土壤水动力学复习笔记

合集下载

《地下水动力学》复习要点

《地下水动力学》复习要点

内容主要有:(1)渗流理论基础;(2)地下水向河渠的稳定运动;(3)地下水向完整井的稳定运动;(4)地下水向完整井的非稳定运动;(5)地下水向边界附近井的稳定和非稳定运动。

重点考核地下水运动的基本概念、基本原理和方法。

题目类型有名词解释、判断题、作图题和计算题等,其中计算题占试题总分数的65%。

《地下水动力学》复习要点第一章 渗流理论基础一、基本内容1、基本概念:多孔介质、贮水率、贮水系数(弹性给水度)、渗流、渗流速度及与实际速度关系、水头(位置水头、测压管水头)、水力坡度、渗透系数、渗透率、导水系数、各向异性介质、各向同性介质、均质与非均质、水流折射原理、流网、dupuit 假设、第一类边界条件、第二类边界条件等2、基本定律:达西定律及适用范围3、描述地下水运动的方程:渗流连续性方程、承压水运动的基本微分方程、潜水运动的基本微分方程、越流含水层地下水非稳定流运动方程4、定解条件(初始条件、边界条件),数值方法基本思想二、要求1、理解并掌握上述概念和理论2、用达西定律分析水头线的变化或根据流网分析水文地质条件变化;3、给定水文地质条件,能正确画出反映地下水运动特点的流网图;4、给定水文地质模型和水文地质条件,写出反映地下水运动的基本方程(给定假设条件,建立数学模型,包括初始条件、边界条件)第二章 河间地块地下水的稳定运动一、基本内容有入渗时河间地块潜水的稳定运动问题(水文地质模型、假设条件、数学模型、流网、任意过水断面流量、分水岭移动规律、水头线)、无入渗时潜水的稳定运动、承压水的稳定运动,水在承压—无压含水层中的运动,非均质含水层中水的运动问题。

二、学习要求根据给定问题的水文地质条件,用相关公式计算过水断面流量或水位。

三、常用公式 1、承压含水层(达西定律) l H H m m kq 21212++= x lH H H H 211--= 2、无入渗潜水含水层(达西定律)l h h h h k q 21212-+= x lh h h h 2122212-+= 3、有入渗时潜水 wx wl l h h k q +--=2122221 )(22122212x lx kw x l h h h h -+-+= 4、分水岭位置 l h h w k l a 222221--= 5、其它流动问题(水平层状含水层、非均质含水层、承压—无压含水层、厚度或水流厚度沿流向变化等)第三章 地下水向完整井的稳定运动一、 基本概念:完整井、不完整井、水井及周围水位(水头)、稳定井流条件(定水头边界、越流、入渗补给)、井损与水跃、影响半径与引用影响半径、叠加原理、均匀流及平面或剖面流网二、学习要求1、掌握地下水向承压水井和潜水井运动问题的假设条件、数学模型、平面或剖面流网特征2、利用有关公式计算抽水量、降深或利用抽水试验资料(已知降深或水位),求含水层参数(导水系数或渗透系数)3、应用叠加原理地下水向完整井群的稳定运动问题。

土壤水动力学

土壤水动力学

修订时间:2013年3月太原理工大学博士研究生入学考试专业基础课考试大纲考试科目代码2017考试科目名称土壤水动力学招生学院代码007招生学院名称水利科学与工程学院招生专业代码081500招生专业名称水利工程参考书目1.《土壤水动力学》,雷志栋,杨诗秀,谢森传,清华大学出版社,北京,19882.《土壤物理学》,华孟,王坚,北京农业大学出版社,1993考查要点一、土壤水分的形态和能态1. 土壤水的形态2. 土壤水分运动的能态3. 非饱和土壤流的达西定律4. 非饱和土壤水力传导度5. 土壤水分特征曲线及其应用重点:土水势、土壤水力传导度、土壤水分特征曲线二、土壤水分运动的基本方程1. 土壤的物理点2. 多孔介质水分运动的基本假定3. 直角坐标系下土壤水分运动的基本方程4. 土壤水分运动的其他基本方程5. 土壤水分运动通量法重点:土壤水分运动过程的基本简化和假定、基本方程的变换和适用条件、土壤水分运动通量法。

三、土壤水分入渗1. 土壤入渗过程2. 土壤入渗过程的线性化解析解3. Green-Ampt入渗模型4. 水平渗吸条件下的Philip解5.经验入渗公式与讨论重点:土壤水分入渗过程及其驱动力、线性化解析解和各种经验入渗公式及其适用条件。

四、土壤水分蒸发1. 土壤水分入渗蒸发过程2. 定水位条件下均质土壤的稳定蒸发3. 层状土壤的稳定蒸发4. 非稳定蒸发过程重点:土壤水分入渗蒸发过程及其控制条件、均质土壤的稳定蒸发过程的求解。

五、土壤水分运动参数的测定方法1. 土壤水分运动参数室内测定方法2. 土壤水分运动参数田间测定方法。

土壤学第三版复习要点总结

土壤学第三版复习要点总结

土壤学复习1,土壤的概念p3土壤是地球陆地表面能生长绿色植物的疏松表层。

2,土壤的主要功能p4(1)生产功能——人类农业生产的基地(2)生态功能——陆地生态系统的基础(3)环境功能——环境的缓冲净化体系(4)工程功能——工程基地与建筑材料(5)社会功能——支撑人类社会生存和发展的最珍贵的自然资源3,土壤的物质组成和各种比例类型p18土壤矿物质是土壤的主要物质组成,其余为有机质,土壤微生物。

元素含量顺序:氧硅铝铁钙钠钾镁钛氢土壤的矿物组成:原生矿物和次生矿物。

原生矿物是直接来源于母岩的矿物,其中岩浆岩是其主要来源。

次生矿物则是由原生矿物分解转化而来的。

原生矿物主要是硅酸盐和铝硅酸盐,常见的有石英、长石、云母、辉石、角闪石、橄榄石4,粘土矿物p20粘土矿物分为:(1)层状硅酸盐粘土矿物基本结构单位:硅氧四面体、铝氧八面体两种晶片的配合比例不同可构成1:1(高岭石)、2:1(蒙脱石)、2:1:1三种晶层同晶替代现象:组成矿物的中心离子被电性相同、大小相近的离子所替代而晶格构造保持不变的现象。

