(物理)物理万有引力定律的应用练习题及解析
高考物理-万有引力定律-专题练习(一)(含答案与解析)
![高考物理-万有引力定律-专题练习(一)(含答案与解析)](https://img.taocdn.com/s3/m/484309510b1c59eef8c7b4a4.png)
高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。
双方确定对火星及其卫星“火卫一”进行探测。
火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。
若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。
“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。
如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。
现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。
10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。
下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。
物理万有引力定律的应用题20套(带答案)
![物理万有引力定律的应用题20套(带答案)](https://img.taocdn.com/s3/m/fbd773716294dd88d0d26b9a.png)
mg
对于嫦娥三号由万有引力等于向心力:
联立可得:
GMm r2
m4 T2
2r
g
4 2r3 T 2R2
(3)第一宇宙速度为沿月表运动的速度:
GMm mg mv2
R2
R
可得月球的第一宇宙速度:
v
gR
4 2r3 T 2R
9.2019 年 4 月 20 日 22 时 41 分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成 功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为 r 的匀速圆周运动。卫星的 质量为 m,地球的半径为 R,地球表面的重力加速度大小为 g,不计地球自转的影响。 求:
4 (4000 103 )2 6.67 1011
kg
11024 kg
6.2018 年 11 月,我国成功发射第 41 颗北斗导航卫星,被称为“最强北斗”。这颗卫星是 地球同步卫星,其运行周期与地球的自转周期 T 相同。已知地球的 半径为 R,地球表面的 重力加速度为 g,求该卫星的轨道半径 r。
(1)A 星体所受合力的大小 FA; (2)B 星体所受合力的大小 FB; (3)C 星体的轨道半径 RC; (4)三星体做圆周运动的周期 T.
【答案】(1) 2
Gm2 3
a2
(2)
7Gm2 a2
(3) 7 a (4)T π 4
a3 Gm
【解析】
【分析】
【详解】
(1)由万有引力定律,A 星体所受 B、C 星体引力大小为
则合力大小为
FR 4
G
mAmB r2
G
2m2 a2
FCA ,
FA 2
3G
m2 a2
(2)同上,B 星体所受 A、C 星体引力大小分别为
高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析
![高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析](https://img.taocdn.com/s3/m/90e06badee06eff9aef807c5.png)
高考物理万有引力定律的应用常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013年6月,“神舟十号”与“天宫一号”成功对接,6月20日3位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T ,地球半径为R ,地球表面的重力加速度为g ,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G .求: (1)地球的密度; (2)地球的第一宇宙速度v ; (3)“天宫一号”距离地球表面的高度. 【答案】(1)34gGRρπ=(2)v =h R = 【解析】(1)在地球表面重力与万有引力相等:2MmGmg R =, 地球密度:343M M R Vρπ==解得:34gGRρπ=(2)第一宇宙速度是近地卫星运行的速度,2v mg m R=v =(3)天宫一号的轨道半径r R h =+, 据万有引力提供圆周运动向心力有:()()2224MmGm R h TR h π=++,解得:h R =2.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1=gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析
![高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析](https://img.taocdn.com/s3/m/14cbfa1284868762cbaed548.png)
高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 R Mr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析
![高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析](https://img.taocdn.com/s3/m/d521f4b85901020206409c78.png)
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ;(2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v . 【答案】(1) (2)(3)【解析】 【详解】(1)设宇宙飞船的质量为m ,根据万有引力定律求出行星质量 (2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.3.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】【解析】设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w1,w2.根据题意有w1=w2 ① (1分)r1+r2=r ② (1分)根据万有引力定律和牛顿定律,有G③ (3分)G④ (3分)联立以上各式解得⑤ (2分)根据解速度与周期的关系知⑥ (2分)联立③⑤⑥式解得(3分)本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解4.“天舟一号”货运飞船于2017年4月20日在海南文昌航天发射中心成功发射升空,完成了与天宫二号空间实验室交会对接。
万有引力练习题及答案详解
