简述避雷器

简述避雷器
简述避雷器

简述避雷器伏-秒特性的含义,避雷器与被保护电气设备的伏

-秒特性应如何配合

1、首先明确什么是伏秒特性曲线:

伏秒特性曲线是指在冲击电压波形一定的前提下,绝缘(包括固体介质、液体介质或气体介质的绝缘以及由不同介质构成的组合绝缘)的冲击放电电压与相应的放电时间的关系曲线。

2、再结合图谱来看(方便理解):

从图中可以看出来,避雷器的伏秒特性比较平坦,绝缘子串的伏秒特性相对来说陡一些,当电压在900kv 一下的时候,避雷器能够先与绝缘子串放电,对过电压吸收,从而防止绝缘子闪络,保护设备的绝缘。

变压器和避雷器的伏秒特性是如何配合的?为什么?

1概述35~60kV变压器的中性点不接地或经消弧线圈接地,在结构上是全绝缘的。变压器绕组的端部有避雷器加以保护,当三相来波的时候,中性点的电位由于全反射可能会升高到来波电压的两倍左右,这是十分危险的,但是根据实际运行经验,中性点可以不接保护装置而仍然能够安全运行,原因在于:

(1)流过端部的雷电流一般只在2kA以下,故其残压要比预定的5kA时的残压减小20%左右;

(2)大多数的来波是从较远处袭来,陡度较小;

(3)据统计,三相来波的概率很小,只有10%左右,平均15年才有一次。

因此《交流电气设备过电压保护和绝缘配合》(DL/T620—1997)规定,不接地、经消弧线圈接地和公共电阻系统中的变压器中性点,一般不配保护装置。

110~220kV系统属于有效接地系统,其中一部分中性点直接接地,同时为了限制单相接地电流和满足

继电保护的需要,一部分变压器的中性点是不直接接地的。这种系统中的变压器分两种情况,其一是中性点全绝缘,此时中性点一般不会加保护措施;其二是中性点半绝缘(新制变压器均是如此),具体地说,110k V的变压器中性点是35kV的绝缘水平,220kV的变压器中性点则是110kV级的绝缘水平。规程规定有效接地系统中的变压器中性点保护一般应采用间隙保护和避雷器保护相并联的保护方式。

2中性点保护间隙与过电压保护

2.1单相接地过电压

有效接地系统的单相接地时,计算不接地变压器中性点电位时一般是以Xo/X1小于3为界,但是实际上不同地区的电网及变电所的Xo/X1的值相差很大。变压器的中性点处的过电压水平也自然不一样,所以在一般的文章中推荐按照1,15倍的过电压值和Xo/X1=3时取其中的最大值作为最高运行电压Umax,例如在1 10kV系统中最高运行线电压为126kV,中性点的过电压计算公式为:

Uo=Umax×K/(K+2)

式中:K——Xo/X1的值;

Xo——零序阻抗;

X1——正序阻抗。

当K=3时Uo=0.6Umax,即单相接地故障时110kV主变压器中性点出现的最高电压稳态值为43.6。

如果系统单相接地时接地变压器侧断路器跳闸,不接地变压器侧断路器拒动,则系统形成局部不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现的中性点电位的稳态值为73(此时继电保护应动作)。

2.2雷电过电压

在雷雨季节,直接击中变电站或沿线路传到发电厂、变电站的高幅值雷电波造成变压器中性点电位升高,出现较高的雷击过电压,危及电气设备的安全。变压器中性点上出现的最大雷击过电压主要取决于变压器入口处的避雷器残压和变压器的特性。一般雷击过电压计算如下:

Um=n/3(1+r)Us

式中:n——侵入雷电波相数;

r——变压器振荡衰减系数,纠结式绕组取0.5,连续式绕组取O.8;

U5——变压器入口处避雷器上的残压。以上简单叙述了几种过电压的形式,对变压器绝缘和保护装置的作用,取决于过电压的波形、幅值和持续时间。标准雷电波形并不一定是由雷电引出,例如,当单相接地时,可在非接地相上产生接近于雷电过电压的短波前。

2.3放电间隙的保护作用

采用放电间隙保护的原理是在间隙回路中串入零序电流互感器,利用间隙的放电特性,使其在雷电过电压时放电以保护中性点绝缘。在系统发生故障后,变压器中性点工频电位升高至一定值,零序电流保护动作,切除该不接地变压器,以避免出现中性点接地带故障运行。中性点零序电流保护先以较短的时限切除低压侧的电厂联络线,再以略长的时限跳开变压器各侧的开关。

2.4避雷器的保护作用

无论作为无间隙的氧化锌避雷器还是有间隙的普通阀式避雷器,选择使用的一个共同原则是,使避雷器额定电压不低于避雷器安装点的暂时过电压。JB/T5894-91《交流无间隙金属氧化物避雷器使用导则》指出,中性点有效接地系统中分级绝缘的变压器,当其中性点未接地时,中性点避雷器的额定电压应不低于变压器的最高相电压(并具体提出中性点的标准冲击绝缘水平为1 85kV时,氧化锌避雷器的额定电压为60 kV)。

3保护间隙与避雷器伏秒特性的配合

3.1 保护装置伏秒特性配合的基本要求

(1)为了使电气设备得到可靠保护,保护装置应该满足以下基本要求:

保护装置的冲击放电电压Ub(i)应该低于被保护设备的冲击耐压值。以变压器为例,其冲击耐压值通常取其多次截波耐压值Uid,所以Ub(i)应满足下式要求:

Ub(i)

(2)放电间隙应该有平坦的伏秒特性曲线和尽可能高的灭弧能力。图2中曲线1为绝缘的伏秒特性,避雷器和保护间隙要能起到保护作用,其放电间隙的伏秒特性曲线2应始终低于曲线1,并留一定的间隔。显然,放电间隙的伏秒特性越平坦越好,如果伏秒特性很陡,如图3所示,则可能与绝缘的伏秒特性相交,以致在较短放电的时间范围内不能保护设备。同时由于放电的分散性,间隙和被保护设备的伏秒特性实际上处在一个带状的范围内,因此,要求保护设备伏秒特性的上包络线低于被保护设备伏秒特性的下包络线,如图4所示。

3.2保护间隙的放电特性及伏秒特性

均匀电场间隙在稳态电压下的击穿特性:严格说来,均匀场只有一种,即无限大平行板电极间的电场,这在工程中是无法实现的。工程上所使用的平行板电极一般都是采用了消除电极边缘效应的措施(比如将板电极的边缘弯曲成曲率半径比较大的圆弧形,像高压静电电压表的两个电极就是如此处理的),这时两平行板电极间的距离相对于电极尺寸比较h,就可以将这两个电极间的电场视为均匀场。由于均匀场的两个平行板的形状完全相同,而且平行布置,因而气隙的放电不存在极性效应,而且也不存在电晕现象。一旦气隙放电就会引起整个气隙的击穿,所以其直流、工频交流和冲击放电电压作用下的击穿电压相同,放电的分散性也小,击穿电压与电压作用时间无关。稍不均匀场气隙的击穿特性与均匀场下的击穿特性基本相同。其伏秒特性见图5。

在极不均匀电场中,“棒一棒”间隙和“棒一板”间隙具有典型意义。前者具有完全对称性,后者具有最大的不完全对称性,其他类型的极不均匀电场的气隙击穿特性介于两种典型气隙的击穿特性之间。由实验得出的结论是,不均匀场的放电具有明显的极性效应,而且随着气隙长度的增加,气隙的平均击穿场强明显降低,即存在“饱和”现象。其伏秒特性如图5所示。

由图5中可以看出在岛前的一段时间内均匀电场的击穿特性(也就是在冲击电压下的击穿特性)较陡峭,也就是说在t其中t1为电压上升时间,to为统计时延,ta为放电发展时间,tb是以上三个参数的和,它是放电所需时间。tb在数值上小于to,所以说间隙在短时间内的放电特性是与放电发展时间有关的,要在这极短的时间内放电,间它的伏秒特性曲线。

3.4 保护间隙与避雷器的伏秒特性配合

(1)对放电间隙的要求:一是对工频来说,从系统运行的要求,当Xo/X1值小于3时,单相接地时放电间隙不应动作,放电电压应大于43.6kV(有效值,峰值电压为61.7kV);当系统形成局部不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现的中性点电位的稳态值为73kV,单相接地间隙应动作,启动继电保护切除故障,即放电间隙放电电压应小于73kV(有效值,峰值电压为10 3.2kV);二是间隙在雷电过电压和系统单相接地瞬态过电压下均不应动作。隙的击穿电压是非常大的。