同晶替代的结果使土壤产生永久电荷,能吸附土壤溶液中带相反电荷的离子。

土壤中粘土矿物的类型和数量与土壤肥力的关系很大。

硅酸盐粘土矿物的种类及一般特征:(1)高岭组1:1型,非膨胀性,电荷数量少,胶体特性较弱(2)蒙蛭组2:1型,膨胀性大,电荷数量大,胶体特性突出(3)水化云母组2:1型,非膨胀性,电荷数量大(4)绿泥石组2:1:1型,同晶替代现象较普遍,颗粒较小(2)非硅酸盐粘土矿物氧化铁、氧化铝、水铝英石、氧化硅5,土壤有机质p29种类:微生物、动植物残体、半分解物质、腐殖质(腐殖物质和非腐殖物质)土壤有机质含量高于百分之二十为有机质土壤,反之则为矿质土壤。

耕作土壤表层的有机质通常低于百分之五。

腐殖化过程:各种有机化合物通过微生物的合成或在原植物组织中聚合转变为组成和结构比原来有机化合物更为复杂的新的有机化合物的过程。

第2章_土壤水动力学基本方程

第2章_土壤水动力学基本方程

2.3非饱和土壤水运动的达西定律
2.3.3非饱和导水率的数学表达
含水量为 s Δ ,最大半径为 R1的毛管排空。 2 2 Δ M 1Δ M 1 i 1,2,, M 1 对一般情况 K s iΔ K s Δ 2 w g j 2 w g j i 1 h2 2 h2 j j 2 M M M 又
K s iΔ K s i M2 K s i 1,M , M 1 2, 1 Ks Δ1 M 1 例题2.1 2 2 j 1 h 2 2 w g j 1 h j j j 1 h j
j i 1 h 2 j
Δ 1 1 1 g 2 j i 1 h2 2 i h j w j j
H h z h 1 J w K h K h K h z z z
2.3非饱和土壤水运动的达西定律
2.3.2 Buckingham-Darcy通量定律
Buckingham-Darcy通量定律也可写成: 符号相反, 向下为正
非饱和流与饱和流的比较: 共同之处:都服从热力学第二定律,都是从水势高的地 方向水势低的地方运动。 不同之处: ①土壤水流的驱动力不同。 饱和流的驱动力是重力势和压力势;
非饱和流的是重力势和基质势。
②导水率差异 非饱和导水率远低于饱和导水率;当基质势从0降低到 -100kpa时,导水率可降低几个数量级,只相当于饱和导 水率的十万分之一。 ③土壤空隙的影响土壤。在高吸力下,粘土的非饱和导 水率比砂土高。
16~40cm/d
〉100cm/d

很高
40~100cm/d

2.3非饱和土壤水运动的达西定律
绝大多数田间和植物根区的土壤水流过程都处 在非饱和状态。非饱和流研究为土壤物理学最 活跃的研究领域之一。 2.3.1 非饱和流与饱和流的比较

《地下水动力学》复习提纲

《地下水动力学》复习提纲

《地下水动力学》复习提纲第1章渗流理论基础1、多孔介质的性质孔隙性:孔隙度,有效孔隙,有效孔隙度,死端孔隙压缩性:压缩系数(),固体颗粒压缩系数(),孔隙压缩系(),2、贮水率()、贮水系数()与给水度()定义,量纲,表达式:,,弹性释水与重力排水3、渗流、典型单元体渗流定义与性质(特点),典型单元体(理解)4、过水断面、渗流速度、实际平均流速:,5、水头和水头坡度测压管水头、总水头:等水头面、等水头线、水力坡度:大小等于水头梯度值,方向沿着等水头面的法线指向水头降低方向的矢量。

6、地下水运动特征的分类稳定流和非稳定流,维数(1维、2维和3维运动),流态(层流和紊流)Reynolds数:,临界水力坡度。

7、Darcy定律及其适用范围Darcy定律:,或微分表示:,,,矢量表示:Darcy定律适用范围:Reynolds数判别,起始水力坡度()8、渗透系数、渗透率和导水系数渗透系数定义,影响渗透系数的因素,渗透系数与渗透率关系:,导水系数,单宽流量,量纲9、非线性运动定律Forchheimer公式、Chezy公式10、岩层透水特征分类均质、非均质岩层,各向同性和各向异性。

渗透系数张量:,主渗透方向11、水流折射和等效渗透系数渗流折射定律与分析,层状岩层等效渗透系数:水平:,垂直:12、流网流线与迹线,流线方程:流函数,流函数的全微分:,流函数性质流网与性质,流网的应用13、渗流的连续性方程:14、承压水运动的基本微分方程:三维:各向异性介质:坐标轴方向与主渗透方向一致时:有源汇项:各向同性介质:柱坐标:轴对称问题:二维:或坐标轴方向与主渗透方向一致时:或稳定流:微分方程的右端项等于零。

15、越流含水层中地下水非稳定运动的基本微分方程越流、越流含水层(半承压含水层)微分方程:坐标轴方向与主渗透方向一致时:均质各向同性介质:有源、汇项:越流系数、越流因素。

16、潜水运动的基本微分方程Dupuit假设、适用范围Boussinesq方程一般方程:三维流时微分方程同承压水流微分方程。

土壤学笔记(二):土壤孔隙与土壤水土壤学笔记(三):离子交换吸附、氧化还原反应和土壤养分

土壤学笔记(二):土壤孔隙与土壤水土壤学笔记(三):离子交换吸附、氧化还原反应和土壤养分

土壤学笔记(二):土壤孔隙与土壤水土壤学笔记(三):离子交换吸附、氧化还原反应和土壤养分(30)土壤孔隙、土壤容重和土壤三相比土壤总体积包括土壤固体(土壤颗粒)的体积和土壤孔隙的体积,孔隙度是土壤孔隙占土壤总体积的比例,土壤孔隙中包括土壤水分和土壤气体。

一定体积土壤的干重=土壤(干)容重×土壤总体积=土壤(土粒)密度×土壤固体的体积(不计算土壤空隙中气体的质量)由于,土壤(土粒)密度×土壤固体的体积=土壤(干)容重×土壤总体积所以,土壤固体(土粒)的体积/土壤总体积=土壤(干)容重/土壤(土粒)密度而,土壤总体积=土壤固体的体积+土壤空隙的体积所以,土壤固体(土粒)的体积/土壤总体积=1-土壤孔隙度=土壤(干)容重/土壤(土粒)密度所以,土壤孔隙度=1-土壤(干)容重/土壤(土粒)密度土壤(土粒)密度一般在2.6-2.7g/cm3之间,一般取2.65,当然如果密度大的成分含量多(比如铁的氧化物),密度会增加;反之,密度小的成分(比如有机质)含量多,密度会减少。

