测度与概率(第2版)第五章第三,四节作业

合集下载

(人教版)大连市必修第二册第五单元《概率》测试题(包含答案解析)

(人教版)大连市必修第二册第五单元《概率》测试题(包含答案解析)

一、选择题1.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数,如图所示的图形表示的数就是他们研究过的三角形数.现从1到50这50个整数中,随机抽取3个整数,则这3个数恰好都是三角形数的概率为( )A .3700B .1350C .4455D .39102.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是( ) A .40243B .70243C .80243D .382433.如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合{}1,2,3,4中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为( ) A .23B .112C .16D .134.一道竞赛题,A ,B ,C 三人可解出的概率依次为12,13,14,若三人独立解答,则仅有1人解出的概率为( )A .124 B .1124C .1724D .15.一个不透明的袋子中装有4个完全相同的小球,球上分别标有数字为0,1,2,3.现甲从中摸出1个球后放回,乙再从中摸出1个球,谁摸出的球上的数字大谁获胜,则甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数的概率为( ) A .14B .13C .49D .3166.学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是( ) A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件7.设集合{0,1,2}A =,{0,1,2}B =,分别从集合A 和B 中随机抽取一个数a 和b ,确定平面上的一个点(,)P a b ,记“点(,)P a b 满足a b n +=”为事件n C (04,)n n N ≤≤∈,若事件n C 的概率最大,则n 的可能值为( ) A .2B .3C .1和3D .2和48.甲、乙二人进行围棋比赛,采取“三局两胜制”,已知甲每局取胜的概率为23,则甲获胜的概率为 ( ).A .22213221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .22232233C ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭C .22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .21112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为 A .310B .25C .12D .3510.如果从1,2,3,4,5中任取2个不同的数,则这2个数的和能被3整除的概率为( ) A .25B .310C .15D .1211.五一节放假期间,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14、15,假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )A .5960B .35C .12D .16012.我省明年高考将实行312++模式,即语文数学英语必修,物理、历史二选一,化学、生物、政治、地理四选二,今年高一的小明与小芳进行选科,假若他们对六科没有偏好,则他们选课没有相同科目的概率为( ) A .16B .112C .56D .111213.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A .110B .310C .35D .910二、解答题14.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益,是关乎生态文明建设全局的大事.