降解途径、DNA修复、无义介导的mRNA降解等,能在遗传信息表达的各个时期减少错误折叠蛋白质的产生。当然如果这些蛋白质不能及时清理,它们将发送聚集,导致多种神经退行性疾病。国外对与多肽错误折叠后聚集的毒性机制及相应对策的研究日益重视。错误折叠蛋白质通常产生三种效应:(1)被细胞防御机制降解,导致功能缺失(2)发生错误定位,导致细胞功能紊乱(3)错误折叠蛋白质相互聚集形,成淀粉样沉积物【9】。近年来发现一些疾病总伴随有蛋白质错误折叠并发生聚集的现象,这类疾病统称为蛋白质构象紊乱症(protein conformational disorder,PCD)。所有涉及PCD的蛋白质都是一级结构不变而二级结构或三级结构发生改变。这些蛋白质各不相同在序列和结构上都没有任何同源性。但是这些发生聚集的错误折叠蛋白质都具有极其稳定的β折叠构象。β折