土壤固体占比(体积比)=土壤(干)容重/土壤(土粒)密度=1-孔隙度,土壤液体占比=体积含水量,土壤气体占比=孔隙度-体积含水量(31)土壤容积含水量=土壤水的体积/土壤总体积(即土壤的液相占比)土壤质量含水量=土壤中水的质量/土壤干重又因为,土壤干重=土壤总体积×土壤干容重,所以,土壤质量含水率=土壤中水重/土壤干土重=土壤中水重/(土壤总体积×土壤干容重),由于,水的比重是1,在数量上,土壤中水重/土壤总体积=土壤中水的体积/土壤总体积=土壤体积比含水率。

所以,土壤质量含水率=土壤体积比含水率/土壤干容重。

或者说,土壤体积含水率=土壤质量含水率×土壤干容重(32)土壤水存在土壤孔隙中,按照土壤水分形态学的观点,土壤水包括吸湿水、附着水、毛管水和重力水。

毛管水又包括上升毛管水和悬着毛管水(33)四个重要的特征含水量分别是吸湿系数(风干土)、凋萎系数(水吸力15巴)、田间持水量(水吸力1/3巴)和饱和含水量(0巴)(34)水分入渗的主要动力是重力,水在土壤孔隙中与重力相平衡的主要作用有毛管吸力(表面张力)、范德华力、氢键,乃至化学键(库仑力,水合离子与土壤胶体之间的作用)(35)按照土壤水分运动学的观点,在土壤水分的连续体系中,水总从势能高的地方向势能低的地方运动。

土壤水动力学1(77)

土壤水动力学1(77)

二、土壤水的研究概况
研究概况
古希腊:构成自然界的2个元素:土壤,水
但真正的土壤水科学作为研究土壤中物质和能的状态和 运转的科学,却是非常年轻的。它比起土壤学其它分支 的发展,如土壤发生学和土壤化学要晚1或2个世纪。 从1856年达西(Darcy)公式的提出算起,土壤水分的试 验研究也就是150年的历史。 如同其它学科一样,它也经历了一个由经验到理论,由 静态到动态,由定性到定量(数值计算,电子计算机的 发展),由宏观到微观的研究发展过程。
吸湿系数(Hygroscopic Coefficient): 吸湿水达到最大时的土壤含水率。 最大分子持水率: 薄膜水达到最大时的土壤含水率。
凋萎系数(Wilting Point):
作物产生永久凋萎时的土壤含水率。 田间持水率(Field Capacity): 悬着毛管水达到最大时的土壤含水率。 饱和含水率(Saturation):
重量含水量
GRAVIMETRIC WATER CONTENT (GWC)
•GWC = Mw / Ms100%
qg
体积含水量
VOLUMETRIC WATER CONTENT (VWC)
qv
• VWC = Vw / Vt 100% • = Vw / (Vs + Vf) • = GWC BD / DW
第一章 土壤水分研究的回顾和展望
一、土壤水系统简介
土壤水(Soil water, Soil moisture):存在于土壤孔 隙里的水。 饱和水(Saturated water) :水全部充满土壤孔隙。 非饱和土壤水(Unsaturated water) :部分土壤孔隙 被水占据。 隔离水(不动水)(Insulate water or Immobile water):存在于土壤中封闭孔隙中的水分。

土壤学期末复习知识点总结

土壤学期末复习知识点总结

土壤学期末复习知识点总结土壤学是研究地球表层固体部分的形成、发展和功能的一门学科,它是地球科学的重要组成部分之一、下面,我将对土壤学的重点知识点进行总结。

一、土壤的形成与发育1.土壤的定义及主要组成:土壤是由岩石经过物理、化学和生物作用作用下形成的,含有有机质、无机质、水分、气体和生物体等成分的固体地球表层。

2.土壤形成的主要因素:母岩、气候、生物、地形和时间是影响土壤形成的主要因素。

其中,母岩决定土壤的物质组成;气候影响土壤水分和温度条件;生物通过根系和分解有机物质等活动促进土壤形成;地形和时间影响土壤的堆积和发育速度。

3.土壤发生的过程:土壤发生分为物理作用、化学作用和生物作用三个方面。

物理作用包括冲刷、风化、膨胀、收缩和淋溶等;化学作用主要包括氧化、水解、交换、溶解和沉淀等;生物作用包括植物的根系作用、土壤动物的活动和微生物的作用等。

4.土壤发育因素的评价指标:(1)土壤剖面的形态及土壤的层次性,即土壤剖面的土层结构与层次及土壤特征。

(2)土壤化学性质,如有机质、可交换性离子、土壤酸碱度等。

(3)土壤物理性质,如容重、质地、结构、持水性等。

5.土壤分类与命名:土壤分类是将土壤按照一定的标准进行划分与命名。

常见的土壤分类体系有国际土壤分类法(ISCS)和中国土壤分类法(CCS)。

二、土壤的基本性质1.土壤质地:指土壤颗粒的粒径分布和比例。

质地的主要组分有砂、粉砂、粘土等。

2.土壤结构:指土壤颗粒的空间排列方式。

常见的土壤结构类型有团聚结构、块状结构、柱状结构等。

3.土壤容重:指单位体积土壤的质量。

容重是反映土壤致密程度和通气性的重要指标。

4.土壤孔隙度:指土壤中未被固体颗粒填充的空隙体积与总体积的比值。

孔隙度是影响土壤保水能力和透气性的重要因素。

5.土壤有机质:土壤有机质是由植物和动物残体、分泌物以及微生物产生的物质组成的。

有机质对土壤的肥力、结构和水分保持起着重要作用。

6.土壤酸碱度:土壤酸碱度指土壤中酸性或碱性物质的含量。

土壤学复习重点要义

土壤学复习重点要义

⼟壤学复习重点要义绪论⼀、⼟壤及重要性⼟壤是指覆盖于地球表⾯,具有肥⼒特征的、能够⽣长绿⾊植物的疏松物质层。

A、⼟壤在农业中的重要性⼟壤是农业⽣产的基本⽣产资料⼟壤为植物⽣长提供营养条件和环境条件⼟壤是农业⽣态系统的重要组成部分B、⼟壤在⽣态环境中的重要性C、⼟壤是最珍贵的⾃然资源资源数量的有限性空间分布上的固定性质量的可变性⼆、⼟壤基本组成三、⼟壤肥⼒与⼟壤⽣产⼒⼟壤肥⼒:⼟壤在某种程度上能同时不断地供给和调节植物正常⽣长发育所必需的⽔分、养分、空⽓和热量的能⼒。