为了普及垃圾分类知识,某学校举行了垃圾分类知识考试,试卷中只有两道题目,已知甲同学答对每题的概率都为p ,乙同学答对每题的概率都为()q p q >,且在考试中每人各题答题结果互不影响.已知每题甲,乙同时答对的概率为12,恰有一人答对的概率为512. (1)求p 和q 的值;(2)试求两人共答对3道题的概率.15.某学习研究机构调研数学学习成绩对物理学习成绩的影响,随机抽取了100名学生的数学成绩和物理成绩(单位:分).率;(2)完成下面的2×2列联表.附()()()()()2n ad bc K a b c d a c b d -=++++16.为了更好地刺激经济复苏,增加就业岗位,多地政府出台支持“地摊经济”的举措.某市城管委对所在城市约6000个流动商贩进行调查统计,发现所售商品多为小吃、衣帽、果蔬、玩具、饰品等,各类商贩所占比例如图1.(1)该市城管委为了更好地服务百姓,打算从流动商贩经营点中随机抽取100个进行政策问询.如果按照分层抽样的方法随机抽取,请问应抽取小吃类、果蔬类商贩各多少家?(2)为了更好地了解商贩的收入情况,工作人员还对某果蔬经营点最近40天的日收入(单位:元)进行了统计,所得频率分布直方图如图2.若从该果蔬经营点的日收入超过200元的天数中机抽取两天,求这两天的日收入至少有一天超过250元的概率.17.日前,《北京传媒蓝皮书:北京新闻出版广电发展报告(2016~2017)》公布,其中提到,2015年9月至2016年9月,北京市年度综合阅读率较上年增长1%,且数字媒体阅读率首次超过了纸质图书阅读率.为了调查某校450名高一学生(其中女生210名)对这两种阅读方式的时间分配情况,该校阅读研究小组通过按性别分层抽样的方式随机抽取了15名学生进行调查,得到这15名学生分别采用这两种阅读方式的平均每周阅读时间,数据如下(单位:小时):学生编号123456789101112131415数字阅读时间235830604151645355675125334547纸质阅读时间28663653456248474252521304242(2)请用茎叶图表示上面的数据,并通过观察茎叶图,对这两种阅读方式进行比较,写出两个统计结论;(3)平均每周纸质阅读时长超过数字阅读时长的学生中,随机抽取两名学生,求这两名学生中至少有一名学生数字阅读时间不超过40小时的概率.18.甲、乙两名运动员各投篮一次,甲投中的概率为0.8,乙投中的概率为0.9,求下列事件的概率:(Ⅰ)两人都投中;(Ⅱ)恰好有一人投中;(Ⅲ)至少有一人投中.19.2018年,在《我是演说家》第四季这档节目中,英国华威大学留学生游斯彬的“数学之美”的演讲视频在微信朋友圈不断被转发,他的视角独特,语言幽默,给观众留下了深刻的印象.某机构为了了解观众对该演讲的喜爱程度,随机调查了观看了该演讲的140名观众,得到如下的列联表:(单位:名)(1)根据以上列联表,问能否在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(精确到0.001)(2)从这60名男观众中按对该演讲是否喜爱采取分层抽样,抽取一个容量为6的样本,然后随机选取两名作跟踪调查,求选到的两名观众都喜爱该演讲的概率.附:临界值表参考公式:22()=)()()()n ad bcKa b c d a c b d(-++++,+n a b c d=++.20.2018年2月9~25日,第23届冬奥会在韩国平昌举行,4年后,第24届冬奥会将在中国北京和张家口举行,为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看奥运会开幕式进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%的把握认为,收看开幕式与性别有关?(2)现从参与收看了开幕式的学生中,采用分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.①问男、女学生各选取多少人?②若从这8人中随机选取2人到校广播站宣传冬奥会,求恰好选到一名男生为主播一名女生为副播的概率P.附:22()()()()()n ad bcka b c d a c b d-=++++,其中n a b c d=+++.20()P K k ≥ 0.1000.050 0.025 0.010 0.005 0k2.7063.8415.0246.6357.87921.