![万有引力练习题及答案详解](https://img.taocdn.com/s3/m/d289c00acf84b9d528ea7ad7.png)
万有引力练习题及答案详解单 元 自 评1.人造地球卫星环绕地球做匀速圆周运动时,以下叙述正确的是( bc ) A. 卫星的速度一定大于或等于第一宇宙速度 B.在卫星中用弹簧秤称一个物体,读数为零C.在卫星中,一个天平的两个盘上,分别放上质量不等的两个物体,天平不偏转D.在卫星中一切物体的质量都为零2.两颗靠得较近的天体组成双星,它们以两者连线上某点为圆心,做匀速圆周运动,因而不会由于相互的引力作用而被吸到一起,下面说法正确的是( )A.它们做圆周运动的角速度之比,与它们的质量之比成反比B.它们做圆周运动的线速度之比,与它们的质量之比成反比C.它们做圆周运动的向心力之比,与它们的质量之比成正比D.它们做圆周运动的半径之比,与它们的质量之比成反比3.苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是( ) A.由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B.由于地球对苹果有引力,而苹果对地球无引力造成的C.苹果与地球间的引力是大小相等的,由于地球质量极大,不可能产生明显的加速度D.以上说法都不对4.两颗人造地球卫星,质量之比m 1:m 2=1:2,轨道半径之比R 1:R 2=3:1,下面有关数据之比正确的是( )A.周期之比T 1:T 2=3:1B.线速度之比v 1:v 2=3:1C.向心力之比为F 1:F 2=1:9D.向心加速度之比a 1:a 2=1:95.已知甲、乙两行星的半径之比为a ,它们各自的第一宇宙速度之比为b ,则下列结论不正确的是( )A.甲、乙两行星的质量之比为b 2a:1B.甲、乙两行星表面的重力加速度之比为b 2:a C.甲、乙两行星各自的卫星的最小周期之比为a:b D.甲、乙两行星各自的卫星的最大角速度之比为b:a6.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度的是( )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v =7.某一行星有一质量为m 的卫星,以半径r ,周期T 做匀速圆周运动,求: (1)行星的质量; (2)卫星的加速度;(3)若测得行星的半径恰好是卫星运行半径的1/10,则行星表面的重力加速度是多少?8.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。
高中物理万有引力定律的应用解题技巧及练习题及解析
![高中物理万有引力定律的应用解题技巧及练习题及解析](https://img.taocdn.com/s3/m/d283e873551810a6f4248622.png)
高中物理万有引力定律的应用解题技巧及练习题及解析一、高中物理精讲专题测试万有引力定律的应用1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R= 3310m/s v gR ==⨯2.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R 的情形算出具体数值(计算结果保留两位有效数字); ②若在赤道表面称量,弹簧测力计读数为F 2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳半径为R s 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②2322041F R F GMT π=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.3.在不久的将来,我国科学家乘坐“嫦娥N号”飞上月球(可认为是均匀球体),为了研究月球,科学家在月球的“赤道”上以大小为v 0的初速度竖直上抛一物体,经过时间t 1,物体回到抛出点;在月球的“两极”处仍以大小为v 0的初速度竖直上抛同一物体,经过时间t 2,物体回到抛出点。
高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析
![高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析](https://img.taocdn.com/s3/m/8ed3c1e86edb6f1afe001fd9.png)
高考必备物理万有引力定律的应用技巧全解及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间t,又已知该星球的半径为 R,己知万有引力常量为G,求:(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞翔轨道近似为圆形,距月球表面高度为H,飞翔周期为T,月球的半径为R,引力常量为G.求:(1)嫦“娥一号”绕月飞翔时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】(1)2R H(2)42R H32RHRH( 3)T GT2T R【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得Gm 4π (RH )2T 2(R23解得 M4π (R H ) .GT 2( 3)设绕月飞船运转的线速度为 V,飞船质量为Mm 0V 2又m 0 ,则 Gm 023M4π (R H ) .GT 2联立得 V2π RHRHT R3. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.万有引力定律揭露了天体运动规律与地上物体运动规律拥有内在的一致性.(1)用弹簧测力计称量一个相关于地球静止的物体的重力,随称量地点的变化可能会有不 同结果.已知地球质量为M ,自转周期为 T ,引力常量为 G .将地球视为半径为R 、质量分布平均的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0.① 若在北极上空超出地面h 处称量,弹簧测力计读数为 F 1,求比值 的表达式,并就h=1.0%R 的情况算出详细数值(计算结果保存两位有效数字); ② 若在赤道表面称量,弹簧测力计读数为F 2 ,求比值的表达式.( 2)假想地球绕太阳公转的圆周轨道半径为 r 、太阳半径为 R s 和地球的半径 R 三者均减小为此刻的 1 .0%,而太阳和地球的密度平均且不变.仅考虑太阳与地球之间的互相作用, 以现实地球的 1 年为标准,计算 “假想地球 ”的 1 年将变成多长?2 3【答案】( 1) ① 0.98,②F 214R2F 0GMT( 2) “假想地球 ”的 1 年与现实地球的 1 年时间同样【分析】试题剖析:( 1)依据万有引力等于重力得出比值的表达式,并求出详细的数值.在赤道,因为万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力,依据该规律求出比值的表达式( 2)依据万有引力供给向心力得出周期与轨道半径以及太阳半径的关系,进而进行判断.