营养条件:养分,⽔分环境条件:热,⽓,⽔四⼤肥⼒因素:⽔、肥、⽓、热。

⾃然肥⼒:指⼟壤在⾃然(因素⽓候、⽣物、母质、地形、时间)综合作⽤下所发展起来的肥⼒。

⼈⼯肥⼒:指⼈类在⾃然⼟壤的基础上,通过耕作,熟化过程⽽发展起来的肥⼒。

有效肥⼒:在当季⽣产中能表现出来,产⽣经济效益的肥⼒部分。

潜在肥⼒:在当季没有直接反映出来的肥⼒部分。

⼟壤⽣产⼒:即⼟壤能⽣长植物并提供产品的能⼒。

⼟壤⽣产⼒与⼟壤肥⼒的区别是:⼟壤⽣产⼒是由⼟壤本⾝的肥⼒属性和发挥肥⼒作⽤的外部条件(包括⾃然环境条件、⼈为因素和社会因素影响)所共同决定的。

第⼀章⼟壤矿物质⼟粒形成⼟壤母质的矿物和岩⽯矿物岩⽯的风化作⽤与⼟壤母质⼟壤矿物质⼟粒的组成与特性⼀、主要的成⼟矿物和岩⽯原⽣矿物:来⾃⽕成岩或变质岩次⽣矿物:原⽣矿物、⽕⼭灰或各种风化产物通过化学或⽣物作⽤转变主要成⼟岩⽯:岩浆岩、沉积岩、变质岩⼆、岩⽯的风化作⽤与⼟壤母质风化作⽤:指地壳最表层的岩⽯在空⽓、⽔、温度和⽣物活动的影响下,发⽣机械破碎和化学变化的过程。

物理风化(⼤多属于热⼒学风化)风化作⽤化学风化(溶解、⽔化、⽔解、氧化)⽣物风化(根系机械破碎、⽣物化学作⽤)⼟壤母质:裸露的岩⽯经风化作⽤⽽形成的疏松的、粗细不同的矿物颗粒的地表堆积体,是形成⼟壤的母体。

残积物(⼭地丘陵顶部较⾼部位)坡积物(重⼒⾬⽔冲刷,坡脚、⾕地)洪积物(洪⽔引发,沿⼭麓成带状分布)河流冲积物(成层性,成带性,成分复杂)湖积物(湖⽔泛滥,湖周围)我国主要成⼟母质海积物(海边海相积物,海岸上升、江流⼊海)风积物(风搬运;沙质、黄⼟)黄⼟状沉积物(第四世纪时期黄⼟经冰⽔、洪⽔搬运)冰渍物(冰川夹杂物质搬运沉积)⼟粒按成分可分为:矿质⼟粒、有机质⼟粒⼟粒按粒级可分为:⽯粒、砂粒、粉粒、粘粒机械组成:⼟壤中各粒级矿物质⼟粒所占的百分质量分数叫矿物质⼟粒的机械组成。

土壤水动力学1(77)

土壤水动力学1(77)

重量含水量
GRAVIMETRIC WATER CONTENT (GWC)
•GWC = Mw / Ms100%
qg
体积含水量
VOLUMETRIC WATER CONTENT (VWC)
qv
• VWC = Vw / Vt 100% • = Vw / (Vs + Vf) • = GWC BD / DW
二、土壤水的研究概况
研究概况
1931年理查兹(Richards)在用能量概念研究土壤水的基础 上对达西定律进行了推广,使其适用于非饱和土壤,大大推 动了土壤水的动态研究,也使土壤水运动的数学模拟得到了 发展。 近几十年来,土壤水的研究已成为土壤物理学中一个重要分 支,一个最活跃的领域。随着电子计算机的大量应用和各学 科的相互渗透,非饱和土壤水运动的研究发生了由经验到理 论,从定性到定量的深刻变化,从而形成相对独立的一个领 域——土壤水动力学。 土壤水分的研究已成为土壤物理、农田水利、水文学等众多 学科领域的前沿课题。如国家自然科学基金委员会的自然科 学发展战略的报告中,自然地理和土壤学科均把土壤圈(或 地表)物质(水、热、盐)循环和能量转换列为优先资助领 域。水利学科中的地表水、土壤水、地下水三水之间的转化 规律、SPAC水分传输理论等列为优先研究。
所有土壤孔隙都为水所充满时的土壤含水率。
土壤水分常数
土壤水分的有效性 土壤水 无效水 汽态水 吸着水 有效水 毛管水 过剩水 重力水
土壤水分状况:干 大气压:1000 105 ℃ 土壤 下 水分 烘 干 常数 土 31 15~16 吸 凋 湿 萎 系 系 数 数
湿
的土 0 引水 力之 全间
6.25 1/3 1/10 毛 最 毛 管 田 大 管 断 间 持 分 持 水 子 裂 持 水 含 水 量 持 量 水 量 水 量 量 毛管悬着水 吸湿水 膜状水 重力水 毛管上升水 难有效水 无效水 易有效水 多余水 65%田持 灌水下限

土壤水动力学SWD7SPAC水分传输

土壤水动力学SWD7SPAC水分传输
未知量:冠层 Tb、eb;叶片Tv、 地表热通量G
地表以下土壤层:
土壤水动力学SWD7SPAC水分传输
7.4.2 模型求解
1) 冠层温度Tb:二分法求解
2) 冠层水汽压eb、叶面温度Tv、地表热通量G 3) 地表蒸发速率Es、蒸腾速率Ev、根系吸水速率s(z,t) 4) 土壤水热迁移方程:FDM
u 反映土壤水分胁迫对腾发的影响,与根系层土 壤含水率的大小及分布、最大腾发强度有关
u FAO方法:
u 经验公式:如
土壤水动力学SWD7SPAC水分传输
7.2.6 根据水量平衡模型估算腾发量
以上腾发量估算中,计算Ks需 要根系层含水量资料,可根据 水量平衡模型来推算:
ΔW=W2-W1=P+I-ET-Q-R
物需水量) u ET——实际腾发量
n 双作物系数法:…
土壤水动力学SWD7SPAC水分传输
n 参考作物腾发量(Reference ET)
u 概念:参照作物腾发量为一种假想的参照作 物冠层(作物高度为0.12m,固定的叶面阻 力为70s/m,反射率为0.23,非常类似于表面 开阔、高度一致、生长旺盛、完全遮盖地面 而不缺水的绿色草地)的腾发速率
土壤水动力学SWD7SPAC水分传输
Bowen比法(测定两个高度处的温、湿度)
测定两个高度处的温度和湿度。由:
土壤水动力学SWD7SPAC水分传输
7.2.3 估算腾发量的经验方法
n 主要用于土壤供水充分条件下作物最大腾 发量(作物需水量)或参考作物腾发量的 估算
n 利用蒸发皿资料估算腾发量
u ETmi=αi E0
土壤水动力学SWD7SPAC水分传输
7.2.4 估算腾发量的理论方法
n 紊流扩散法(空气动力学法) n 能量平衡法 n 综合法