国际电子竞技和围棋比赛通常采用双败淘汰制.双败淘汰制即一支队伍失败两场被淘汰出局,直到最后剩下一支队伍夺得冠军(决赛只赛一场).以八支战队的比赛为例(如图所示),第一轮比赛,由8支战队抽签后交战,获胜战队继续留在获胜组,失败战队则掉人失败组,进人下一轮比赛.失败战队在失败组一旦再失败即被淘汰,最后由胜者组和败者组的冠军决出总冠军.某项国际电子竞技比赛有甲等8名选手参加,比赛采用了双败淘汰制,若这8名选手相互之间每场比赛获胜的概率均为0.5. 双败流程示意图(以八支战队为例)(1)求甲获得冠军的概率;(2)记甲在这次比赛中参加比赛的场次为X ,求随机变量X 的分布列和期望. 22.为了解一大片经济林的生长情况,随机抽样测量其中20株树木的底部周长(单位cm ),得到如下频数分布表和频率分布直方图: 分组[)85,95 [)95,105 [)105,115 [)115,125 []125,135频数 2 7 a b 2(1)请求出频数分布表中a ,b 的值;(2)估计这片经济林树木底部周长的平均值(同一组中的数据用该组区间的中点值作代表);(3)从样本中底部周长在115cm 以上的树木中任选2株进行嫁接试验,求至少有一株树木的底部周长在125cm 以上的概率.23.某组织在某市征集志愿者参加志愿活动,现随机抽出60名男生和40名女生共100人进行调查,统计出100名市民中愿意参加志愿活动和不愿意参加志愿活动的男女生比例情况,具体数据如图所示.(1)完成下列22⨯列联表,并判断是否有99%的把握认为愿意参与志愿活动与性别有关?愿意 不愿意 总计男生 女生 总计(2)现用分层抽样的方法从愿意参加志愿活动的市民中选取7名志愿者,再从中抽取2人作为队长,求抽取的2人至少有一名女生的概率. 参考数据及公式:()20P K k ≥0.1 0.05 0.025 0.010k2.7063.841 5.024 6.635()()()()()()22n ad bc K n a b c d a b c d a c b d -==+++++++.24.为了丰富业余生活,甲、乙、丙三人进行羽毛球比赛.比赛规则如下:①每场比赛有两人参加,并决出胜负;②每场比赛获胜的人与未参加此场比赛的人进行下一场的比赛;③依次循环,直到有一个人首先获得两场胜利,则本次比赛结束,此人为本次比赛的冠军.已知在每场比赛中,甲胜乙的概率为23,甲胜丙的概率为35,乙胜丙的概率为12.(1)求甲和乙先赛且共进行4场比赛的概率;(2)请通过计算说明,哪两个人进行首场比赛时,甲获得冠军的概率最大?25.为了解学生“课外阅读日”的活动情况,某校以10%的比例对高二年级500名学生按选修物理和选修历史进行分层抽样调查,测得阅读时间(单位:分钟)的频数统计图如下:(1)分别估计该校高二年级选修物理和选修历史的人数; (2)估计该校高二年级学生阅读时间在60分钟以上的概率; (3)从样本中阅读时间在6090分钟的选修物理的学生中任选2人,求至少有1人阅读时间在7590之间的概率.26.2020年是全面建成小康社会目标实现之年,也是全面打赢脱贫攻坚战收官之年.某乡镇在2014年通过精准识别确定建档立卡的贫困户共有500户,结合当地实际情况采取多项精准扶贫措施,每年新脱贫户数如下表 年份 2015 2016 2017 2018 209 年份代码x 1 2 3 4 5 脱贫户数y55688092100(1)根据2015-2019年的数据,求出y 关于x 的线性回归方程y bx a =+,并预测到2020年底该乡镇500户贫困户是否能全部脱贫;(2)2019年的新脱贫户中有20户五保户,20户低保户,60户扶贫户.该乡镇某干部打算按照分层抽样的方法对2019年新脱贫户中的5户进行回访,了解生产生活、帮扶工作开展情况.为防止这些脱贫户再度返贫,随机抽取这5户中的2户进行每月跟踪帮扶,求抽取的2户中至少有1户是扶贫户的概率.参考数据:5115526838049251001299 i iix y==⨯+⨯+⨯+⨯+⨯=∑参考公式:()()()1122211n ni i i ii in ni ii ix y nx y x x y ybx nx x x====---==--∑∑∑∑,a y bx=-【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据图形,归纳出三角形数从小到大可构成数列{}n a,且()12nn na+=,n*∈N,然后利用组合知识以及古典概型概率公式求解即可.