解:( 1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式 ①② 能够得出:=0.98.③由① 和③ 可得:(2)依据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为此刻的 1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍旧为 1 年.【评论】解决此题的重点知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力.5.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w1,w 2.依据题意有w1=w2①(1分)r1+r2=r② (1分)依据万有引力定律和牛顿定律,有G③(3分)G④(3分)联立以上各式解得⑤ (2分)依据解速度与周期的关系知⑥ (2分)联立 ③⑤⑥ 式解得(3 分)此题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解6. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少? (4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动 ,万有引力供给向心力 ,依据牛顿第二定律有 :Mm22G( R h)2 =m T(R+h)解得 : M= 4 2 (R h)3①GT 2(2)天体的密度 :42(R h)3 3M GT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力,故 :Mm ②mg=GR 2联立①②解得 : g=4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度 ,依据牛顿第二定律 ,有:mg=m④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】此题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.v 2R24-1122,一7.地球的质量 M=5.98 × 10kg ,地球半径 R=6370km ,引力常量 G=6.67 × 10 N ·m /kg 颗绕地做圆周运动的卫星环绕速度为 v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度 h 的表达式(2)此高度的数值为多少?(保存3 位有效数字)【答案】( 1 ) GM 7hR ( 2) h=8.41 × 10mv 2【分析】试题剖析:( 1 )万有引力供给向心力,则GM解得:hv 2R×7( 2)将( 1)中结果代入数占有 h=8.41 10m 考点:考察了万有引力定律的应用8.“嫦娥一号 ”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道 .已知卫星在停靠轨道和工作轨道运转的半径分别为R 和 R 1,地球半径为 r ,月球半径为 r 1,地球表面重力加快度为g ,月球表面重力加快度为 .求:(1)卫星在停靠轨道上运转的线速度大小;(2)卫星在工作轨道上运转的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运转时,依据万有引力供给向心力:解得:卫星在停靠轨道上运转的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运转,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运转的周期.9. 侦探卫星在经过地球两极上空的圆轨道上运转,它的运转轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少?设地球半径为,R 地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】 【剖析】【详解】设卫星周期为 T 1 ,那么 :Mm 4 2m( R h), ①G2T 12( R h)又MmG R 2mg , ②由①②得T 12 ( h R) 3R.g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为 l ,地球自转周期为 T ,要使卫星在一天(地球自转周期 )的时间内将赤道各处的状况全都拍摄下来,则Tl 2 R .T 1因此2 RT 14 2 (h R)3lT.Tg【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期 ;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.10. 今年 6 月 13 日,我国首颗地球同步轨道高分辨率对地观察卫星高分四号正式投入使 用,这也是世界上地球同步轨道分辨率最高的对地观察卫星.如下图,卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加快度为A 是地球的同步g,求:( 1)同步卫星离地面高度 h( 2)地球的密度 ρ(已知引力常量为 G)2 23g【答案】( 1) 3gR TR (2)4 24 GR【分析】【剖析】【详解】( 1)设地球质量为 M ,卫星质量为 m ,地球同步卫星到地面的高度为 h ,同步卫星所受万有引力等于向心力为G mM4 2 R hm( R h)2T2在地球表面上引力等于重力为MmGR2mg故地球同步卫星离地面的高度为h3gR 2T242R(2)依据在地球表面上引力等于重力MmGR2mg联合密度公式为gR 2MG3gV4R 3 4GR3。
物理必修2第三章万有引力定律的应用知识点例题练习
![物理必修2第三章万有引力定律的应用知识点例题练习](https://img.taocdn.com/s3/m/e695e67a01f69e3143329498.png)
《万有引力与航天》万有引力定律的应用1.研究天体运动的基本方法:研究人造卫星、行星等天体的运动时,我们进行了以下近似:中心天体是不动的,绕行天体以中心天体的球心为圆心做匀速圆周运动;绕行天体只受到中心天体的万有引力作用。