土壤水动力学

土壤水动力学

第一章土壤水的能态——土水势
1.1 概述
自然界中的水是循环运动的,和人类生活关系最密切的是陆地的水循环,在循环过程中,地表一下的水存储和运移在土壤、岩石空隙、岩石裂隙或孔洞中。

当土壤孔隙没有被水充满,土壤中的水分处于非饱和状态时,我们称该土壤区域为非饱和带(或称包气带),称其中的水分为非饱和土壤水。

当水充满了土壤的全部孔隙(含有少许不连通的充气孔隙),土壤中水分处于饱和状态时,该土壤区域称为胞和带(或称饱水带),而称其中的水分为饱和土壤水,即一般所指的地下水。

土壤水和地下水的共同特点是水分均存在于多孔介质的孔隙中,并在其中运动。

土壤作为一种多孔介质是有无数碎散的、形状不规则且排列错综复杂的固体颗粒组成。

多孔介质内孔隙的大小、形状与连通性各不相同,极大地影响着其中流体的性质和运动特征。

例如,将土壤视为小球体的集合,或假想为平行的小扁平体的集合,更多的是将土壤孔隙近似为直径大小不一的一束毛细管。

这些模型,特别是毛管模型,可以用来分析土壤中水分运动的某些现象,但由于这些模型都对真实土壤做了过分的简化和近似,其使用价值甚小。

目前的趋势不是用微观的方法去研究多孔介质中孔隙的大小、形状和分布以及孔隙空间中流体的流动特征,而是转向用宏观的方法。

宏观方法是在较大尺度范围内研究多孔介质大小及其中水流的平均状况。

此时为了求得一定区域内有关几何要素和运动要素的时空分析,必须首先确定多孔介质的物理点或质点的概念。

所谓多孔介质在数学点P处的物理点,是以P点为质心、体积为ΔV0的体积元(一般取为球体)来表征的。

ΔV0不能太大,否则平均的结果不能代表P点的值;。

土壤水动力学复习笔记

土壤水动力学复习笔记

[1]土壤水动力学是许多学科的基础,它的研究涉及农田水利学、水文学、地下水文学、水文地质学、土壤物理学、环境科学等学科。

1)合理开发和科学管理水资源;2)调控农田墒情,促进农业节水;3)土壤改良和水土环境的改善。

[2]土壤各个指标,计算意义,相互关系。

土壤—是由矿物质和生物紧密结合的固相、液相和气相三相共存的一个复杂的、多相的、非均匀多孔介质体系。

定性指标—质地、结构。

定量指标–孔隙度、密度、含水率、饱和度等。

[3]含水率。

体积含水率:θv =Vw /V0重量(质量)含水率:θg =mw /ms饱和度:w=Vw/Vv贮水深度:h=Hθ(量刚为L)主要测定方法:称重法(烘干法)、核技术测量:中子仪,γ射线仪、电磁测量:时域反射仪(TDR)、核磁共振测量、热脉冲测量、遥感测量:大面积地表含水率;[4]水分常数。

吸湿水,束缚在土粒表面的水汽,最大吸湿量(吸湿常数);薄膜水,吸湿水外层连续水膜,最大分子持水量,(薄膜水不能被植物吸收时)凋萎系数;毛管水,土壤孔隙(毛管),水气界面为一弯月面,分毛管上升水、毛管悬着水,田间持水量(毛管悬着水达到最大),田持;重力水,大孔隙中的水,饱和含水率。

农业生产中常用的水分常数:田间持水量(field (moisture) capacity):农田土壤某一深度内保持吸湿水、膜状水和毛管悬着水的最大水量。

凋萎系数(wilting coefficient):土壤中的水分不能被根系吸收、植物开始发生永久凋萎时的土壤含水率,也称凋萎含水率或萎蔫点。

土壤有效含水量(available water content of soil):土壤中能被作物吸收利用的水量,即田间持水量与凋萎系数之间的土壤含水量。

土壤含水率与水分常数的应用:估计水分对植物生长的影响;计算灌溉水量;根据土壤水分的动态变化估算腾发量(地面蒸发+植物蒸腾)[5]土水势(Soil water potential):可逆、等温地从特定高度和大气压下的纯水池转移极少量水到土壤中某一点时单位数量纯水所做的功。