【详解】由题意可得,三角形数从小到大可构成数列{}n a,且()12nn na+=,n*∈N.从1到50这50个整数中,所有的三角形数依次为1,3,6,10,15,21,28,36,45,共9个图形.因此从1到50这50个整数中,随机抽取3个整数的所有方法种数为35019600C=,其中这3个数恰好都是三角形数的取法种数为3984C=.由古典概型的概率公式,可得概率393503700CPC==.【点睛】本题主要考查归纳推理的应用,考查了古典概型概率公式,同时考查了数形结合思想以及特殊与一般思想的应用,属于中档题.2.C解析:C【分析】先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有2615C =种结果,两个球的号码之和是3的倍数,共有(1,2),(1,5),(2,4),(3,6),(4,5)∴摸一次中奖的概率是51153=, 5个人摸奖,相当于发生5次试验,且每一次发生的概率是13, ∴有5人参与摸奖,恰好有2人获奖的概率是35222180()()33243C ⋅⋅=, 故选:C . 【点睛】本题主要考查了n 次独立重复试验中恰好发生k 次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.3.D解析:D 【分析】讨论十位上的数为4,十位上的数为3,共8个,再计算概率得到答案. 【详解】当十位上的数为4时,共有236A =个;当十位上的数为3时,共有222A =个,共8个.故34881243p A ===. 故选:D . 【点睛】本题考查了概率的计算,分类讨论是解题的关键.4.B解析:B 【分析】根据题意,只有1人解出,则分三类,一是A 解出而其余两人没有解出,一是B 解出而其余两人没有解出,一是C 解出而其余两人没有解出,每一类用独立事件概率的乘法公式求解,然后这三类用互斥事件概率的加法求解. 【详解】()()()1231131211123423423424P P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯=.故选:B 【点睛】本题主要考查了独立事件的概率和互斥事件的概率,还考查了理解辨析问题的能力,属于基础题.5.A解析:A 【分析】先求得甲、乙各摸一次球所包含的基本事件,在列举出甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解. 【详解】由题意,甲、乙各摸一次球,所有可能的结果有4416⨯=(种),甲摸的数字在前,乙摸的数字在后,则甲获胜的情况有()1,0,()2,0,()2,1,()3,0,()3,1,()3,2,共6种,其中甲、乙各摸一次球后,甲获胜且乙摸出的球上数字为偶数有()1,0,()2,0,()3,0,()3,2,共有4种,所求概率为41164P ==. 故选:A. 【点睛】本题主要考查的是古典概型及其概率计算公式,属于基础题,解题时要准确理解题意,正确求得试验中包含的基本事件的总数数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.6.C解析:C 【分析】对与黄色奖牌而言,可能是1班分得,可能是2班分得,也可能1班与2班均没有分得,然后根据对立事件和互斥事件的概念进行判断. 【详解】由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是互斥但不对立事件.故选C 【点睛】本题考查了互斥事件和对立事件,关键是对概念的理解,属于基础题.7.A解析:A 【分析】列出所有的基本事件,分别求出事件0C 、1C 、2C 、3C 、4C 所包含的基本事件数,找出其中包含基本事件数最多的,可得出n 的值. 【详解】所有的基本事件有:()0,0、()0,1、()0,2、()1,0、()1,1、()1,2、()2,0、()2,1、()2,2,事件0C 包含1个基本事件,事件1C 包含2个基本事件,事件2C 包含3个基本事件,事件3C 包含2个基本事件,事件4C 包含1个基本事件,所以事件2C 的概率最大,则2n =,故选A . 