3.3避雷器的放电特性

在目前变压器中性点保护中,选用的主流避雷器的是金属氧化物避雷器MOA。MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。无续流、动作负载轻、能重复动作实施保护;只吸收过电压的能量,而不吸收续流能量,因而动作负载轻。目前110kV使用的避雷器参数(以抚顺海岳电气制造有限公司生产的避雷器为例)。

(2)对避雷器的要求:一是避雷器在工频过电压和操作过电压下不应动作,但在雷电和系统单相接地瞬态过电压下应动作;二是避雷器的放电电压和残压应该小于153kV(变压器绝缘耐操作波强度75.5×√2×1.4= 153kV);三是避雷器工频放电电压和灭弧电压应大于73kV(间隙控制电压有效值,峰值为103.2kV)。

(3)放电间隙和避雷器的配合要求(当工频过电压和高频过电压相继出现时,避雷器先动作,然后间隙动作,以保证避雷器的正常工作,这样就没有避雷器爆炸的可能性了):

一是避雷器的灭弧电压应高于间隙最高工频放电电压,这样避雷器在间隙的保护下不致灭不了弧而爆炸;二是避雷器的冲击放电电压低,保证在高频瞬态过电压下由避雷器动作,避免正常系统运行中发生单相接地故障时放电间隙动作,造成零序电流分量,使间隙零序电流误动作;三是间隙最高工频放电电压应比最低相电压低,从而保证能切除形成不接地系统单相接地等不对称故障;四是正常运行时电力系统Xo/x1值应小于3,当Xo/x1值大于3时,运行系统发生单相接地时,放电间隙应动作。

(4)避雷器的最低放电电压值应大干103.2kV,保护间隙的最低放电电压应大于61.7kV,最高放电电压应小于103.2kV。

t在小于to的时候是避雷器和间隙配合的关键,我们正是利用了间隙放电的放电时延(一般为几十毫秒)和金属氧化物避雷器无放电时延的特性解决了他们之间的配合问题。

4结束语

(1)气体的放电特性随着电场的均匀程度的改变而改变,均匀电场中气体的击穿电压稳定,总体的伏秒特性较平坦,但是在较短的时间内存在放电时延的问题。

(2)金属氧化物避雷器的MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。

(3)合理地应用保护间隙和避雷器的伏秒特性配合曲线,并在实验条件下加以校验,使他们能够在各自的规定条件下放电进而发挥各自的作用是很有现实意义的。

变压器中性点保护中避雷器和间隙伏秒特性的配合

(3)放电间隙和避雷器的配合要求(当工频过电压和高频过电压相继出现时,避雷器先动作,然后间隙动作,以保证避雷器的正常工作,这样就没有避雷器爆炸的可能性了):

一是避雷器的灭弧电压应高于间隙最高工频放电电压,这样避雷器在间隙的保护下不致灭不了弧而爆炸;二是避雷器的冲击放电电压低,保证在高频瞬态过电压下由避雷器动作,避免正常系统运行中发生单相接地故障时放电间隙动作,造成零序电流分量,使间隙零序电流误动作;三是间隙最高工频放电电压应比最低相电压低,从而保证能切除形成不接地系统单相接地等不对称故障;四是正常运行时电力系统Xo/x1值应小于3,当Xo/x1值大于3时,运行系统发生单相接地时,放电间隙应动作。

(4)具体的配合曲线如图8所示。

对曲线的解释如下:

图8中1为避雷器的伏秒特性;2为保护间隙伏秒特性(为了使保护间隙有更好的伏秒特性和较小的放

电分散性,间隙保护采用平行板电极,它的伏秒特性在相当长的一段时间内是一条直线)。

由上面的分析知,避雷器的最低放电电压值应大干103.2kV,保护间隙的最低放电电压应大于61.7kV,

最高放电电压应小于103.2kV。

t在小于to的时候是避雷器和间隙配合的关键,我们正是利用了间隙放电的放电时延(一般为几十毫秒)

和金属氧化物避雷器无放电时延的特性解决了他们之间的配合问题。

4结束语

(1)气体的放电特性随着电场的均匀程度的改变而改变,均匀电场中气体的击穿电压稳定,总体的伏秒

特性较平坦,但是在较短的时间内存在放电时延的问题。

(2)金属氧化物避雷器的MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升

高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应

特性。

(3)合理地应用保护间隙和避雷器的伏秒特性配合曲线,并在实验条件下加以校验,使他们能够在各自

的规定条件下放电进而发挥各自的作用是很有现实意义的。

变压器中性点保护中避雷器和间隙伏秒特性的配合

[摘要]在我国11 OkV的电力系统中,变压器的中性点是采用非直接接地的运行方式。变压器中

性点保护采用的主要方式是将避雷器和保护间隙并联起来,间隙保护主要作用于工频过电压和

操作过电压,而避雷器则主要动作于雷电过电压。工频过电压相对于雷电过电压的作用时间长

而幅值较小,应用这一特点,提出了保护间隙和避雷器的伏秒特性的配合问题。

[关键词]避雷器保护间隙伏秒特性

1概述

35~60kV变压器的中性点不接地或经消弧线圈接地,在结构上是全绝缘的。变压器绕组的端部

有避雷器加以保护,当三相来波的时候,中性点的电位由于全反射可能会升高到来波电压的两倍左右,这是十分危险的,但是根据实际运行经验,中性点可以不接保护装置而仍然能够安全运行,原因在于:

(1)流过端部的雷电流一般只在2kA以下,故其残压要比预定的5kA时的残压减小20%左右;

(2)大多数的来波是从较远处袭来,陡度较小;

(3)据统计,三相来波的概率很小,只有10%左右,平均15年才有一次。

因此《交流电气设备过电压保护和绝缘配合》(DL/T620—1997)规定,不接地、经消弧线圈接地

和公共电阻系统中的变压器中性点,一般不配保护装置。

110~220kV系统属于有效接地系统,其中一部分中性点直接接地,同时为了限制单相接地电流

和满足继电保护的需要,一部分变压器的中性点是不直接接地的。这种系统中的变压器分两种

情况,其一是中性点全绝缘,此时中性点一般不会加保护措施;其二是中性点半绝缘(新制变压

器均是如此),具体地说,110kV的变压器中性点是35kV的绝缘水平,220kV的变压器中性点则是110kV级的绝缘水平。规程规定有效接地系统中的变压器中性点保护一般应采用间隙保护和

避雷器保护相并联的保护方式。

2中性点保护间隙与过电压保护

2.1单相接地过电压

有效接地系统的单相接地时,计算不接地变压器中性点电位时一般是以Xo/X1小于3为界,但

是实际上不同地区的电网及变电所的Xo/X1的值相差很大。变压器的中性点处的过电压水平也

自然不一样,所以在一般的文章中推荐按照1,15倍的过电压值和Xo/X1=3时取其中的最大值

作为最高运行电压Umax,例如在1 10kV系统中最高运行线电压为126kV,中性点的过电压计

算公式为:

Uo=Umax×K/(K+2)式中:K——Xo/X1的值;

Xo——零序阻抗;

X1——正序阻抗。

当K=3时Uo=0.6Umax,即单相接地故障时110kV主变压器中性点出现的最高电压稳态值为43.6。如果系统单相接地时接地变压器侧断路器跳闸,不接地变压器侧断路器拒动,则系统形成局部

不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现的

中性点电位的稳态值为73(此时继电保护应动作)。

2.2雷电过电压

在雷雨季节,直接击中变电站或沿线路传到发电厂、变电站的高幅值雷电波造成变压器中性点

电位升高,出现较高的雷击过电压,危及电气设备的安全。变压器中性点上出现的最大雷击过

电压主要取决于变压器入口处的避雷器残压和变压器的特性。一般雷击过电压计算如下:

Um=n/3(1+r)Us

式中:n——侵入雷电波相数;

r——变压器振荡衰减系数,纠结式绕组取0.5,连续式绕组取O.8;

U5——变压器入口处避雷器上的残压。

以上简单叙述了几种过电压的形式,对变压器绝缘和保护装置的作用,取决于过电压的波形、

幅值和持续时间。标准雷电波形并不一定是由雷电引出,例如,当单相接地时,可在非接地相

上产生接近于雷电过电压的短波前。

2.3放电间隙的保护作用

采用放电间隙保护的原理是在间隙回路中串入零序电流互感器,利用间隙的放电特性,使其在

雷电过电压时放电以保护中性点绝缘。在系统发生故障后,变压器中性点工频电位升高至一定值,零序电流保护动作,切除该不接地变压器,以避免出现中性点接地带故障运行。中性点零