土壤水动力学考题以及答案doc

土壤水动力学考题以及答案doc

1.土壤水基质势, P14。

土壤水的基质势是由于土壤基质对土壤水分的吸持作用引起的。

单位数量的土壤水分由非饱和土壤中的一点移至标准参考状态, 除了土壤基质作用外其他各项维持不变, 则土壤水所做的功即为该点土壤水分的基质势。

2.土壤水吸力, P18。

3.土壤水吸力是土壤基质势和溶质势的负数, 在研究田间土壤水分运动时, 溶质势一般不考虑, 因此, 一般所说的土壤水吸力指土壤基质的吸力。

4.导水率, P29非饱和土壤的导水率K又称为水力传导度, 由于土壤中部分孔隙为气体所填充, 故其值低于该土壤的饱和导水率。

土壤水扩散率, P38。

非饱和土壤水的扩散率)(θC的比值。

K和比水容量)(θD为导水率)(θ5.比水容量, P196.土壤水分特征曲线斜率的倒数即单位基质势的变化引起的含水量变化, 称为比水容量。

7.稳定蒸发P1338.在蒸发的起始阶段, 表土的蒸发强度不随土壤含水率降低而变化,称为稳定蒸发阶段。

9.土壤水分入渗P77土壤水分入渗是指水分进入土壤的过程。

10.零通量面P5211.土壤中任一点的土壤水分通量由达西定律给出, 当水势梯度时, 该处的通量q=0, 则称该处的水平面为零通量面ZFP。

土壤入渗特性曲线受哪些因素的影响?各影响因素如何对其产生影响? P20土壤水分特征曲线受土壤质地、土壤机构、温度和土壤中水分变化的过程等因素的影响。

(1)一般说, 土壤的粘粒含量愈高, 同一吸力条件下土壤的含水率愈大, 或同一含水率下其吸力值愈高。

这是因为土壤中粘粒含量增多会使土壤中的细小孔隙发育的缘故。

(2)土壤愈密实, 则大孔隙数量愈减少, 而中小孔径的孔隙愈增多, 因此, 在同一吸力值下, 干容重愈大的土壤, 相应的含水率一般也要大些。

(3)温度升高时, 水的粘滞性和表面张力下降, 基质势相应的增大, 或说土壤水吸力减小, 在低含水率时, 这种影响表现的更加明显。

(4)对于同一土壤, 即使在恒温条件下, 由土壤脱湿过程和土壤吸湿过程测得的水分特征曲线也是不同的。

《地下水动力学》复习提纲

《地下水动力学》复习提纲

第1章渗流理论基础1、多孔介质的性质孔隙性:孔隙度,有效孔隙,有效孔隙度,死端孔隙压缩性:压缩系数(),固体颗粒压缩系数(),孔隙压缩系(),2、贮水率()、贮水系数()与给水度()定义,量纲,表达式:,,弹性释水与重力排水3、渗流、典型单元体渗流定义与性质(特点),典型单元体(理解)4、过水断面、渗流速度、实际平均流速:,5、水头和水头坡度测压管水头、总水头:等水头面、等水头线、水力坡度:大小等于水头梯度值,方向沿着等水头面的法线指向水头降低方向的矢量。

6、地下水运动特征的分类稳定流和非稳定流,维数(1维、2维和3维运动),流态(层流和紊流)Reynolds数:,临界水力坡度。

7、Darcy定律及其适用范围Darcy定律:,或微分表示:,,,矢量表示:Darcy定律适用范围:Reynolds数判别,起始水力坡度()8、渗透系数、渗透率和导水系数渗透系数定义,影响渗透系数的因素,渗透系数与渗透率关系:,导水系数,单宽流量,量纲9、非线性运动定律Forchheimer公式、Chezy公式10、岩层透水特征分类均质、非均质岩层,各向同性和各向异性。

渗透系数张量:,主渗透方向11、水流折射和等效渗透系数渗流折射定律与分析,层状岩层等效渗透系数:水平:,垂直:12、流网流线与迹线,流线方程:流函数,流函数的全微分:,流函数性质流网与性质,流网的应用13、渗流的连续性方程:14、承压水运动的基本微分方程:三维:各向异性介质:坐标轴方向与主渗透方向一致时:有源汇项:各向同性介质:柱坐标:轴对称问题:二维:或坐标轴方向与主渗透方向一致时:或稳定流:微分方程的右端项等于零。

15、越流含水层中地下水非稳定运动的基本微分方程越流、越流含水层(半承压含水层)微分方程:坐标轴方向与主渗透方向一致时:均质各向同性介质:有源、汇项:越流系数、越流因素。

16、潜水运动的基本微分方程Dupuit假设、适用范围Boussinesq方程一般方程:三维流时微分方程同承压水流微分方程。

土壤学考研复习总结

土壤学考研复习总结

土壤是在地球表面生物、气候、母质、地形、时间等因素综合作用下所形成能够生长植物的、处于永恒变化中的疏松矿物质与有机质的混合物。

土壤肥力:指土壤经常地适时适量地供给并协调植物生长发育所需要的水分、养分、空气、温度、扎根条件和无毒害物质的能力。

(四大肥力因子:水、肥、气,热)土壤圈:覆盖与地球陆地表层,处于其它层面的交界面上,构成了结合有机界和无机界(即生命和非生命)联系的中心环境。

土壤母质:岩石的风化产物,又称成土母质,简称母质。

风化作用:岩石在地表受到种种外力作用,逐渐破碎成为疏松物质,这一过程叫做风化作用。

所产生的疏松物质就是土壤母质。

比表面积:可以与气体或液体相接触的面积。

在相同的体积内,颗粒越小,比表面积越大土壤质地:指各粒级土粒占土壤重量的百分数,也叫土壤的机械组成。

原生矿物:指那些经过不同程度的物理风化,未改变化学组成和结晶结构的原始成岩矿物。

次生矿物:由原生矿物进一步风化形成的新的矿物。

如方解石是有碳酸钙溶液沉淀而来的;高岭石是由钾长石风化来的粘粒矿物:组成粘粒的次生矿物叫粘粒矿物。

硅氧四面体:是硅酸盐晶体结构中的基本构造单元。

它是由位于中心的一个硅原子与围绕它的四个氧原子所构成的配阴离子[SiO4]4-,因周围的四个氧原子分布成配位四面体的形式,故名。

铝氧八面体:是层状硅酸盐晶体结构中的基本构造单元之一。

它是铝离子等距离地配上六个氧,三个在上,三个在下,相互错开作最紧密的堆积,配位形成八面体的形式,而得名同晶替代:是指组成矿物的中心离子被电性相同、大小相近的离子所替代而晶格构造保持不变的现象。

(同晶替代的结果使土壤产生永久电荷,能吸附土壤溶液中带相反电荷的离子,使土壤具有保肥能力。

)硅铝铁率(SiO2/R2O3):是判断土壤矿物的风化程度与成土阶段;作为土壤分类的数量指标之一;代表土壤中酸胶基和碱胶基的数量;土壤有机质:土壤中的各种动植物残体,在土壤生物的作用下形成的一类特殊的高分子化合物。

土力学复习笔记(全)

土力学复习笔记(全)

真诚为您提供优质参考资料,若有不当之处,请指正。

土力学复习笔记(全)第一章土的物理性质及工程分类土是三相体——固相(土颗粒)、液相(土中水)和气相(土中空气)。

固相:是由难溶于水或不溶于水的各种矿物颗粒和部分有机质所组成。

1.土粒颗粒级配(粒度)a.土粒大小及其粒组划分b.土粒颗粒级配(粒度成分)土中各粒组相对含量百分数称为土的粒度或颗粒级配。

粒径大于等于0.075mm的颗粒可采用筛分法来区分。

粒径小于等于0.075mm的颗粒需采用水分法来区分。

颗粒级配曲线斜率: 某粒径范围内颗粒的含量。

陡—相应粒组质量集中;缓--相应粒组含量少;平台--相应粒组缺乏。

特征粒径: d50 : 平均粒径;d60 : 控制粒径;d10 : 有效粒径;d30粗细程度:用d50表示。

曲线的陡、缓或不均匀程度:不均匀系数C u = d60 / d10 ,Cu ≤5,级配均匀,不好Cu≥10,,级配良好,连续程度:曲率系数C c = d302 / (d60×d10 )。