(1)中心天体对绕行天体的引力充当绕行天体的向心力: F 引=F n即 2rMm G = ma n = m υ2r = m ω2r = r T m 224π① 中心天体质量:2323224GT r G r G r v M πω=== (公转周期易于测量,常用含周期的表达式) 密度: 又ρπ⋅=34R M 得 3233r πρ= (r 为公转轨道半径,R 为中心天体球体半径)② 卫星(行星)的线速度υ、角速度ω、加速度a n 、周期T 和轨道半径r 的关系 ①υ=GM r , 线速度 υ∝1r ; ②ω =GM r 3, 角速度 ω∝1r 3③T = GMr 324π,周期T ∝r 3,2234πGM T r k ==,(即开普勒第三定律k 由中心天体质量决定)④a n = GMr2, 向心加速度a n ∝1r 2(与距离成“平方反比”关系)(2)将重力看成与万有引力相等(忽略星球自转): F 引=mg地球质量:地球表面物体 G gR M mg RMm G 22=∴=重要代换式: 在星球表面:GM gR mg RMmG=∴=22 行星表面重力加速度g 、距地表一定高度处重力加速度h g 地表重力加速度: 22RGMg mg R Mm G=∴= 距地表一定高度处重力加速度: ()()g h R R h R GMg mg h R GMmh h 2222)(+=+=∴=+第一宇宙速度:v 1=gR R GM =/(最小发射速度,圆周运动最大绕行速度,近地卫星速度)2.课堂延伸:“双星”是两颗相距较近,它们之间的万有引力对两者运动都有显著影响,而其他天体的作用力影响可以忽略的特殊天体系统.它们之所以没有被强大的引力吸引到一起而保持距离L 不变,是因为它们绕着共同“中心”以相同的角速度做匀速圆周运动,它们之间的万有引力提供它们做圆周运动的向心力. “黑洞”是近代引力理论预言..的一种特殊天体,它的质量十分巨大,以致于其逃逸速度有可能超过真空中的光速,因此任何物体都不能脱离它的束缚,即光子也不能射出.已知物体从星球上的逃逸速度(即第二宇宙速度)是υ=2GMR,故一个质量为M 的天体,若它是一个黑洞,则其半径R 应有:R ≤2GMc2.假如把地球变成黑洞,那么半径就要缩小到几毫米。
高三物理万有引力定律及应用专题复习(含答案)
![高三物理万有引力定律及应用专题复习(含答案)](https://img.taocdn.com/s3/m/4771252ceff9aef8941e0675.png)
高三物理万有引力定律及应用专题复习一、单选题(共10小题,每小题5.0分,共50分)1.火星表面特征非常接近地球,可能适合人类居住。
2010年,我国志愿者王跃参与了在俄罗斯进行的“模拟登火星”实验活动。
已知火星半径是地球半径的,质量是地球质量的,自转周期也基本相同。
地球表面重力加速度是g,若王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下述分析正确的是( )A.王跃在火星表面所受火星引力是他在地球表面所受地球引力的倍B.火星表面的重力加速度是C.火星的第一宇宙速度是地球第一宇宙速度的倍D.王跃在火星上向上跳起的最大高度是2.“嫦娥三号”的环月轨道可近似看成是圆轨道。
观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,如图所示。
已知万有引力常量为G,由此可计算出月球的质量为( )A.B.C.D.3.若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍B.倍C.倍D.倍4.我国2013年6月发射的“神州十号”飞船绕地球飞行的周期约为90分钟,取地球半径为6400km,地表重力加速度为g。
设飞船绕地球做匀速圆周运动,则由以上数据无法估测()A.飞船线速度的大小B.飞船的质量C.飞船轨道离地面的高度D.飞船的向心加速度大小5.已成为我国首个人造太阳系小行星的嫦娥二号卫星,2014年2月再次刷新我国深空探测最远距离纪录,超过7000万公里。
嫦娥二号是我国探月工程二期的先导星,它先在距月球表面高度为h的轨道上做匀速圆周运动,运行周期为T;然后从月球轨道出发飞赴日地拉格朗日L2点进行科学探测。
若以R表示月球的半径,引力常量为G,则( )A.嫦娥二号卫星绕月运行时的线速度为B.月球的质量为C.物体在月球表面自由下落的加速度为D.嫦娥二号卫星在月球轨道经过减速才能飞赴拉格朗日L2点6.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为的正方形的四个顶点上.已知引力常量为G.关于四星系统,下列说法错误的是 ( )A.四颗星围绕正方形对角线的交点做匀速圆周运动B.四颗星的轨道半径均为C.四颗星表面的重力加速度均为D.四颗星的周期均为7.“嫦娥二号”环月飞行的高度为100km,所探测到的有关月球的数据将比环月飞行高度为200km的“嫦娥一号”更加详实。
高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版
![高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版](https://img.taocdn.com/s3/m/fd60e003814d2b160b4e767f5acfa1c7aa0082f4.png)
可编辑修改精选全文完整版高考物理万有引力定律的应用真题汇编(含答案)一、高中物理精讲专题测试万有引力定律的应用1.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.2.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.【答案】t =或者t =【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22MmGmr rω= 航天飞机在地面上,有2mMG Rmg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.3.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。
万有引力定律练习题(含答案)
![万有引力定律练习题(含答案)](https://img.taocdn.com/s3/m/6107a42958eef8c75fbfc77da26925c52cc591cb.png)
万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。
只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。
2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。
3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。
4.假设地球是一半径为R,质量分布均匀的球体。
已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。
则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。
当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。
之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。
物理万有引力定律的应用题20套(带答案)及解析
![物理万有引力定律的应用题20套(带答案)及解析](https://img.taocdn.com/s3/m/45f42364f705cc17552709c5.png)
(3)根据万有引力公式 ;可得 ,
而星球密度 ,
联立可得
8.在月球表面上沿竖直方向以初速度v0抛出一个小球,测得小球经时间t落回抛出点,已知该月球半径为R,万有引力常量为G,月球质量分布均匀。求:
(1)月球的密度;
(2)月球的第一宇宙速度。
【答案】(1) (2)
【解析】
【详解】
(1)根据竖直上抛运动的特点可知:
(1)试求月球表面处的重力加速度g.