【点睛】本题考查古典概型概率的计算,解题的关键在于列举所有的基本事件,常用枚举法与数状图来列举,考查分析问题的能力,属于中等题.8.C解析:C 【分析】先确定事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,再利用独立重复试验的概率公式和概率加法公式可求出所求事件的概率. 【详解】事件“甲获胜”包含“甲三局赢两局”和“前两局甲赢”,若甲三局赢两局,则第三局必须是甲赢,前面两局甲赢一局,所求概率为2121233C ⎛⎫⋅⋅ ⎪⎝⎭, 若前两局都是甲赢,所求概率为223⎛⎫ ⎪⎝⎭,因此,甲获胜的概率为22112221333C ⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C . 【点睛】本题考查独立重复事件的概率,考查概率的加法公式,解题时要弄清楚事件所包含的基本情况,考查分类讨论思想,考查计算能力,属于中等题.9.C解析:C 【解析】 【分析】从五种物质中随机抽取两种,所有抽法共有10种,而相克的有5种情况,得到抽取的两种物质相克的概率是12,进而得到抽取两种物质不相克的概率,即可得到答案. 【详解】从五种物质中随机抽取两种,所有抽法共有2510C =种,而相克的有5种情况,则抽取的两种物质相克的概率是51102=,故抽取两种物质不相克的概率是11122-=, 故选C. 【点睛】本题主要考查了古典概型及其概率的计算公式的应用,以及相互对立事件的应用,其中解答正确理解题意,合理利用对立事件的概率求解是解答的关键,着重考查了运算与求解能力,属于基础题.10.A解析:A 【分析】从5个数中任取两个不同数,取法为2510C =,列举和能被3整除的情况有4种,利用古典概型得解 【详解】从1,2,3,4,5中任取两个数,取法总数为2510C =这2个数的和能被3整除的情况有:()()()()1,21,52,44,5,,, ∴这2个数的和能被3整除的概率为:42105= 故选:A 【点睛】本题考查古典概型求概率,属于基础题.11.B解析:B 【分析】根据甲、乙、丙去北京旅游的概率,得到他们不去北京旅游的概率,至少有1人去北京旅游的对立事件是没有人取北京旅游,根据三人的行动相互之间没有影响,根据相互独立事件和对立事件的概率得到结果. 【详解】解:因甲、乙、丙去北京旅游的概率分别为13,14,15. ∴他们不去北京旅游的概率分别为23,34,45, 至少有1人去北京旅游的对立事件是没有人取北京旅游∴至少有1人去北京旅游的概率为234313455P =-⨯⨯=.故选:B . 【点睛】本题考查相互独立事件和对立事件的概率,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.12.B解析:B 【分析】基本事件总数22221144144n C C C C ==,他们选课他们选课没有相同科目的基本事件个数122412m C C ==,由此能求出他们选课没有相同科目的概率.【详解】解:由题意知,基本事件总数22221144144n C C C C ==,他们选课没有相同科目包含的基本事件个数122412m C C ==∴他们选课没有相同科目的概率为:12114412m P n ===. 故选:B. 【点睛】本题考查了古典概型概率求解,考查了组合的思想,考查了分类的思想.本题的关键是结合组合的思想计算事件数量,属于中档题.13.D解析:D 【解析】试题分析:从装有3个红球,2个白球的袋中任取3个球,共有基本事件3510C =种,则全取红球的基本事件只有一种,所以所取3个球中至少有1个白球的概率为1911010-=,故选D.考点:古典概型及其概率的计算.二、解答题14.(1)34p =,23q =;(2)512.【分析】(1)由互斥事件和对立事件的概率公式列方程组可解得,p q ;(2)分别求出两人答对1道的概率,答对两道题的概率,两人共答对3道题,则是一人答对2道题另一人答对1道题,由互斥事件和独立事件概率公式可得结论. 【详解】解:(1)设A ={甲同学答对第一题},B ={乙同学答对第一题},则()P A p =,()P B q =.