序电流保护先以较短的时限切除低压侧的电厂联络线,再以略长的时限跳开变压器各侧的开关。

2.4避雷器的保护作用

无论作为无间隙的氧化锌避雷器还是有间隙的普通阀式避雷器,选择使用的一个共同原则是,使避雷器额定电压不低于避雷器安装点的暂时过电压。JB/T5894-91《交流无间隙金属氧化物避雷器使用导则》指出,中性点有效接地系统中分级绝缘的变压器,当其中性点未接地时,中性点避雷器的额定电压应不低于变压器的最高相电压(并具体提出中性点的标准冲击绝缘水平为

1 85kV时,氧化锌避雷器的额定电压为60kV)。

3保护间隙与避雷器伏秒特性的配合

3.1 保护装置伏秒特性配合的基本要求

(1)为了使电气设备得到可靠保护,保护装置应该满足以下基本要求:

保护装置的冲击放电电压Ub(i)应该低于被保护设备的冲击耐压值。以变压器为例,其冲击耐压值通常取其多次截波耐压值Uid,所以Ub(i)应满足下式要求:

Ub(i)

(2)放电间隙应该有平坦的伏秒特性曲线和尽可能高的灭弧能力。图2中曲线1为绝缘的伏秒特性,避雷器和保护间隙要能起到保护作用,其放电间隙的伏秒特性曲线2应始终低于曲线1,并留一定的间隔。显然,放电间隙的伏秒特性越平坦越好,如果伏秒特性很陡,如图3所示,则可能与绝缘的伏秒特性相交,以致在较短放电的时间范围内不能保护设备。同时由于放电的分散性,间隙和被保护设备的伏秒特性实际上处在一个带状的范围内,因此,要求保护设备伏秒特性的上包络线低于被保护设备伏秒特性的下包络线,如图4所示。

3.2保护间隙的放电特性及伏秒特性

均匀电场间隙在稳态电压下的击穿特性:严格说来,均匀场只有一种,即无限大平行板电极间的电场,这在工程中是无法实现的。工程上所使用的平行板电极一般都是采用了消除电极边缘效应的措施(比如将板电极的边缘弯曲成曲率半径比较大的圆弧形,像高压静电电压表的两个电极就是如此处理的),这时两平行板电极间的距离相对于电极尺寸比较h,就可以将这两个电极间的电场视为均匀场。由于均匀场的两个平行板的形状完全相同,而且平行布置,因而气隙的放电不存在极性效应,而且也不存在电晕现象。一旦气隙放电就会引起整个气隙的击穿,所以其直流、工频交流和冲击放电电压作用下的击穿电压相同,放电的分散性也小,击穿电压与电压作用时间无关。稍不均匀场气隙的击穿特性与均匀场下的击穿特性基本相同。其伏秒特性见图5。

在极不均匀电场中,“棒一棒”间隙和“棒一板”间隙具有典型意义。前者具有完全对称性,后者具有最大的不完全对称性,其他类型的极不均匀电场的气隙击穿特性介于两种典型气隙的击穿特性之间。由实验得出的结论是,不均匀场的放电具有明显的极性效应,而且随着气隙长度的增加,气隙的平均击穿场强明显降低,即存在“饱和”现象。其伏秒特性如图5所示。

由图5中可以看出在岛前的一段时间内均匀电场的击穿特性(也就是在冲击电压下的击穿特性)

较陡峭,也就是说在t 其中t1为电压上升时间,to为统计时延,ta为放电发展时间,tb

是以上三个参数的和,它是放电所需时间。tb在数值上小于to,所以说间隙在短时间内的放电特性是与放电发展时间有关的,要在这极短的时间内放电,间它的伏秒特性曲线。

3.4 保护间隙与避雷器的伏秒特性配合

(1)对放电间隙的要求:一是对工频来说,从系统运行的要求,当Xo/X1值小于3时,单相接

地时放电间隙不应动作,放电电压应大于43.6kV(有效值,峰值电压为61.7kV);当系统形成局

部不接地系统,此时的中性点过电压值更高,其值近似为相电压值,如在110kV变压器中表现

的中性点电位的稳态值为73kV,单相接地间隙应动作,启动继电保护切除故障,即放电间隙放

电电压应小于73kV(有效值,峰值电压为103.2kV);二是间隙在雷电过电压和系统单相接地瞬态过电压下均不应动作。隙的击穿电压是非常大的。

3.3避雷器的放电特性

在目前变压器中性点保护中,选用的主流避雷器的是金属氧化物避雷器MOA。MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。无续流、动作负载轻、能重复动作实施保护;只吸收过电压的能量,而不吸收续流能量,因而动作负载轻。目前110kV 使用的避雷器参数(以抚顺海岳电气制造有限公司生产的避雷器为例)。

(2)对避雷器的要求:一是避雷器在工频过电压和操作过电压下不应动作,但在雷电和系统单相接地瞬态过电压下应动作;二是避雷器的放电电压和残压应该小于153kV(变压器绝缘耐操作波强度75.5×√2×1.4=153kV);三是避雷器工频放电电压和灭弧电压应大于73kV(间隙控制电压有

效值,峰值为103.2kV)。

(3)放电间隙和避雷器的配合要求(当工频过电压和高频过电压相继出现时,避雷器先动作,然

后间隙动作,以保证避雷器的正常工作,这样就没有避雷器爆炸的可能性了):

一是避雷器的灭弧电压应高于间隙最高工频放电电压,这样避雷器在间隙的保护下不致灭不了

弧而爆炸;二是避雷器的冲击放电电压低,保证在高频瞬态过电压下由避雷器动作,避免正常系统运行中发生单相接地故障时放电间隙动作,造成零序电流分量,使间隙零序电流误动作;三是间隙最高工频放电电压应比最低相电压低,从而保证能切除形成不接地系统单相接地等不对称故障;四是正常运行时电力系统Xo/x1值应小于3,当Xo/x1值大于3时,运行系统发生单相接地时,放电间隙应动作。

(4)避雷器的最低放电电压值应大干103.2kV,保护间隙的最低放电电压应大于61.7kV,最高放电电压应小于103.2kV。

t在小于to的时候是避雷器和间隙配合的关键,我们正是利用了间隙放电的放电时延(一般为几十毫秒)和金属氧化物避雷器无放电时延的特性解决了他们之间的配合问题。

4结束语

(1)气体的放电特性随着电场的均匀程度的改变而改变,均匀电场中气体的击穿电压稳定,总体

的伏秒特性较平坦,但是在较短的时间内存在放电时延的问题。

(2)金属氧化物避雷器的MOA阀片具有优异的非线性伏安特性;它没有火花间隙,一旦作用电压开始升高,阀片立即开始吸收过电压的能量,抑制过电压的发展;没有间隙的放电时延,因而有良好的冲击响应特性。

(3)合理地应用保护间隙和避雷器的伏秒特性配合曲线,并在实验条件下加以校验,使他们能够在各自的规定条件下放电进而发挥各自的作用是很有现实意义的。

避雷器的分类及应用

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/967348977.html,) 避雷器的分类及应用 避雷器:用于保护电气设备免受雷击时高瞬态过电压危害,并限制续流时间,也常限制续流幅值的一种电器。避雷器有时也称为过电压保护器,过电压限制器。 一、避雷器的原理 本避雷器在正常系统工作电压下,呈现高电阻状态,仅有微安级电流通过。在过电压大电流作用下它便呈现低电阻,从而限制了避雷器两端的残压。 二、避雷器的分类 1、氧化锌避雷器 氧化锌避雷器是一种保护性能优越、质量轻、耐污秽、性能稳定的避雷设备。它主要利用氧化锌良好的非线性伏安特性,使在正常工作电压时流过避雷器的电流极小(微安或毫安级);当过电压作用时,电阻急剧下降,泄放过电压的能量,达到保护的效果。这种避雷器和传统避雷器的差异是它没有放电间隙,利用氧化锌的非线性特性起到泄流和开断的作用。 2、管型避雷器 管型避雷器实际是一种具有较高熄弧能力的保护间隙,它由两个串联间隙组成,一个间隙在大气中,称为外间隙,它的任务就是隔离工作电压,避免产气管被流经管子的工频泄露电流所烧坏;另一个装设在气管内,称为内间隙或者灭弧间隙,管型避雷器的灭弧能力与工频续流的大小有关。这是一种保护间隙型避雷器,大多用在供电线路上作避雷保护。

3、阀型避雷器 阀型避雷器由火花间隙及阀片电阻组成,阀片电阻的制作材料是特种碳化硅。利用碳化硅制作的发片电阻可以有效地防止雷电和高电压,对设备进行保护。当有雷电高电压时,火花间隙被击穿,阀片电阻的电阻值下降,将雷电流引入大地,这就保护了线缆或电气设备免受雷电流的危害。在正常的情况下,火花间隙是不会被击穿的,阀片电阻的电阻值较高,不会影响通信线路的正常通信。 三、避雷器的应用 交流无间隙金属氧化物避雷器用于保护交流输变电设备的绝缘,免受雷电过电压和操作过电压损害。适用于变压器、输电线路、配电屏、开关柜、电力计量箱、真空开关、并联补偿电容器、旋转电机及半导体器件等过电压保护。【变宝网-再生资源行业最具影响力的电子商务平台】 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.360docs.net/doc/967348977.html,/?qx 买卖废品废料,再生料就上变宝网,什么废料都有!

