非欧几何的发现---三角形内角和一定等于180°吗
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形内角和一定等于180°吗?
——非欧几何学的发现
假如有人问你:“三角形内角和等于多少?”你肯定会不假思索地告诉他:“180°!”假如那个人说不是180°,那么你可能会认为他无知。
其实,“三角形内角和等于180°”只是欧几里得几何学中的一个定理。也就是说,在欧几里得几何学里,一个三角形的内角和等于180°,但如果不是在欧几里得几何学这个范围内,一个三角形的内角和就不一定等于180°!例如,赤道、0度经线和90度经线相交构成一个“三角形”,这个“三角形”的三个角都应该是90°,它们的和就是270°!你感到奇怪吗?你知道除了欧几里得几何(欧氏几何)学外,还有其他几何学吗?这些几何学称为非欧(欧几里得)几何学。
第一个被提出的非欧几何学是罗氏(罗巴切夫斯基)几何学。
长期以来,数学家们发现欧几里得《几何原本》的第五公设“若一直线与两直线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点”(现在几何书上的平行公理就是由此而来)和前四个公设比较起来,显得文字叙述冗长,而且也不那么显而易见。
有些数学家还注意到欧几里得在《几何原本》一书中直到第二十九个命题中才用到第五公设,而且以后再也没有使用。也就是说,在《几何原本》中可以不依靠第五公设而推出前二十八个命题。
因此,一些数学家提出,第五公设能不能不作为公设,而作为定理?能不能依靠前四个公设来证明第五公设?这就是几何发展史上最著名的,争论了长达两千多年的关于“平行线理论”的讨论。
由于证明第五公设的问题始终得不到解决,人们逐渐怀疑证明的路子走得对不对?第五公设到底能不能证明?
到了十九世纪20年代,俄国喀山大学教授罗巴切夫斯基在证明第五公设的过程中走了另一条路。他提出了一个和欧氏平行公理相矛盾的命题“过直线外一点,至少可以作两条直线和已知直线不相交”,用它来代替第五公设,然后与欧氏几何的前四个公设结合成一个公理系统,展开一系列的推理。他认为如果这个系统为基础的推理中出现矛盾,就等于证明了第五公设。我们知道,这其实就是数学中的反证法。
但是,在他极为细致深入的推理过程中,得出了一个又一个在直觉上匪夷所思,但在逻辑上毫无矛盾的命题。最后,罗巴切夫斯基得出两个重要的结论:
第一,第五公设不能被证明。
第二,在新的公理系统中展开的一连串推理,得到了一系列在逻辑上无矛盾的新的定理,并形成了新的理论体系。这个理论体系像欧氏几何学的理论体系一样是完善的、严密的。
这种几何学被称为罗巴切夫斯基几何学,简称罗氏几何学。
罗氏几何学的公理系统和欧氏几何学不同的地方仅仅是把欧氏几何学平行公理“过直线外一点,能并且只能作一条直线平行于已知直线”用“过直线外一点,至少可以作两条直线和这条直线平行”来代替,其他公理基本相同。由于平行公理不同,经过演绎推理却引出了一连串和欧氏几何学内容不同的新的几何命题。
凡是不涉及到平行公理的几何命题,在欧氏几何学中如果是正确的,在罗氏几何学中也同样是正确的。在欧氏几何学中,凡涉及到平行公理的命题,在罗氏几何学中都不成立,他们都相应地含有新的意义。下面举几个例子加以说明:
欧氏几何 罗氏几何
同一直线的垂线和斜线相交。
垂直于同一直线的两条直线互相平行。 存在相似的多边形。
过不在同一直线上的三点可以作且只能作一个圆。 同一直线的垂线和斜线不一定相交。
垂直于同一直线的两条直线,当两端延长的时候,离散到无穷。
不存在相似的多边形。
过不在同一直线上的三点,不一定能作一个圆。
从上面所列举的罗氏几何学的一些命题可以看到,这些命题和我们所习惯的直观形象有矛盾。所以罗氏几何学中的一些几何事实没有欧氏几何学那样容易被接受。但是,数学家们经过研究,提出可以用我们习惯的欧氏几何学中的事实作一个直观“模型”来解释罗氏几何学是正确的。
1868年,意大利数学家贝特拉米发表了一篇著名论文《非欧几何解释的尝试》,证明非欧几何学可以在欧几里得空间的曲面(例如拟球曲面)上实现。这就是说,非欧几何学命题可以“翻译”成相应的欧几里得几何学命题,如果欧几里得几何学没有矛盾,非欧几何学也就自然没有矛盾。
人们既然承认欧几里得几何学是没有矛盾的,所以也就自然承认非欧几何学没有矛盾了。直到这时,长期无人问津的非欧几何学才开始获得学术界的普遍注意和深入研究,罗巴切夫斯基的独创性研究也就由此得到学术界的高度评价和一致赞美,他本人则被人们赞誉为“几何学中的哥白尼”。
从罗巴切夫斯基创立的非欧几何学中,可以得出一个极为重要的、具有普遍意义的结论:逻辑上互相不矛盾的一组假设都有可能提供一种几何学。
几乎在罗巴切夫斯基创立非欧几何学的同时,匈牙利数学家鲍耶·雅诺什也发现了第五公设不可证明和非欧几何学的存在。鲍耶在研究非欧几何学的过程中遭到了家庭、社会的冷漠对待。他的父亲——数学家鲍耶·法尔卡什认为研究第五公设是耗费精力、劳而无功的蠢事,劝他放弃这种研究。但鲍耶·雅诺什坚持为发现新的几何学而辛勤工作。终于在1832年,在他父亲的一本著作里,以附录的形式发表了他的研究结果。
那个时代被誉为“数学王子”的高斯也发现第五公设不能证明,并且研究了非欧几何学。但是高斯害怕这种理论会遭到当时教会力量的打击和迫害,不敢公开发表自己的研究成果,只是在书信中向自己的朋友表示了自己的看法,也不敢站出来公开支持罗巴切夫斯基、鲍耶他们的新理论。
欧氏几何学与罗氏几何学中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧氏几何学讲“过直线外一点有且只有一条直线与已知直线平
行”。罗氏几何学讲“过直线外一点至少存在两条直线和已知直线平行”。那么是否存在这样的几何学——“过直线外一点,不能作直线和已知直线平行”?黎曼几何学就回答了这个问题。
黎曼几何学是德国数学家黎曼创立的。他在1851年所著的一篇论文《论几何学作为基础的假设》中明确地提出另一种几何学的存在,开创了几何学的一片新的广阔领域。
黎曼几何学中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设是:直线可以无限延长,但总的长度是有限的。黎曼几何学的模型是一个经过适当“改进”的球面。
近代黎曼几何学在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰是和黎曼几何学的观念是相似的。
此外,黎曼几何学在数学中也是一个重要的工具。它不仅是微分几何学的基础,也应用在微分方程、变分法和复变函数论等方面。
非欧几何学是一门大的数学分支,一般来讲 ,他有广义、狭义、通常意义这三个方面的不同含义。所谓广义是泛指一切和欧几里得几何学不同的几何学,狭义的非欧几何学只是指罗氏几何学,至于通常意义的非欧几何学,就是指罗氏几何学和黎曼几何学这两种几何学。
欧氏几何学、罗氏几何学、黎曼几何学是三种各有区别的几何学。这三种几何学各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何学都是正确的。
在我们的日常生活中,欧氏几何学是适用的;在宇宙空间中或原子核世界,罗氏几何学更符合客观实际;在地球表面研究航海、航空等实际问题时,黎曼几何学更准确一些。