设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.由于二人答题互不影响,且每人各题答题结果互不影响,所以A 与B 相互独立,AB 与AB 相互互斥,所以()()()()P C P AB P A P B ==,()()P D P AB AB =+()()()()()()()()()()()()11P AB P AB P A P B P A P B P A P B P A P B =+=+=-+-.由题意可得()()1,2511,12pq p q q p ⎧=⎪⎪⎨⎪-+-=⎪⎩即1,217.12pq p q ⎧=⎪⎪⎨⎪+=⎪⎩解得3,42,3p q ⎧=⎪⎪⎨⎪=⎪⎩或2,33.4p q ⎧=⎪⎪⎨⎪=⎪⎩由于p q >,所以34p =,23q =.(2)设=i A {甲同学答对了i 道题},i B ={乙同学答对了i 道题},0i =,1,2. 由题意得,()11331344448P A =⨯+⨯=,()23394416P A =⨯=, ()12112433339P B =⨯+⨯=,()2224339P B =⨯=.设E ={甲乙二人共答对3道题},则1221E A B A B =+. 由于i A 和i B 相互独立,12A B 与21A B 相互互斥,所以()()()()()()()12211221349458916912P E P A B P A B P A P B P A P B =+=+=⨯+⨯=. 所以,甲乙二人共答对3道题的概率为512. 【点睛】关键点点睛:本题考查互斥事件与独立事件的概率公式,解题关键是把所求概率事件用互斥事件表示,然后求概率,如设A ={甲同学答对第一题},B ={乙同学答对第一题},设C ={甲、乙二人均答对第一题},D {甲、乙二人中恰有一人答对第一题},则C AB =,D AB AB =+.同样两人共答对3题分拆成甲答对2题乙答对1题与甲答对1题乙答对2题两个互斥事件.15.(1)0.42;(2)见解析;(3)有99%把握认为学生的数学成绩对物理成绩有影响. 【分析】(1)先求得“数学考分不低于60分,且物理考分不低于50分的学生”的人数,再由古典概率公式可求得所求的概率;(2)由已知的数据可得出2×2列联表;(3)由(2)中的数据,计算210.5306>6.6354K ≈,可得结论. 【详解】(1)数学考分不低于60分,且物理考分不低于50分的学生有:12+16+6+842=人, 所以 “数学考分不低于60分,且物理考分不低于50分”的概率为420.42100P ==; (2)2×2列联表如下表所示:(3)由(2)中的数据,得:()210010.5306>6.63544852442102246436K ⨯-⨯⨯⨯=≈⨯⨯,所以有99%把握认为学生的数学成绩对物理成绩有影响. 【点睛】关键点点睛:本题考查求古典概率,独立性检验的问题,关键在于对数据处理,准确地运用相应的公式,并且理解其数据的实际意义.16.(1)应抽取小吃类商贩40(家),果蔬类商贩15(家);(2)35. 【分析】(1)求出小吃类、果蔬类商贩的占比,再乘以100可得结果;(2)计算可知该果蔬经营点的日收入超过200元的天数为6天,其中超过250元的有2天,记为1a 、2a ,其余4天为1b 、2b 、3b 、4b ,列举出所有的基本事件,并确定事件“两天的日收入至少有一天超过250元”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率. 【详解】(1)由题意知,小吃类商贩所占比例为125%15%10%5%5%40%-----=, 按照分层抽样的方法随机抽取,应抽取小吃类商贩:10040%40⨯=(家),果蔬类商贩:10015%15⨯=(家). (2)该果蔬经营点的日收入超过200元的天数为()0.0020.00150406+⨯⨯=天,其中超过250元的有400.001502⨯⨯=天,记日收入超过250元的2天为1a 、2a ,其余4天为1b 、2b 、3b 、4b ,随机抽取两天的所有可能情况有:()12,a a 、()11,a b 、()12,a b 、()13,a b 、()14,a b 、()21,a b 、()22,a b 、()23,a b 、()24,a b 、()12,b b 、()13,b b 、()14,b b 、()23,b b 、()24,b b 、()34,b b ,共15种,其中至少有一天超过250元的所有可能情况有:()12,a a 、()11,a b 、()12,a b 、()13,a b ,()14,a b 、()21,a b 、()22,a b 、()23,a b 、()24,a b ,共9种.