避雷器在线监测系统

运行中的避雷器在线监测器经 采样后将泄漏电流、雷击动作计数的 信号传输。经光纤或电缆传送至信号 转换器,经信号转换器处理后再将信 号经通信电缆发送至避雷器在线监 测服务器,服务器可设定变电站名 称、组数、线路名称以及上限报警值 等。系统启动后循环采集避雷器A\B\C三相泄漏电流及雷击次数,并在服务器上显示、存储数据库。由于这种系统具有安全、即时、准确的特点,因此,为避雷器安全运行提供了一个可靠的保障手段。 ES型避雷器在线监测器 ES-3B型 上限动作电流(KA)(峰值):10 下限动作电流(A)(峰值):5 标称冲击电流(KA)(峰值):10 全电流表量程(mA)(有效值):3 计数器最大动作次数:99 正常漏电流下计数器两端电压(V)(有效值):<80 信号转换器 工作电压:220V/AC 工作温度:1)室外:-30—+50℃; 2)室内:0—+60℃。 工作环境:周围空气中不会有对监测装置起腐 蚀作用的有害介质。 与上位工控机通讯模式:RS485通讯 与计数器传输方式:电缆 ES-TS在线监测系统服务器 工作电压:220V/AC

尺寸:19英寸可上架,符合EIA RS-310C 标准。 通讯模式:RS485 TCP/IP网络传输 通讯规约:方式:串行异步、半双工通讯方式 数据格式:共10位,1位起始位,8位数据位,1位停止位。 波特率:9600 接口标准:RS485通讯 校验方式:累加和校验 1、保留了原有的雷击计数器,现场指针式泄漏电流指示等功能。 2、控制室可直接通过观察每组避雷器的泄漏电流大小,并可向监控中心发送信号。 3、可以在服务器上整定泄漏电流超标报警值,一旦漏电流异常变大,可即时报警。 4、可以在客户端查看各变电站避雷器运行情况。 5、可以查询和打印历史电流报表。 6、可以查看避雷器允许趋势,判断避雷器状态。

(阅)避雷器规格型号

依据JB/T 8459-1996 《避雷器产品型号编制方法》、金属氧化物避雷器产品型号说明如下: 产品型式:Y —表示瓷套式金属氧化物避雷器 YH (HY )—表示有机外套金属氧化物避雷器 结构特征:W —表示无间隙 C —表示串联间隙 使用场所:S —表示配电型 Z —表示电站型 R —表示并联补偿电容器用 D —表示电机用 T —表示电气化铁道用 X —表示线路型 附加特性:W —表示防污型 G —表示高原型 TH —表示湿热带地区用

系统的额定电压(也称标称电压)为6KV,最高电压应该为6*1.15KV,而避雷器的灭弧电压设计是定在系统最高运行电压的1.1倍,应该为6*1.15*1.1.=7.59KV。 当然选择避雷器的额定电压又是在参考避雷器灭弧电压设计基础上再乘以 1.2-1.3倍即6*1.15*1.1*1.3.=9.867将上面的数据除以1.732就是5.696KV了又称电弧电压。 DL/T620-1997《交流电气装置的过电压保护和绝缘配合》标准的要求。 选择MOA的重要技术参数是额定电压、最大持续电压、标称电流、雷电冲击保护水平、操作冲击保护水平等,下面就6-35kV系统开关装置内避雷器选择进行阐述。 (1) 避雷器额定电压Ur的选择 a.按避雷器持续运行电压UC的选择 由于6-35kV系统多为中性点不接地系统,出现单相接地以后,相对地电压上升为线电压Um(Um为系统最高工作电压),属暂时过电压,故障持续时间≥10s,故避雷器持续运行电压的选择为:6-10kV时UC≥1.1Um ,则6kV避雷器UC≥1.1x7.2=7.92kV;10kV避雷器UC≥1.1x12=13.2kV 35kV时UC≥1.0Um ,则35kV避雷器UC≥1.0x40.5=40.5kV b.按避雷器暂时过电压Ut的选择 暂时过电压包括工频和谐振两大类。只有单相接地引起的工频过电压,才是确定和选择避雷器额定电压的主要依据。根据电力部1993年10月30日“关于提高3-66kV无间隙金属氧化物避雷器额定电压和持续运行电压有关情况的通报”,3-15.75kV Ur≥1.4Um ,35-66kVUr≥1.3Um 。 实际选择中略小于上述值: 6-10kV Ur≥1.38Um则6kV避雷器Ur≥1.38x7.2=9.94kV 10kV避雷器Ur≥1.38x12=16.6kV 35kVUr≥1.25Um 则35kV避雷器Ur≥1.25x40.5=50.6kV (2)标称放电电流的选择 避雷器的标称放电电流In是波形为8/20μs用以划分其等级的重要参数,有1.5、2.5、5、10、20kA 等五级,前三级分别与中性点、电机避雷器、电容器避雷器等相对应,电站避雷器则分为后三种,一般6-35kV 系统选择5kA。 (3)雷电冲击保护水平

避雷器的种类特点及应用场合

避雷器的种类特点及应用场合 姓名: 学号: 班级: 学院:

一避雷器的保护原理 避雷器实质上是一种放电器,并联连接在被保护设备附近。避雷器保护作用原理如图所示。避雷器的击穿电压要比被保护设备的低。当过电压波沿线路入侵并超过避雷器的放电电压时,避雷器首先放电把入侵波导入大地,限制了作用于设备上的过电压数值,从而保护了设备绝缘免遭击穿破坏。 当入侵波消失后,避雷器应能自行恢复绝缘能力,以免造成工频接地短路事故。 避雷器的保护作用原理示意图 对避雷器一般有如下几个基本要求: ●具有较强的绝缘自恢复能力 ●具有平直的伏秒特性曲线 ●具有一定通流容量 二避雷器的主要种类、特点及应用场合 目前使用的避雷器主要有四种类型,即保护间隙、管型避雷器、阀型避雷器和氧化锌避雷器。保护间隙和管型避雷器主要用于配电系统、线路和发电厂、变电所进线段的保护,以限制入侵的大气过电压;阀型避雷器和氧化锌避雷器用于变电所、发电厂及变压器的保护,在220kV及以下系统中主要用于限制大气过电压,在超高压系统中还用来限制内过电压或作内过电压后备保护。阀型避雷器和氧化锌避雷器的保护性能对变电器或其他电器设备的绝缘水平的确定存在着直接影响。 2.1 保护间隙避雷器 保护间隙可以说是一种最简单的避雷器,按其形状可分为棒形、角形、环形、球形等。它是由它是由主间隙和辅助间隙串联而成的。 保护间隙的优点就是结构简单、造价低。但是,由于放电间隙暴露在空气中,放电特性受环境影响大,放点分散性大,并且由于一般保护间隙的电场属于极不均匀电场,因此他的伏秒特性曲线比较陡,与被保护设备的绝缘配合不理想;同时放电时会产生截波,对有线圈的设备造成危害。保护间隙另一个严重的缺点是弧灭能力差,对于间隙动作后流过的工频续流往往不能自行熄灭,将引起断路器

避雷器在线监测器仪原理

避雷器在线监测器校验仪原理 FCZ-3避雷器在线监测仪是针对变电站、水火电厂、大型厂矿自备电厂中避雷器下端的放电计数器进行检测的专用仪器,既可对雷击次数进行检验,还可对泄露电流(最大值)进行校验,一机两用。一、原理: 图1所示为JS型动作记数器的原理接线图。图1(a)为JS型动作记数器的基本结构,即所谓的双阀片式结构。 图1 JS型动作记数器的原理接线 (a)JS型;(b)JS-8型 R1、R2-非线形电阻;C-贮能电容器 L-记数器线圈;D1~4一硅二极管 当避雷器动作时,放电电流流过阀片R1,在R1上的压降经阀片R2给电容器C充电,然后C再对电磁式记数器的电感线圈L放电,使其转动1格,记1次数。改变R1及R2的阻值,可使记数器具有不同的灵敏度。一般最小动作电流为100A (8/20μs)的冲击电流。因R1上有一定的压降,将使避雷器的残压有所增加,