(2)试求月球的质量M
(3)字航员着陆后,发射了一颗绕月球表面做匀速圆周运动的卫星,周期为T,试求月球的平均密度ρ.
【答案】(1) (2) (3)
【解析】
【详解】
(1)根据题目可得小球做平抛运动,
水平位移:v0t=L
竖直位移:h= gt2
联立可得:
(2)根据万有引力黄金代换式 ,卫星高度,用t表示所需时间,则ω0t-ωt=2π
所以 .
点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.
4.半径R=4500km的某星球上有一倾角为30o的固定斜面,一质量为1kg的小物块在力F作用下从静止开始沿斜面向上运动,力F始终与斜面平行.如果物块和斜面间的摩擦因数 ,力F随时间变化的规律如图所示(取沿斜面向上方向为正),2s末物块速度恰好又为0,引力常量 .试求:
联立得
2.如图所示,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油.假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏离.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.
7.2 万有引力定律(专题训练)【四大题型】-2023-2024学年高中物理同步知识点解读与专题训练
![7.2 万有引力定律(专题训练)【四大题型】-2023-2024学年高中物理同步知识点解读与专题训练](https://img.taocdn.com/s3/m/2a1942425e0e7cd184254b35eefdc8d376ee140c.png)
7.2 万有引力定律(专题训练)【四大题型】一.万有引力定律的内容、推导及适用范围(共8小题)二.万有引力常量的测定(共8小题)三.万有引力的计算(共9小题)四.空壳内及地表下的万有引力(共7小题)一.万有引力定律的内容、推导及适用范围(共8小题)A.只有天体间才存在万有引力9.关于卡文迪什及其扭秤装置,下列说法中错误的是()A.帮助牛顿发现万有引力定律B.首次测出万有引力恒量的数值C.被誉为“第一个称出地球质量的人”D.使万有引力定律有了实用价值10.以下关于物理学史和物理方法的叙述中正确的是()A.牛顿测定引力常量的实验运用了放大法测微小量B.在建立合力、分力、重心、质点等概念时都用到了等效替代法C.在推导匀变速直线运动位移公式时,把整个运动过程划分为很多小段,每一小段近似看成匀速直线运动,然后把各段位移相加,应用了“微元法”D.伽利略利用斜槽实验,直接得到了自由落体规律11.在物理学发展的进程中,许多物理学家的科学发现推动了人类历史的进步。
对以下科学家所作科学贡献的表述中,符合史实的是:()A.牛顿将行星与太阳、地球与月球、地球与地面物体之间的引力规律推广到宇宙中的一切物体,得出了万有引力定律,并测出了引力常量G的数值B.牛顿第一定律是由实验得出的定律C.开普勒研究了第谷的行星观测记录,提出了开普勒行星运动定律D.伽利略认为物体的自然状态是静止的,力是维持物体运动的原因12.在物理学的研究中用到的思想方法很多,下列说法不正确的是()A.甲图中推导匀变速直线运动位移与时间关系时运用了微元法B.乙图中卡文迪许测定引力常量的实验中运用了等效替代法C.丙图中探究向心力大小与质量、角速度和半径之间关系时运用了控制变量法D.丁图中伽利略在研究自由落体运动时采用了实验和逻辑推理的方法13.(多选)卡文迪许利用如图所示的扭秤实验装置测量了引力常量G。
为了测量石英丝极微小的扭转角,该实验装置中采取的“微小量放大”的主要措施是()A.减小石英丝的直径B.增大T型架横梁的长度C.利用平面镜对光线的反射D.增大刻度尺与平面镜的距离14.(多选)关于万有引力定律发现过程中的科学史,下列说法正确的是()A.托勒密和哥白尼都坚持日心说B.开普勒发现三定律利用了第谷的观测数据C.卡文迪许测定了万有引力常量D .月-地检验的结果表明月球与地球表面的物体,受到地球的引力遵循同样的规律 15.探究向心力大小的实验中采用了 物理方法(选填“A 或B”,A 等效替代,B 控制变量法);万有引力常量是 通过扭秤实验测得的。
高中物理万有引力定律的应用试题经典及解析
![高中物理万有引力定律的应用试题经典及解析](https://img.taocdn.com/s3/m/5d293a56da38376baf1faee1.png)
根据该规律求出比值 的表达式
(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断. 解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是
①
② 由公式①②可以得出:
=0.98.