所以,这两天的日收入至少有一天超过250的概率为93155P ==.【点睛】方法点睛:求解古典概型概率的方法如下:(1)树状图法;(2)列举法;(3)列表法;(4)排列组合数的应用.17.(1)8;(2)答案见解析;(3)7 10.【分析】(1)根据分层抽样的原理计算可得答案;(2)由已知数据得出被调查的15名学生分别采用两种阅读方式的平均每周阅读时间茎叶图,由表中的数据可得统计结论;(3)由表中数据可知平均每周纸质阅读时间超过数字阅读时间的学生的编号分别是1,2,3,5,6,其中数字阅读时间不超过40小时的学生的编号是1,3.运用列举法所有的基本事件,再由古典概率公式可得答案.【详解】(1)450210158450-⨯=(名).所以被调查的15名学生中共有8名男生.(2)被调查的15名学生分别采用两种阅读方式的平均每周阅读时间茎叶图如下:通过观察比较分析可知,平均每周的数字阅读时间比纸质阅读时间长,纸质阅读时间数据更集中;(3)由表中数据可知平均每周纸质阅读时间超过数字阅读时间的学生的编号分别是1,2,3,5,6,其中数字阅读时间不超过40小时的学生的编号是1,3.从这5名学生中,随机抽取两名学生,所有可能的抽取结果为(1,2),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(5,6),共10个基本事件,设“从这5名学生中随机抽取两名学生,这两名学生中至少有一名学生数字阅读时间不超过40小时”为事件A,共有7个基本事件,分别为(1,2),(1,3),(1,5),(1,6),(2,3),(3,5),(3,6),则7 ()10 P A=.【点睛】方法点睛:在解决概率统计的应用问题时,注意理解问题的情景,将生活中的数据转化成数学统计中的数据,再运用相应的统计知识解决. 18.(Ⅰ)0.72;(Ⅱ)0.26;(Ⅲ)0.98. 【分析】(Ⅰ)由相互独立事件概率的乘法公式即可得解;(Ⅱ)由相互独立事件概率的乘法公式、互斥事件概率的加法公式,运算即可得解; (Ⅲ)由互斥事件概率加法公式即可得解. 【详解】设A =“甲投中”,B =“乙投中”,则A =“甲没投中”,B =“乙没投中”, 由于两个人投篮的结果互不影响,所以A 与B 相互独立,A 与B ,A 与B ,A 与B 都相互独立, 由己知可得()0.8P A =,()0.9P B =,则()0.2P A =,()0.1P B =; (Ⅰ)AB =“两人都投中”,则()()()0.80.90.72P AB P A P B ==⨯=; (Ⅱ)ABAB =“恰好有一人投中”,且AB 与AB 互斥,则()()()()()()()P AB AB P AB P AB P A P B P A P B ⋃=+=+0.80.10.20.90.26=⨯+⨯=;(Ⅲ)AB ABAB =“至少有一人投中”,且AB 、AB 、AB 两两互斥,所以(()()())P ABABAB P AB P AB P AB =++ )0.720.260.9()(8P AB P ABAB =+==+.【点睛】本题考查了对立事件的概率及概率的加法公式、乘法公式的应用,考查了运算求解能力,属于中档题.19.(1)见解析;(2)0.4 【分析】(1)根据独立性检验求出()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯,即得不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)利用古典概型求选到的两名观众都喜爱该演讲的概率. 【详解】(1)假设:观众性别与喜爱该演讲无关,由已知数据可求得,()221406020402071.167 3.8418060100406K ⨯⨯-⨯==≈<⨯⨯⨯ ∴ 不能在犯错误的概率不超过0.05的前提下认为观众性别与喜爱该演讲有关.(2)抽样比为616010=,样本中喜爱的观众有40×110=4名, 不喜爱的观众有6﹣4=2名.记喜爱该演讲的4名男性观众为a ,b ,c ,d ,不喜爱该演讲的2名男性观众为1,2,则。