故它主要用于40kV以上的高压避雷器。 图1(b)表示JS-8型动作记数器的结构,系整流式结构。避雷器动作时,高温阀片R1上的压降经全波整流给电容器C充电,然后C再对电磁式记数器的L放电,使其记数。该记数器的阀片R1的阻值较小(在10kA时的压降为1.1kV),通流容量较大(1200A方波),最小动作电流也为100A(8/20s)的冲击电流。JS -8型记数器可用于6.0~330kV系统的避雷器,JS-8A型记数器可用于500kV 系统的避雷器。 二、检查方法及原理 由于密封不良,动作记数器在运行中可能进入潮气或水分,使内部元件锈蚀,导致记数器不能正常动作,所以《规程》规定,每年应检查1次。现场检查记数器动作的方法有直流法、交流法和标准冲击电流法。研究表明,以标准冲击电流法最为可靠,其原理接线如图2所示。 图2 标准冲击电流检测法的原理接线 (虚线框内为冲击电流发生器) C-充电电容;R-充电电阻;L-阻尼电感 D-整流硅二极管;r-分流器;B-试验变压器 V-静电电压表;CRO-高压示波器

避雷器型

各种型号的金属氧化物避雷器 专业??2007-10-1312:49??阅读2206???评论6? 字号:大?中?小 各种型号的金属氧化物避雷器 随着电力系统的发展,对输电线路供电可靠性要求越来越高,由于雷击输电线路引起的事故日益增多,尤其是在多雷、土壤电阻率高、地形复杂的地区,雷击输电线路引起的事故更 高。这不仅影响设备的正常工作,也极大地影响了人们的正常生活,给社会带来巨大的经济损失。 为了减少线路的雷击事故,提高供电可靠性,可在线路上安装金属氧化物避雷器来减少线路雷击事故,为此我公司设计生产了瓷外套、有机复合外套、带脱离装置有机复合外套等金 属氧化物避雷器。 金属氧化物避雷器型号说明: 一、有机复合外套无间隙氧化物避雷器 有机复合外套无间隙氧化物避雷器采用通流能力较强的氧化锌非线性电阻片叠加组装,密封于外套腔内,无任何放电间隙。在正常持续运行电压状态下,避雷器不动作,呈高阻状态。当大气过电压或操作过电压的幅值超过一定范围时,避雷器导通。由于氧化锌电阻片优良的 非线性伏安特性,导通后其两端的残压被抑制在被保护设备的绝缘安全值以下,从而使电气设备 受到保护。 氧化锌电阻片通流容量大,保护残压低,电压响应迅速,是近十余年兴起的高性能新型限压元件。 优点:有机复合外套是我国硅橡胶复合绝缘子技术在避雷器外套上的应用。由于采用硅橡胶外套,从根本上消除了瓷套式避雷器可能存在的外瓷套爆裂现象,并提高了防潮、耐污、抗老化、散热等性能,同时体积小重量轻,免于维修。因此,该产品聚集了有机外套和氧化锌电阻片的全部优点,是新型的过电压保护电器。 二、带脱离装置的复合外套无间隙氧化锌避雷器 脱离装置是避雷器本体所带的一种自我保护装置,通常接在避雷器的底部,避雷器通过其接地。当避雷器在系统雷击或操作过电压下泄放能量,外界电动力、机械力及环境温度变化 等综合作用时,脱离器不会动作,即避雷器正常工作时,脱离装置不影响其工作。当避雷器自动 运行的稳定性受到损坏,或避雷器已经损坏时,脱离器迅速工作,将避雷接地线断开,避雷器电 位悬空,退出运行。 优点:安秒特性稳定、反应快、灭弧效果好、分断能力强、工作可靠性高、体积小、密封性好、为故障避雷器提供了明显标记、便于迅速发现故障点并及时维修。

HY5WX-51避雷器使用说明书

一、用途 交流系统用瓷(复合)外套无间隙金属氧化物避雷器是用来保护相应等级的交流电气设备免受雷电过电压和操作过电压损害的保护电器。 产品执行标准:GB11032/IEC60099-4 (交流系统用无间隙金属氧化物避雷器) 二、使用条件 1.适用户内、户外 2.环境温度(-40℃~+48℃) 3.太阳光最大辐射强度1.1kW/㎡ 4.海拔高度不超过2000m 5.电源频率(48-62)Hz 6.地震强度8度及以下地区 7.最大风速不超过35m/s 8.长期施加在避雷器端子间的工频电压应不超过避雷器的持续运行电压 三、结构和特性 该类避雷器由非线性金属氧化物电阻片叠加组装,密封于绝缘瓷外套内,无任何放电间隙。在正常运行电压下,避雷器呈高阻绝缘状态;当受到过电压冲击时,避雷器呈低阻状态,迅速泄放冲击电流入地,使与其并联的电气设备上的电压限制在规定值,以保证电气设备的安全运行。该避雷器设有压力释放装置,当其在超负载动作或发生意外损坏时,内部压力剧增,使其压力释放装置动作,排除气体,避免瓷外套爆炸。本避雷器具有陡波响应特性好,冲击电流耐受能力大,残压低、动作可靠、耐污秽能力强、维护简便等特点。 四、型号说明 1.1、型号含义 HY□W □□—□/□ ││││││└─标称电流下残压(kV) │││││└───避雷器额定电压(kV) ││││└─────设计序号,不表明产品的先进程度 │││└──────使用场所(S-配电型;Z-电站型;T-电气化铁道; │││R-保护电容,X线路型) ││└───────无间隙 │└─────────标称放电电流(kA) └──────────复合绝缘金属氧化物避雷器 Y □W □□—□/□ ││││││└─标称电流下残压(kV) │││││└───避雷器额定电压(kV) ││││└─────设计序号,不表明产品的先进程度 │││└──────使用场所(S-配电型;Z-电站型;T-电气化铁道; │││R-保护电容) ││└───────无间隙 │└─────────标称放电电流(kA) └──────────金属氧化物避雷器

避雷器在线监测传感器

避雷器在线监测传感器 技术领域 本发明属于防雷器件技术领域,具体是一种避雷器在线监测传感器。 背景技术 现有的避雷器漏电流传感器采用光纤传输数据时,采用电压信号传输的方式,传输的电压信号和漏电流成比例,由于信号幅值不恒定,存在传输距离短、效率低等问题。同时,现有的电子式避雷器漏电流传感器一般采用外供电源方式,外供电源方式当雷电进入时会有被打坏的可能;采用电池供电时,由于电池有一定寿命,需要定时更换。 发明内容 本发明所要解决的技术问题在于提供一种适合光纤传输的,达到一定距离、一定效率、无需外供电源的避雷器漏电流传感器。 为实现上述目的,本发明通过以下技术方案来实现: 一种避雷器漏电流传感器,包括全电流回路输入接口IN+/IN-、自取电源电路、漏电流取样电路、精密积分电路、电压比较电路和电光转换器;所述自取电源电路直接和输入接口IN+和IN-相连,串接在全电流回路中,IN+和IN-之间没有电流即避雷器没有漏电流时,不产生电源,有漏电流时,有电源电压;所述漏电流取样电路的取样电阻串接在全电流回路中;所述取样电阻的电流经精密积分电路后作为电压比较电路的一个输入端电压,电压比较电路的电源连接自取电源电路的输出电源;电压比较器的输出端经过驱动电路连接光电转换器的输入端。 是所述自取电源电路的核心电路包括串接的精密稳压管Q1和Q2;Q2的阴极通过电阻连接IN+,Q1的阳极连接IN-,取样电阻串接在Q1的阳极连接IN-之间;Q2的阴极端为自取电源电路的输出电源端。 所述精密积分电路包括精密电阻R3、精密可调电阻R4、比较器和电容C5;所述R3和R4并联后连接在比较器的反相输入端与IN-之间;比较器的同相输入端连接在Q1阳极端;C5连接在比较器的反相输入端与输出端之间。 所述电压比较电路包括运算放大器U1B,U1B的反相输入端连接在Q2的阳极端,U1B的同相输入端连接比较器的输出端,U1B的输出端即为电压比较电路的输出端。 所述光电转换器是发光二级管LED;驱动电路是NMOS管Q3,Q3的栅极G连接电压比较电路的输出端,漏极D连接LED的阴极端,源极S连接Q1阳极端;LED的阳极端连接比较器的输出端。 LED两端并接一个电感L1和二极管D3;D3的阳极端与LED的阴极端连接,D3的阴极端与LED的阳极端连接。