较大颗粒缺少,Cc 减小;较小颗粒缺少,Cc 增大。

Cc = 1~ 3, 级配连续性好。

粒径级配累积曲线及指标的用途:1)粒组含量用于土的分类定名;2)不均匀系数Cu用于判定土的不均匀程度:Cu≥5, 不均匀土;Cu < 5, 均匀土;3)曲率系数Cc用于判定土的连续程度:C c = 1 ~ 3,级配连续土;Cc > 3或Cc < 1,级配不连续土。

4)不均匀系数Cu和曲率系数Cc用于判定土的级配优劣:如果Cu≥5且C c = 1 ~ 3,级配良好的土;如果Cu < 5 或Cc > 3或Cc < 1, 级配不良的土。

土粒的矿物成份——矿物分为原生矿物和次生矿物。

原生矿物:岩浆在冷凝过程中形成的矿物(圆状、浑圆状、棱角状)次生矿物:原生矿物经化学风化后发生变化而形成。

(针状、片状、扁平状)粗粒土:原岩直接破碎,基本上是原生矿物,其成份同生成它们的母岩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[1]土壤水动力学是许多学科的基础,它的研究涉及农田水利学、水文学、地下水文学、水文地质学、土壤物理学、环境科学等学科。

1)合理开发和科学管理水资源;2)调控农田墒情,促进农业节水;3)土壤改良和水土环境的改善。

[2]土壤各个指标,计算意义,相互关系。

土壤—是由矿物质和生物紧密结合的固相、液相和气相三相共存的一个复杂的、多相的、非均匀多孔介质体系。

定性指标—质地、结构。

定量指标–孔隙度、密度、含水率、饱和度等。

[3]含水率。

体积含水率:θv =Vw /V0重量(质量)含水率:θg =mw /ms饱和度:w=Vw/Vv贮水深度:h=Hθ(量刚为L)主要测定方法:称重法(烘干法)、核技术测量:中子仪,γ射线仪、电磁测量:时域反射仪(TDR)、核磁共振测量、热脉冲测量、遥感测量:大面积地表含水率;[4]水分常数。

吸湿水,束缚在土粒表面的水汽,最大吸湿量(吸湿常数);薄膜水,吸湿水外层连续水膜,最大分子持水量,(薄膜水不能被植物吸收时)凋萎系数;毛管水,土壤孔隙(毛管),水气界面为一弯月面,分毛管上升水、毛管悬着水,田间持水量(毛管悬着水达到最大),田持;重力水,大孔隙中的水,饱和含水率。

农业生产中常用的水分常数:田间持水量(field (moisture) capacity):农田土壤某一深度内保持吸湿水、膜状水和毛管悬着水的最大水量。

凋萎系数(wilting coefficient):土壤中的水分不能被根系吸收、植物开始发生永久凋萎时的土壤含水率,也称凋萎含水率或萎蔫点。

土壤有效含水量(available water content of soil):土壤中能被作物吸收利用的水量,即田间持水量与凋萎系数之间的土壤含水量。

土壤含水率与水分常数的应用:估计水分对植物生长的影响;计算灌溉水量;根据土壤水分的动态变化估算腾发量(地面蒸发+植物蒸腾)[5]土水势(Soil water potential):可逆、等温地从特定高度和大气压下的纯水池转移极少量水到土壤中某一点时单位数量纯水所做的功。

定义土壤中任一点的单位数量土壤水分的吉氏自由能与标准参考状态下自由能的差值为该点的总土水势,ψ=ψp+ψT+ψs+ψm+ψg 土水势=压力势+温度势+溶质势+基质势+重力势,标准状态下ψ=0,将单位数量的水分从标准状态移动到另一状态时,如果环境对土壤水做功,ψ>0;如果土壤水对环境做功,ψ<0。

重力势:地球重力场对土壤水作用的结果;大小:取决于土壤水相对于参考面的高度;势能:Eg=±Mgz。

压力势:压力场中压力差的存在而引起的;大小:取决于水压与大气压之差;势能:Ep=VΔp;饱和地下水:地下水面以下深度h,ψp≥0;非饱和土壤水:气孔连通:ψp=0,封闭未充水孔隙:气压势(目前考虑较少)。

基质势:由土壤基质对土壤水的吸持作用(毛管作用、吸附作用)所产生,自由水被土壤吸持后,自由能降低,土水势减小(0→负值),ψm≤0,饱和-非饱和水分运动研究中:负压势h土壤基质对土壤水分吸持作用:与土壤含水量有关,ψm~θ(土壤水分特征曲线);基质势的测定:张力计(负压计)法,砂性漏斗法,压力仪法,离心机法,稳定土壤水分剖面法。

溶质势:土壤溶液中溶质对土壤水分综合作用的结果,渗透试验(半透膜试验):溶质的存在降低了水的势能,ψs≤0单位体积土壤水的溶质势:ψs=-(c/M)RTc :溶液浓度(g/cm3);M :溶质摩尔质量(g/mol),c/M :溶液摩尔浓度(mol/cm3),R:摩尔气体常数,8.314 MPa cm3/mol K,T:热力学温度(K)。

土壤:不存在半透膜,一般不考虑溶质势;需要考虑溶质势的情况:植物根系吸水,植物细胞渗流,水汽扩散。

温度势:温差;大小:ψT =-SeΔT,Se:单位数量土壤水分的熵,不易定量描述;温差对土壤水分运动影响不大,因此一般不考虑温度势;温度对土壤水分运动的影响:温度影响水的物理化学性质(粘滞性、表面张力、渗透压等),从而影响基质势、溶质势和土壤水分运动参数,温度决定水的相变和热特性参数。

其他分势:荷载势:土壤承受荷载,湿润势:膨胀土在饱和状态下产生的土水势。

小结,一般情况下:土壤水:ψ=ψm±z,地下水:ψ=h±z,存在半透膜时:考虑溶质势。

[6] 基质势(土壤水吸力)随土壤含水率而变化,其关系称为土壤水分特征曲线(Soil watercharacteristic curve )或土壤持水曲线(Soil water retention curve)土壤水分特征曲线反映了土壤水和土壤基质间的相互作用:高吸力:以吸附作用为主,低吸力:以毛管作用为主。