③
由①和③可得:
(2)根据万有引力定律,有
又因为
,
解得
从上式可知,当太阳半径减小为现在的 1.0%时,地球公转周期不变. 答:
mv2
解得: Ek
mgR2 2r
7.我国预计于 2022 年建成自己的空间站。假设未来我国空间站绕地球做匀速圆周运动时
离地面的高度为同步卫星离地面高度的 ,已知同步卫星到地面的距离为地球半径的 6 倍,地球的半径为 R,地球表面的重力加速度为 g。求: (1)空间站做匀速圆周运动的线速度大小; (2)同步卫星做圆周运动和空间站做圆周运动的周期之比。
【答案】(1)
(2)
【解析】 【详解】
(1)卫星在地球表面时
,可知:
空间站做匀速圆周运动时:
其中
联立解得线速度为: (2)设同步卫星做圆周运动和空间站做圆周运动的周期分别为 T1 和 T2,
则由开普勒第三定律有:
其中:
,
解得: 【点睛】 本题考查了万有引力的典型应用包括开普勒行星运动的三定律、黄金代换、环绕天体运动 的参量。
高中物理万有引力定律的应用试题经典及解析
一、高中物理精讲专题测试万有引力定律的应用
1.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性. (1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不 同结果.已知地球质量为 M,自转周期为 T,引力常量为 G.将地球视为半径为 R、质量分 布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是 F0.
开普勒行星运动定律 万有引力定律(解析版)--高一物理专题练习(内容+练习)
![开普勒行星运动定律 万有引力定律(解析版)--高一物理专题练习(内容+练习)](https://img.taocdn.com/s3/m/0600fa6c3d1ec5da50e2524de518964bcf84d214.png)
开普勒行星运动定律万有引力定律高一物理专题练习(内容+练习)一、开普勒定律1.开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.2.开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等.3.开普勒第三定律:所有行星轨道的半长轴的三次方跟它的公转周期的二次方的比都相等.其表达式为a3T2=k,其中a代表椭圆轨道的半长轴,T代表公转周期,比值k是一个对所有行星都相同的常量.二、行星运动的近似处理行星的轨道与圆十分接近,在中学阶段的研究中我们可按圆轨道处理.这样就可以说:1.行星绕太阳运动的轨道十分接近圆,太阳处在圆心.2.行星绕太阳做匀速圆周运动.3.所有行星轨道半径r的三次方跟它的公转周期T的二次方的比值都相等,即r3T2=k.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比、与它们之间距离r的二次方成反比.2.表达式:F=G m1m2r2,其中G叫作引力常量.四、引力常量牛顿得出了万有引力与物体质量及它们之间距离的关系,但没有测出引力常量G的值.英国物理学家卡文迪什通过实验推算出引力常量G的值.通常取G=6.67×10-11N·m2/kg2.一、单选题1.对于开普勒行星运动定律的理解,下列说法正确的是()A.开普勒进行了长期观测,记录了大量数据,通过对数据研究总结得出了万有引力定律B.根据开普勒第一定律,行星围绕太阳运动的轨迹是圆,太阳处于圆心位置C.根据开普勒第二定律,行星距离太阳越近,其运动速度越大:距离太阳越远,其运动速度越小D.根据开普勒第三定律,行星围绕太阳运行的轨道半径跟它公转周期成正比【答案】C【解析】A .第谷进行了长期观测,记录了大量数据,开普勒通过对数据研究总结得出了开普勒行星运动定律,故A 错误;B .根据开普勒第一定律,行星围绕太阳运动的轨迹是椭圆,太阳处于椭圆的一个焦点上,故B 错误;C .根据开普勒第二定律,行星距离太阳越近,其运动速度越大,距离太阳越远,其运动速度越小,故C 正确;D .根据开普勒第三定律,行星围绕太阳运行轨道半长轴的三次方跟它公转周期的二次方成正比,故D 错误。
万有引力定律及其应用--高中物理模块典型题归纳(含详细答案)
![万有引力定律及其应用--高中物理模块典型题归纳(含详细答案)](https://img.taocdn.com/s3/m/8a561268326c1eb91a37f111f18583d049640f01.png)