避雷器监测器使用使用说明书

JCQ系列避雷器监测器使用说明书 1、特征 JCQ系列避雷器监测器,是串联在避雷器下面用来监测泄漏电流和记录避雷器路动作次数的一种装置,2/800避雷器漏电流指示型计数器有220KV及以下电力系统各避雷器;5/1800型避雷器漏电流指示型计数器用于500KV及以下电力系统各种避雷器使用的环境条件与相连接避雷相同。3型为定制型。 避雷器监测器的特点的数字显示计数,电流指针指示,耐震动。 2、结构和性能 监测器主要由信号输入电路、电流测量电路,放电计数电路和保护电路组成。正常情况下,避雷器泄漏电流直接由电流表指示出来,测量范围为0-2mA或0-5mA,电流表用彩色刻度分别标度出避雷器泄漏电流运行区域。大大方便用户判断避雷器的运行状况,其中: 绿色:表示所测泄漏电流在避雷器正常工作电流范围内,避雷器工作正常。 黄色:表示所测量泄漏电流不在避雷器正常工作电流范围内,线路及避雷器需进行检查或更换。 注意:量程超出绿色范围,计数器接地保护装置将开始工作,对应的读数将小于实际值。 当泄漏电流超出测量范围时,超量程指示灯亮。 避雷器动作时由计数器累加记录放电次数,计数器采用三位电磁式计数器,满度后自动回零,循环计数工作,不清零。 计数单位性能符合JB2440-91《避雷器用放电计数器》中华人民共和国机械行业标准,电流显示单元性能符合国家GB7676-94《指针式电工仪表》标准。

3、安装 1、安装示意图 图一 JCQ系列避雷器监测器安装示意图 JCQ-避雷器监测器 MOA-氧化锌避雷器 D-避雷器底座 L-导线 2、安装方法 首先用直径大于2.5mm的导线L,将避雷器底座D的两端(上法兰与下法兰)牢固地短接,先接底座下法兰,后接底座上法兰,使避雷器MOA的下端可靠接地,如图一所示。 将监测器JCQ-2/800牢固地安装在避雷器底座上法兰与下法兰之间,如图所示。首先将监测器JCQ-2/800的外壳做为接地端接在底座下端,然后将监测器JCQ-2/800的高压出线端在避雷器MOA的下端。 将避雷器底座D两端(上法兰与下法兰)之间的短线L拆除,使监测器串接在避雷器MOA与地之间,如图一所示。 安装时监测器高压出线端引线接力不大于100牛顿。 需从线路中卸下监测器时,应先用导线将避雷器接地端可靠接地,然后再卸下监测器。 4、检验方法 监测器在投入运行前和运行一、二年之后,应进行检验。 (1)监测器电气测量校对 图二JCQ系列避雷器监测器电流测量校 对回路接线图。 JCQ-避雷器监测器~V-交流电压源 ~mA-交流毫安表 1.0级 1、按图二将交流电压电源、交流电流表和被检监测器接于同一电路中。 2、缓慢调节交流电压源输出电压,使被监测器电流表顺序地指在每个 数字分度线上,并对应记录这些分度线上交流电流表的值。 3、计算上述备点电流基本误差若监测器电流误差在5.0级以内。则判 断该监测器电流测量合格。 (2)计数动作试验 用1000伏摇表一只,600伏10微法电容器一只,先转动摇表对电容 充电,待充电稳定后在保持摇表转速的情况下断开充电回路,再将充 好的电容器对监测高压接线端和接地端放电,此时监测器动作计数性

2021年线路避雷器在输电线路防雷中的应用

2021年线路避雷器在输电线路 防雷中的应用 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0572

2021年线路避雷器在输电线路防雷中的应 用 前言 近几年来,由于环境条件的不断劣化,雷击引起的输电线路掉闸故障也日益增多,不仅影响设备的正常运行,而且极大地影响了日常的生产、生活。从山东省来看,淄博属于多雷区,每年都发生雷击线路掉闸故障。前些年,主要集中在南部山区线路,近几年有向北部平原转移的趋势,雷击已成为影响输电线路安全可靠运行的最主要因素。 为了减少输电线路的雷击故障,采取了各种综合防雷措施,如降低杆塔接地电阻、提高线路绝缘水平、采用负角保护、架设耦合地线等,取得了一定的效果。但对于分布在高土壤电阻率的部分线路,降低杆塔接地电阻难度较大,对于防治绕击雷对线路造成的故

障仍没有好的对策。 目前,国外已广泛使用线路型合成绝缘氧化锌避雷器用于输电线路的防雷,取得了很好的效果。从1997年开始,淄博电业局与原电力部中能公司合作,使用该公司生产的线路避雷器,并分别在 35kV、110kV线路上运行,经过2个雷雨季节的考验取得了明显的效果。 1线路避雷器防雷的基本原理 雷击杆塔时,一部分雷电流通过避雷线流到相临杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,一般用冲击接地电阻来表征。 雷击杆塔时塔顶电位迅速提高,其电位值为 Ut=iRd+L.di/dt(1) 式中i——雷电流; Rd——冲击接地电阻; L.di/dt——暂态分量。 当塔顶电位Ut与导线上的感应电位U1的差值超过绝缘子串50%

避雷器在线检测方案

避雷器在线带电检测方案 1、 序言 避雷器的作用是用来保护电力系统中各种电器设备免受雷电过电压、操作过电压、工频暂态过电压冲击而损坏的一个电器。避雷器的类型主要有保护间隙、阀型避雷器、 磁吹避雷器和氧化锌避雷器。保护间隙主要用于限制大气过电压,一般用于配电系统、 线路和变电所进线段保护。阀型避雷器与氧化锌避雷器用于变电所和发电厂的保护,在500KV 及以下系统主要用于限制大气过电压,在超高压系统中还将用来限制内过电压或 作内过电压的后备保护。目前,氧化锌避雷器由于其氧化锌阀片理想的伏安特性(非线 性极高,即在大电流时呈低电阻特性,限制了避雷器上的电压,在正常工频电压下呈高 电阻特性),具有无间隙、无续流残压低等优点,也能限制内部过电压,因此被广泛采 用。当前避雷器现场试验的国际标准 IEC-60099 所规定的范围为阀型避雷器和氧化锌避 雷器,本检测方案的适用范围也基于此。根据近几十年避雷器研究工作者的文献资料, 故 障避雷器很大比例的故障原因是水分的侵入,阀片受潮后性能变差导致避雷器故障甚至 爆炸,其故障过程伴随着温度和阻性电流的异常提升;另外,也有部分资料及案例显示, 导致避雷器故障的另一主因是避雷器内部的局部放电,阀片劣化及装配问题会造成内部 电场不均匀进而导致局部放电,避雷器内金属零件装配面间的间隙也将直接导致局部放 电,长期局部放电将引起避雷器内部闪络。据此,除按标准 IEC-60099 方法 B2 所规定 的三次谐波分析法进行检测外,综合采用红外测温法作为大规模检测时的粗测手段,将 声电联合局部放电法作为避雷器检测的补充手段,可以提高对故障避雷器的检出率。

防雷系统设计方案

防雷系统设计方案

防雷系统设计方案 防雷系统发展 电的普遍使用促进了防雷产品的发展,当高压输电网为 千家万户提供动力和照明时,雷电也大量危害高压输变 电设备。高压线架设高、距离长、穿越地形复杂,容易 被雷击中。避雷针的保护范围不足以保护上千公里的输 电线,因此避雷线作为保护高压线的新型接闪器就应运 而生。在高压线获得保护后,与高压线连接的发、配电 设备依然被过电压损坏,人们发现这是由于“感应雷”在 作怪。(感应雷是因为直击雷放电而感应到附近的金属 导体中的,感应雷可经过两种不同的感应方式侵入导 体,一是静电感应:当雷云中的电荷积聚时,附近的导 体也会感应上相反的电荷,当雷击放电时,雷云中的电 荷迅速释放,而导体中原来被雷云电场束缚住的静电也 会沿导体流动寻找释放通道,就会在电路中形成电脉 冲。二是电磁感应:在雷云放电时,迅速变化的雷电流 在其周围产生强大的瞬变电磁场,在其附近的导体中产 生很高的感生电动势。研究表明:静电感应方式引起的 浪涌数倍于电磁感应引起的浪涌。雷电在高压线上感应 起电涌,并沿导线传播到与之相连的发、配电设备,当 这些设备的耐压较低时就会被感应雷损坏,为抑制导线