基本形状,土壤饱和: s=-ψm=0,对土壤施加一定吸力,吸力较小时无水分排出,含水率维持饱和值,当吸力增加至某一临界值sa 后,土壤水分开始排出,含水率减小。

sa 称为进气值;一般地,粗质地的砂性土壤或结构良好的土壤,其Sa 较小;相反,细质地的粘性土壤,其Sa 较大;吸力不断增大,含水率不断减小。

土壤质地:相同吸力下,不同土质的含水率差别较大;土壤的粘粒含量越高,同一吸力条件下土壤的含水率越大;相同含水率对植物的有效性不同。

土壤结构:土壤压实后,孔隙度减小,大孔隙减少,饱和含水率减小,中等孔隙增加,小孔隙变化不大;一般的,土壤的粘粒含量越高,同一吸力条件下土壤的含水率越大。

温度:温度升高:水的粘滞性、表面张力下降,基质势增大(基质吸力减小);土壤水分变化历史:脱湿,吸湿。

土壤水分特征曲线并非单值曲线,主脱湿曲线(土壤从饱和到干燥过程曲线称为主脱湿线)、主吸湿曲线(土壤从干燥到饱和过程曲线称为主吸湿线 )、扫描曲线(土壤从部分湿润开始排水或从部分干燥到吸湿过程线 )。

相同吸力下脱湿过程的含水率较大;砂土滞后现象明显。

滞后现象在粗质的土壤于低吸力范围内最为明显;孔隙排水时的吸力较它们充水时吸力大得多。

土壤水分特征曲线的应用,进行土壤吸力S 和含水率θ之间的换算。

间接地反映出土壤中孔隙大小的分布。

可用来分析不同质地土壤的持水性和土壤水分的有效性。

应用数理方法定量分析土壤水分运动时,水分特征曲线和比水容量C 都是必不可少的重要参数。

[7] Darcy 定律的微分形式三维:▽H 梯度:Darcy 定律的适用范围:小Re 数层流:与粘滞力相比,惯性力作用可以忽略不计。

在紊流状态下,通量与水势梯度呈非线性关系;对于颗粒极细的土壤:克服一定的初始水头差才能发生流动;一般情况下,Darcy 定律有效。

饱和导水率Ks :综合反映了多孔介质对流体流动的阻碍作用,多孔介质的基质特征:质地、结构…;流体物理性质:粘滞性、密度…;实验室测定:现场测定:双环入渗试验,Guelph 渗透仪,抽水试验。

1907年:Edgar Buchkingham 将Darcy 定律推广到非饱和土壤水:饱和:q =-K s ▽H →非饱和:q =-K (θ) ▽ψ,q =-K (ψm ) ▽ψ q =-K (θ) ▽(ψm ±z ) ,驱动力:土水势(重力势+基质势)梯度不能笼统地说水由高处流向低处,或湿处流向干处。

导水率:小于饱和导水率,是基质势(含水率)的函数。

非饱和导水率随基质势(含水率)的减小而减小的原因:部分孔隙充气,随着含水率的降低,实际过水面积减小;随着含水率的降低,较大孔隙排水,土壤水在较小的孔隙流动,水流阻力增大,实际流速减小;小孔隙弯曲程度增加非饱和导水率的影响因素:与土壤质地有关,(Ex: Miller&Gardner,1962)湿润情况下:砂性土K>粘性土K ,干燥情况下:砂性土K<粘性土K ;与土壤结构有关,(Ex: 渠底夯实;农田表面结皮 ),土壤干容重增大,K 减小;K 与含水率关系受滞后作用影响较小,但与基质势(or 吸力)关系则受滞后影响。

[8]不同形式基本方程的特点:混合方程是一般形式;θ方程:数学处理,适用于均质非饱和土壤,扩散率D 的变化比K 小;ψm 方程:可用于饱和-非饱和流动、土壤分层等情况;K 的变化范围大,数值计算时需要特别处理以保证质量守恒;以x 或z 为因变量的基本方程:简单情况下的解析解和半解析解。

初始条件:所研究问题初始状态,即初始时刻自变量在研究区域上的分布对于θ型方程,需已知对于ψm 型方程,需已知或写作: h (x,y,z,0)=h0(x,y,z)边界条件,一般分为三类:第一类边界条件(变量已知边界Dirichlet 条件)对于θ型方程,θ(x,y,z,t)=θ1(x,y,z,t) (x,y,z) ∈Γ1 对于ψm 型方程,h(x,y,z,t)=h 1(x,y,z,t) (x,y,z) ∈Γ1 Γ1为一类边界区域 举例: 地面薄层积水入渗时,地表可视为一类边界条件;土壤下边界若选在潜水面处,潜水位不变时常视为一类边界条件第二类边界条件(水流通量已知边界Neuman 条件)◆ q =-K (θ) ▽(ψm ±z ) )()(z )(D 2t q K =+∂∂-Γθθθ ◆ 垂向一维: )()(z )(2t q h K h h K =+∂∂-Γ 举例:通量为零的情况:如不透水边界、无蒸发入渗的边界 ;通量已知的情况:降雨、灌溉、蒸发强度已知第三类边界条件(水流通量随边界上的变量变化而变化的情况 )◆ 321zααα=+∂∂f f ◆ 举例: 当土壤蒸发强度为表土含水率(基质势)函数的情况b a )(z )(D 3+=+∂∂-ΓθθθθK b h f h K h h K +=+∂∂-Γ)( a )(z )(3 零通量面法:零通量面--当水势梯度为0,该处通量为0,则该处为零通量面分类:单一聚合型零通量面;单一发散型零通量面;多个零通量面。

由于零通量面为已知通量(零)断面,若t1和t2时段内零通量位置不变,则根据两时刻的土壤含水率观测值,可计算出时段内任一断面处流过的土壤水通量。

[9] 入渗:水分进入土壤的过程。

积水条件下的干土入渗:分区:,饱和区,过渡区,传导区,湿润区;饱和区、过渡区一般不存在;积水条件下的干土入渗:积水后,表土含水率很快增加到θ0 (<θs );地表处含水率梯度由大变小,t 足够大时地表含水率不变;地表入渗率逐渐减小;湿润锋不断下移,含水率变化平缓。

入渗率i :单位时间内通过单位面积的入渗水量(地表水通量),mm/min, mm/h, mm/d ,累积入渗量I :从入渗开始到某一时刻通过单位面积的总水量,mm 。

入渗过程的影响因素:供水速率P (降水强度…)、土壤入渗能力f ,P<f ,入渗率i 取决于供水速率P (通量控制);P>f ,入渗率I 取决于入渗能力f (剖面控制),超过f 的部分产生地表积水、径流(超渗产流)。

相关文档
最新文档