万有引力定律及其应用--高中物理模块典型题归纳(含详细答案)一、单选题1.如图所示,两颗靠得很近的天体组合为双星,它们以两者连线上的某点o为圆心,做匀速圆周运动,以下说法中正确的是()A.它们做圆周运动的角速度大小与轨道半径成反比B.它们做圆周运动的线速度大小相等C.它们的轨道半径与它们的质量成反比D.它们的轨道半径与它们的质量的平方成反比2.两个大小相等质量分布均匀的实心小铁球紧靠在一起,它们之间的万有引力为F,若两个半径是小铁球2倍的质量分布均匀的实心大铁球紧靠在一起,则它们之间的万有引力为()A.2FB.4FC.8FD.16F3.10月17日发射的“神舟十一号”飞船于10月21日与“天宫二号”顺利实现了对接.在对接过程中,“神舟十一号”与“天宫二号”的相对速度非常小,可以认为具有相同速率.它们的运动可以看作是绕地球的匀速圆周运动,设“神舟十一号”的质量为m,对接处距离地球表面高度为h,地球的半径为r,地球表面处的重力加速度为g,不考虑地球自转的影响,“神舟十一号”在对接时,下列结果正确的是()A.对地球的引力大小为mgB.向心加速度为gC.周期为D.动能为4.如图所示,两球的半径分别是r1和r2,均小于r,而球质量分布均匀,大小分别为m1、m2,则两球间的万有引力大小为()A. B. C. D.无法计算5.2019年春节上映的国产科幻片中,人类带着地球流浪至靠近木星时,上演了地球的生死存亡之战,木星是太阳系内体积最大、自转最快的行星,它的半径约为,早期伽利略用自制的望远镜发现了木星的四颗卫星,其中,木卫三离木星表面的高度约为,它绕木星做匀速圆周运动的周期约等于,已知引力常量,则木星的质量约为()A. B. C. D.6.我国发射的“神舟六号”载人飞船,与“神舟五号”飞船相比,它在更高的轨道上绕地球做匀速圆周运动,如图所示,下列说法中正确的是()A.“神舟六号”的速度较小B.“神舟六号”的速度较大C.“神舟六号”的周期更短D.“神舟六号”的周期与“神舟五号”的相同7.甲、乙两星球的平均密度相等,半径之比是,则同一物体在这两个星球表面受到的重力之比是()A. B. C. D.8.2019年1月3日,“嫦娥四号”成功软着陆在月球背面,踏出了全人类在月球背面着陆的第一步,中国人登上月球即将成为现实。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(物理)物理万有引力定律的应用练习题及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R1,周期为T1,已知万有引力常量为G。
求:(1)行星的质量;(2)若行星的半径为R,行星的第一宇宙速度大小;(3)研究某一个离行星很远的该行星卫星时,可以把该行星的其它卫星与行星整体作为中心天体处理。
现通过天文观测,发现离该行星很远处还有一颗卫星,其运动半径为R2,周期为T2,试估算靠近行星周围众多卫星的总质量。
【答案】(1)(2)(3)【解析】(1)根据万有引力提供向心力得:解得行星质量为:M=(2)由得第一宇宙速度为:(3)因为行星周围的卫星分布均匀,研究很远的卫星可把其他卫星和行星整体作为中心天体,根据万有引力提供向心力得:所以行星和其他卫星的总质量M 总=所以靠近该行星周围的众多卫星的总质量为:△M =点睛:根据万有引力提供向心力,列出等式只能求出中心体的质量.要求出行星的质量,我们可以在行星周围找一颗卫星研究,即把行星当成中心体.3.如图所示是一种测量重力加速度g 的装置。
在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求:(1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。
【答案】(1)22hg t= (2)222hR Gt (32hR【解析】(1)由竖直上抛运动规律得:t 上=t 下=t由自由落体运动规律: 212h gt =22h g t =(2)在地表附近: 2MmGmg R= 2222gR hR M G Gt== (3)由万有引力提供卫星圆周运动向心力得: 212v Mm G m R R=12GMhRv R == 点睛:本题借助于竖直上抛求解重力加速度,并利用地球表面的重力与万有引力的关系求星球的质量。
4.2018年11月,我国成功发射第41颗北斗导航卫星,被称为“最强北斗”。
这颗卫星是地球同步卫星,其运行周期与地球的自转周期T 相同。
已知地球的 半径为R ,地球表面的重力加速度为g ,求该卫星的轨道半径r 。
【答案】22324R gTr π= 【解析】 【分析】根据万有引力充当向心力即可求出轨道半径大小。
【详解】质量为m 的北斗地球同步卫星绕地球做匀速圆周运动,根据牛顿第二定律有:2224Mm G m r r Tπ=; 在地球表面:112Mm Gm g R= 联立解得:222332244GMT R gTr ππ==5.地球同步卫星,在通讯、导航等方面起到重要作用。
已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ;(2)同步卫星距离地面的高度h 。