中的电涌,人们创造了线路避雷器。 早期的线路避雷器是开放的空气间隙。空气的击穿电压很高,约500kV/m,而当其被高电压击穿后就只有几十伏的低压了。利用空气的这一特性人们设计出了早期的线路避雷器,将一根导线的一端连在输电线上,另一根导线的一端接地,两根导线的另一端相隔一定距离构成空气间隙的两个电极,间隙距离确定了避雷器的击穿电压,击穿电压应略高于输电线的工作电压,这样当电路正常工作时,空气间隙相当于开路,不会影响线路的正常工作。当过电压侵入时,空气间隙被击穿,过电压被箝位到很低的水平,过电流也经过空气间隙泄放入地,实现了避雷器对线路的保护。开放间隙有太多的缺点,如击穿电压受环境影响大;空气放电会氧化电极;空气电弧形成后,需经过多个交流周期才能熄弧,这就可能造成避雷器故障或线路故障。以后研制出的气体放电管、管式避雷器、磁吹避雷器在很大程度上克服了这些毛病,但她们依然是建立在气体放电的原理上。气体放电型避雷器的固有缺点:冲击击穿电压高;放电时延较长(微秒级);残压波形陡峭(dV/dt较大)。这些缺点决定了气体放电型避雷器对敏感电气设备的保护能力不强。半导体技术的发展为我们提供了防雷新材料,比如稳压管,其伏安特性是符合线路防雷要求的,只是其经

氧化锌避雷器的发展及应用

氧化锌避雷器的发展及应用 随着工农业的发展,对输电线路供电可靠性要求越来越高。停电将不仅影响设备正常工作,而且将极大地影响人们的正常生活。 然而,随着电力系统的发展,由于雷击输电线路而引起事故日益增多。根据电网故障分类统计表明,在我国跳闸率比较高的地区,高压线路运行的总跳闸次数中,由雷击引起的次数约占40-70%,尤其是在多雷、土壤电阻率高、地形复杂的地区,雷击输电线路而引起的事故率更高,这将给社会带来巨大的经济损失。 据统计,在电日本50%以上电力系统事故是由于雷击输电线路引起的,日本由于大量采用双回线路,雷击经常引起双回同时停电,20-30%的输电线路故障发生在双回输电线路。国际大电网会议公布的美国、前苏联等十二个国家的电压为275-500KV,总长为32700KM输电线路连续三年的运行资料中指出,雷害事故占总事故的60%。 为了减少输电线路的雷击故障,采用了各种措施。如减小避雷线的屏蔽角,提高线路绝缘水平,降低杆塔接地电阻,多重屏蔽,双回输电线路采用不平衡绝缘等。但采用减小屏蔽角的方法将受到杆塔结构的限制,提高绝缘水平将增加线路造价,而且受到杆塔结构及走廊宽度限制。对于新建线路,减小输电线路的雷击故障一般的方法是尽量减小避雷线的屏蔽角,降低杆塔接地装置的接地电阻。而在高土壤电阻率地区降低杆塔接地电阻存在较大的困难。 为了减少线路的雷击事故,提高供电可靠性,提出了在线路上安装氧化锌避雷器来减少线路雷击事故的要求,自1980年开始,国外开展了应用避雷器来降低线路雷击事故的研究,并已成功地将避雷器应用到输电线路上。理论计算分析和实践都证明,将线路避雷器应用到线路雷电活动强烈或土壤电阻率高、降 低接地电阻有困难的线段,可以较大地提高线路的耐雷水平。

避雷器监测

电力设备状态监测与故障诊断

避雷器监测与诊断 第一节避雷器结构特征 第三节避雷器在线检测与诊断技术

第一节避雷器的结构特征 目前使用的避雷器有以下四种类型:保护间隙避雷器、管型避雷器、阀型避雷器(普通阀型避雷器FS型和FZ型,磁吹阀型避雷器FCZ型和FCD型)、氧化锌避雷器。 一、阀型避雷器 普通阀型避雷器由火花间隙和非线性电阻(简称阀片)串联组成。火花间隙决定了避雷器的放电电压,串联的阀片决定了避雷器的残压和续流。 伏秒特性: 避雷器的放电电压与时间的关系特性 伏安持性: 通过阀片的电流与其压降的关系特性

二、氧化锌避雷器 氧化锌避雷器的基本结构是阀片。阀片 是以氧化锌为主要成分,并添加少量的Bi2O3、Co2O3、MnO2、Sb2O3等金属氧化物添加剂,将它们充分混合后造粒成型,经高温焙烧而 成的。这种阀片具有优良的非线形和较大的 通流容量。由于氧化锌避雷器的阀片是由金 属氧化物组成的,所以有时也称为金属氧化 物避雷器,并用MOA表示。

金属氧化物阀片的电特性可用田4—2所示的等值电路表示。

氧化锌避雷器的典型伏安特性曲线。整个伏安特性曲线(通常用电场强度和电流密度来描述)包括三个区域: Ⅰ是小电流区,该区域的伏安特性曲线比较陡峭,具有较好的线性特性;Ⅱ是击穿区,该区域伏安持性非常平坦,具 有较好的非线性,服从 关系;Ⅲ是翻转区,在 该区域内氧化锌阀片晶体的固有电阻开始起作用,特性曲线开始上翘。 αcI U =氧化锌避雷器具有优 良的非线性特性,可 以做成无间隙避雷器, 在工作电压作用下, 氧化锌阀片实际相当 于一个绝缘体,不会 使其烧坏。

避雷器的14个技术参数

避雷器的14个技术参数 1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 3、额定放电电流Isn:给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。 4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。 7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。 8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。 9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。 10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。 12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。通常称为“系统阻抗”。 13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax。

防雷保护和接地设计

防雷保护和接地设计 7.1 直击雷保护 7.1.1 保护对象 屋外配电装置,包括组合导线、母线廊道。 7.1.2保护措施 ①110KV配电装置装设避雷针或装设独立避雷针;②主变压器装设独立避雷针;③屋外组合导线装设独立避雷针。 7.1.3 避雷针装设应注意的问题 应妥善采用独立避雷针和构架避雷针,其联合保护范围应覆盖全所保护对象。根据《电力设备过电压保护技术规程》SDJ —76规定:独立避雷针(线)宜设独 7 立的接地装置,避雷针及其接地装置与道路或出入口等的距离不宜小于3m。110KV及以上的配电装置,一般将避雷针装在其构架或房顶上;6KV及以上的配电装置,允许将避雷针装在其构架或房顶上;35KV及以下高压配电装置,构架或房顶上不宜装设避雷针。装在构架上的避雷针应与接地网连接,并应在其附近装设集中接地装置。避雷针与主接地网的地下连接点至变压器接地线与主接地网的地下连接点,沿接地体的长度不得小于15m。在主变压器的门型构架上,不应装设避雷针、避雷线。 110KV及以上配电装置,可将线路的避雷线引接到出线门型架上;35KV配电装置可将线路的避雷线引接到出线门型架上,但应集中接地装置。 我国规程规定: (1)110KV及以上的配电装置,一般将避雷针在构架上。但是在土壤电阻率ρ﹥Ω? 1000m的地区,仍宜装设独立避雷针,以免发生反击; (2)35KV及以下的配电装置应采用独立避雷针来保护; (3)10KV的配电装置,在ρ﹥Ω? 500m的地区宜采用独立避雷针,在ρ﹤500m的地区容许采用构架避雷针。 Ω? 变电站的直击雷防护设计内容主要是选择避雷针的指数、高度、装设位置、验算它们的保护范围、应有的接地电阻、防雷接地装置的设计等。 7.2 雷电侵入波保护 7.2.1 保护措施 避雷器结合进线段保护。装设阀式避雷器是变电站对雷电过电压波进行防护的主要措施,它的保护作用主要是限制过电压波的幅值.但是为了使阀式避雷器

常见氧化锌避雷器型号及参数

常见型号氧化锌避雷器0.22~0.38kV低压避雷器 类别避雷器型号避雷器 额 定电压 kV (有效 值) 系统标 称 电压kV (有效 值) 持续运 行 电压kV (有效 值) 直流 U1mA 参考电 压 ≮kV 陡波冲 击 电流残 压 ≯kV(峰 值) 雷电冲 击 电流残 压 ≯kV(峰 值) 操作冲 击 电流残 压 ≯kV(峰 值) 2mS 方波电 流 A(峰值) 4/10μs 冲击电 流 kA(峰 值) 低压(H)Y1.5W S-0 .28/1.3 0.28 0.22 0.24 0.60 ---- 1.30 ---- 50 10 (H)Y1.5W S-0 .50/2.6 0.50 0.38 0.42 1.20 ---- 2.60 ---- 50 10 3kV配电型/电站型 类别避雷器型号避雷器 额 定电压 kV (有效 值) 系统标 称 电压kV (有效 值) 持续运 行 电压kV (有效 值) 直流 U1mA 参考电 压 ≮kV 陡波冲 击 电流残 压 ≯kV(峰 值) 雷电冲 击 电流残 压 ≯kV(峰 值) 操作冲 击 电流残 压 ≯kV(峰 值) 2mS 方波电 流 A(峰值) 4/10μs 冲击电 流kA(峰 值) 配电(H)Y5W S-3.8 /15 3.8 3 3.0 7.5 17.3 15.0 12.8 75 40 (H)Y5W S-5/1 5 5 3 4.0 7.5 17.3 15.0 12.8 75 40 电站(H)Y5W Z-3.8 /13.5 3.8 3 3.0 7.2 15.5 13.5 11.5 200 65 (H)Y5W Z-5/1 3.5 5 3 4.0 7.2 15.5 13.5 11.5 200 65 3kV配电型/电站型(带脱离装置) 配电(H)Y5W S-3.8 /15L 3.8 3 3.0 7.5 17.3 15.0 12.8 75 40 (H)Y5W S-5/1 5L 5 3 4.0 7.5 17.3 15.0 12.8 75 40 电站(H)Y5W Z-3.8 /13.5L 3.8 3 3.0 7.2 15.5 13.5 11.5 200 65 (H)Y5W Z-5/1 3.5L 5 3 4.0 7.2 15.5 13.5 11.5 200 65 6kV配电型/电站型 类别避雷器型号避雷器 额系统标 称 持续运 行 直流 U1mA 陡波冲 击 雷电冲 击 操作冲 击 2mS 方波电 4/10μs 冲击电

氧化锌避雷器应用

合成绝缘氧化锌(ZnO)避雷器及其应用 永安煤业公司永安矿区供电所张栋仁 【内容摘要】:本文对传统碳化硅SiC避雷器与合成绝缘氧化锌避雷器的优缺点进行比较分析,对合成绝缘氧化锌避雷器的试验、使用进行详细阐述,有助于该种 新型避雷器的推广应用,增加供电系统的可靠性。 【关键词】:合成绝缘氧化锌避雷器碳化硅避雷器 避雷器作为供电系统中不可缺少的电气元件,其作用是限制过电压以保护电气设备。目前,在变电所和发电厂用于过电压保护的避雷器主要还是碳化硅(SiC)避雷器,其电阻阀片是以SiC为主要原料烧制而成的,?但是SiC避雷器从其材料性能方面来讲,伏安特性的非线性较不理想,非线性系数α较高?(α越小,非线性程度越高,保护性能越好)?,SiC避雷器普通型的α一般在0.2左右,?磁吹型约为0.24。而且SiC避雷器的预试周期短,一般每年一次,淘汰率及运行成本高,通流能力小,有时因对雷电流泄放不及时而引起爆炸事故。?从其结构方面讲,SiC避雷器采用瓷外套密封结构,?密封效果较差,无防爆功能,容易引起SiC 阀片受潮,当雷电流袭来时,内部压力迅速增大,引起爆炸。 SiC避雷器基于上述一系列缺点,?被新型避雷器取代已是大势所趋。为了解决这个问题,从七十年代初就出现了氧化锌避雷器。经过二十多年的发展,目前已有各方面技术都成熟的氧化锌避雷器出现并有不少挂网运行。 我公司永安矿区总变电站从一九九九年推广使用合成绝缘氧化锌避雷器,其型号为:HY5W__─17/50 │││││││ ││││││└─标准放电电流残压峰值(KV) │││││└───避雷器额定电压(KV) ││││└─────使用场合:Z:电站 R:电容 ││││ S:配电 G:环网 ││││ D:电动机 ││││ J:中性点接地 │││└──────无间隙 ││└───────标准放电电流峰值(KA) │└────────氧化锌避雷器 └─────────合成绝缘外套 该种避雷器采用近代氧化锌非线性电阻技术及新型合成材料研制而成的全新型高可靠防雷保护装置。它由氧化锌阀柱、电极、硅橡胶裙套等部件组成,用特殊树脂灌封而构成无间隙氧化锌避崐雷器,?克服了传统避雷器的缺点。ZnO避雷器具有很理想的非线性伏安特性。下图是ZnO避雷器与SiC避雷器及理想避雷器的伏安特性曲线。从图中可以看出,ZnO避雷

防雷器主要技术参数

防雷器主要技术参数 链接:https://www.360docs.net/doc/967348977.html,/tech/12839.html 防雷器主要技术参数 信息时代的今天,电脑网络和通讯设备越来越精密,其工作环境的要求也越来越高,而雷电以及大型电气设备的瞬间过电压会越来越频繁的通过电源、天线、无线电信号收发设备等线路侵入室内电气设备和网络设备,造成设备或元器件损坏,人员伤亡,传输或储存的数据受到干扰或丢失,甚至使电子设备产生误动作或暂时瘫痪、系统停顿,数据传输中断,局域网乃至广域网遭到破坏。其危害触目惊心,间接损失一般远远大于直接经济损失。防雷器就是通过现代电学以及其它技术来防止被雷击中的设备。 防雷器又称等电位连接器、过电压保护器、浪涌抑制器、突波吸收器、防雷保安器等,用于电源线防护的防雷器称为电源防雷器。 防雷器的一些主要技术参数:额定工作电压、额定工作电流,特批串并式电源防雷器的载流量。通流能力,防雷器转移雷电流的能力,以千安为单位,与波开开式有关。防雷器在功能上可分为可防直击雷的防雷器和防感应雷的防雷器。可防直击雷的防雷器通常用于可能被直击雷击中的线路保护,如LPZOA区与LPZ1区交界处的保护。用10/35μs电流波形测试与表示其通流能力。防感应雷的防雷器通常用于不可能被直击雷击中的线路保护,如LPZOB区与LPX1区、LPZ1区交界处的保护。用8/20μs电流波形测试与表示其通流能力响应时间,防雷器对瞬态现象起控制作用所需的时间,与波形性质有关。残压,防雷器对瞬态现象的电压限制能力,与雷电流幅值及波形性质有关。 防雷器的主要技术参数说明: 1.标称电压Un 与被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。 2.额定电压Uc 能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。 3.额定放电电流Isn 给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。4.最大放电电流Imax 给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。5.电压保护级别Up 保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。 6.响应时间tA 主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。7.数据传输速率Vs 表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。 8.插入损耗Ae 在给定频率下保护器插入前和插入后的电压比率。 9.回波损耗Ar 表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数 原文地址:https://www.360docs.net/doc/967348977.html,/tech/12839.html 页面 1 / 1

避雷器元件工作原理及设计原理

避雷器元件工作原理及设计原理 作者:来源:时间:2010-01-27 避雷器元件工作原理及设计原理 电涌保护器(Surge Protection Devices,简称SPD),也称浪涌保护器、过电压保护器,俗称避雷器、防雷器。 针对现在市场上出现了各种各样的防雷器,质量参差不齐,有一些甚至闻所未问(如:不用接地的避雷器,到现在为止,都弄不明白它的工作原理),因此,通过介绍避雷器的工作原理及组成,对客户甄别真假、优劣,有所帮助。 防雷器元件从响应特性看,有软硬两种。属于硬响应特性的放电元件有火花间隙(基于斩弧技术的角型火花隙和同轴放电火花隙)和气体放电管,属于软响应特性的放电元件有金属氧化物压敏电阻和瞬态抑制二极管。这些元件的区别在于放电能力、响应特性和残压,避雷器就是利用它们不同的优缺点,扬长避短,组合成各种避雷器,保护电路。推荐迪舰防雷器品质有保障安全系数高 一、火花间隙(Arc chopping) 1、放电间隙:原理是两个如牛角现状的电极,距离很短,用绝缘材料分开,当两个电极间的电场强度达到击穿强度时,电极之间形成电流通路。当雷电波来到的时候首先在间隙处击穿,使间隙的空气电离,形成短路,雷电流通过间隙流入大地,而此时间隙两端的电压很低,从而达到保护线路的目的。电场强度低于击穿间隙时,放电间隙型避雷器又恢复绝缘状态。常用于高压线路的避雷防护中。在低压系统,常用于电源的前级保护。 火花间隙型避雷器产品的优劣,在于制成电极的材料、间隙距离及绝缘材料。 优点:具有很强放电能力、通流量大,10/350μs脉冲波形能够疏导50KA的脉冲电流,用于 8/20μs脉冲电流,可以大于100KA,很高的绝缘电阻以及很小的寄生电容,漏电流小。对正常工作的设备不会带来任何有害影响。

相关文档
最新文档