【答案】(1) (2)【解析】 【详解】(1)地球表面的物体受到的重力等于万有引力,即:mg=G解得地球质量为:M=;(2)同步卫星绕地球做圆周运动的周期等于地球自转周期T ,同步卫星做圆周运动,万有引力提供向心力,由牛顿第二定律得:解得:;【点睛】本题考查了万有引力定律的应用,知道地球表面的物体受到的重力等于万有引力,知道同步卫星的周期等于地球自转周期、万有引力提供向心力是解题的前提,应用万有引力公式与牛顿第二定律可以解题.6.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出小球,测量出小球的水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G 。
(1)试求月球表面处的重力加速度g . (2)试求月球的质量M(3)字航员着陆后,发射了一颗绕月球表面做匀速圆周运动的卫星,周期为T ,试求月球的平均密度ρ.【答案】(1)2022hv g L =(2)22022hv RM GL= (3)23GT πρ= 【解析】 【详解】(1)根据题目可得小球做平抛运动, 水平位移: v 0t =L竖直位移:h =12gt 2 联立可得:2022hv g L=(2)根据万有引力黄金代换式2mMGmg R=, 可得222022hv R gR M G GL== (3)根据万有引力公式2224mM G m R R T π=;可得2324R M GTπ=,而星球密度M V ρ=,343V R π= 联立可得23GT πρ=7.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。
求: (1)月球的密度; (2)月球的第一宇宙速度。
【答案】(1)032v RGt ρπ=(2)v =【解析】 【详解】(1)根据竖直上抛运动的特点可知:0102v gt -= 所以:g=2v t设月球的半径为R,月球的质量为M,则:2GMmmg R= 体积与质量的关系:34·3M V R ρπρ== 联立得:032v RGtρπ=(2)由万有引力提供向心力得22GMm v m R R=解得;v =综上所述本题答案是:(1)032v RGt ρπ=(2)v =【点睛】会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于v =。
8.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形,2017年6月,“神舟十号”与“太空一号”成功对接.现已知“太空一号”飞行器在轨运行周期为To ,运行速度为0v ,地球半径为R ,引力常量为.G 假设“天宫一号”环绕地球做匀速圖周运动,求:()1“天宫号”的轨道高度h . ()2地球的质量M .【答案】(1)00 2v T h R π=- (2)300 2v T M Gπ=【解析】 【详解】(1)设“天宫一号”的轨道半径为r ,则有:002rv T π=“天宫一号”的轨道高度为:h r R =- 即为:002v T h R π=- (2)对“天宫一号”有:22204Mm G m r r T π=所以有:3002v T M Gπ=【点睛】万有引力应用问题主要从以下两点入手:一是星表面重力与万有引力相等,二是万有引力提供圆周运动向心力.9.2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知地球半径为R ,地面处的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)飞船在上述圆形轨道上运行的周期T .【答案】(1)GgR M 2=(2)32()2R h T gR +=【解析】 【详解】(1)根据在地面重力和万有引力相等,则有2MmGmg R= 解得:GgR M 2=(2)设神舟五号飞船圆轨道的半径为r ,则据题意有:r R h =+飞船在轨道上飞行时,万有引力提供向心力有:2224πMm G m r r T=解得:2T =10.高空遥感探测卫星在距离地球表面h 的轨道上绕地球转动,已知地球质量为M ,地球半径为R ,万有引力常量为G ,求: (1)人造卫星的角速度; (2)人造卫星绕地球转动的周期; (3)人造卫星的向心加速度.【答案】(1)R h ω+(2)2T R h π=+(3)()2 GM a R h =+ 【解析】 【分析】根据万有引力提供向心力22222()Mm v G m r m m r ma r T rπω====求解角速度、周期、向心加速度等。
【详解】(1)设卫星的角速度为ω,根据万有引力定律和牛顿第二定律有: G()2mMR h +=m ω2(R +h ),解得卫星角速度R h ω+故人造卫星的角速度R h ω+(2)由()2224MmGm R h T R h π=++()得周期2T R h π=+(故人造卫星绕地球运行的周期为2T R h π=+( (3)由于G()2 mMR h +=m a 可解得,向心加速度a=()2GMR h +故人造卫星的向心加速度为()2GMR h +.【点睛】解决本题的关键知道人造卫星绕地球运行靠万有引力提供向心力,即22222()Mm v G m r m m r ma r T r πω====.。