概率论第五章习题解答

概率论第五章习题解答

概率论第五章习题解答第一篇:概率论第五章习题解答第五章习题解答1.设随机变量X的方差为2,则根据车比雪夫不等式有估计P{X-E(X)≥2}≤ 1/2.P{X-E(X)≥2}≤D(X)22=122.随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,相关系数为-0.5,则根据车比雪夫不等式有估计P{X+Y≥6}≤1/12.P{X+Y≥6}=P{(X+Y)-[E(X)+E(Y)]≥6}≤D(X)62=1123.电站供应一万户用电.设用电高峰时,每户用电的概率为0.9,利用中心极限定理,(1)计算同时用电的户数在9030户以上的概率;(2)若每户用电200 w,电站至少应具有多大发电量才能以0.95的概率保证供电?解:⑴ 设X表示用电户数,则X~B(10000,0.9),n=10000,p=0.9,np=9000,npq=900由中心定理得X~N(9000,900)近似P{X>9030}=1-P{X≤9030}⎧X-90009030-9000⎫=1-P⎨≤⎬900900⎩⎭=1-Φ(1)=1-0.8413=0.1587⑵ 设发电量为Y,依题意P{200X≤Y}=0.95⎧X-9000Y-9000⎫⎪⎪200即 P⎨≤⎬=0.95900900⎪⎪⎩⎭-9000200Φ()=0.95900Y-9000200≈1.65900Y=1809900 4.某车间有150台同类型的机器,每台机器出现故障的概率都是0.02,设各台机器的工作是相互独立的,求机器出现故障的台数不少于2的概率.解:设X表示机器出故障的台数,则X:B(150,0.02)Ynp=3,npq=2.94 由中心定理得X~N(3,2.94)近似P{X≥2}=1-P{X<2}2-3⎫⎧X-3=1-P⎨<⎬2.942.94⎩⎭=1-P{X<-0.58 32}=Φ(0.5832)=0.7201 5.用一种对某种疾病的治愈率为80%的新药给100个患该病的病人同时服用,求治愈人数不少于90的概率.解:设X表示治愈人数,则X:B(100,0.8)其中n=100,p=0.8,np=80,npq=16P{X≥90}=1-P{X<90}⎧X-8090-80⎫=1-P⎨<⎬1616⎩⎭=1-Φ(2.5)=0.0062 6.设某集成电路出厂时一级品率为0.7,装配一台仪器需要100只一级品集成电路,问购置多少只才能以99.9%的概率保证装该仪器是够用(不能因一级品不够而影响工作).解:设购置n台,其中一级品数为X,X:B(n,0.7)p=0.7,np=0.7n,npq=0.21nP{X≥100}=1-P{X<100}⎧X-0.7n100-0.7n⎫=1-P⎨<⎬0.21n0.21n⎩⎭10 0-0.7n=1-Φ()0.21n=0.999故Φ(-100-0.7n0.21n)=0.999有-100-0.7n0.21n=3.1⇒n=121(舍)或n=1707.分别用切比雪夫不等式与隶莫弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次才能保证出现正面的频率在0.4~0.6之间的概率不小于90%.解:设掷n次,其中正面出现的次数为X,X:B(n,p),p=⑴由切贝雪夫不等式,要使得P⎨0.4<12⎧⎩X⎫<0.6⎬≥0.9成立n⎭D(X)X⎧X⎫⎧XX⎫25⎧⎫n由于P⎨0.4< <0.6⎬=P⎨-p<0.1⎬=P⎨-E()<0.1⎬≥1-=1-2nnnn0.1n⎩⎭⎩⎭⎩⎭只要1-25X⎧⎫<0.6⎬≥0.9成立≥0.9,就有P⎨0.4<nn⎩⎭从而⇒n≥250⑵中心极限定理,要使得P⎨0.4<⎧⎩X⎫<0.6⎬≥0.9成立n⎭由于X:N(0.5n,0.25n)近似X⎧0.4n-0.5nX-0.5n0.6n-0.5n⎫⎧⎫P⎨0.4<<0.6⎬=P{0.4n<X<0.6n} =P⎨<<⎬n0.25n0.25n0.25n⎩⎭⎩⎭X-0.5n⎧-0.1n=P⎨<<0.25n⎩0.25n所以Φ(0.1n⎫0.1n-0.1n0.1n=Φ()-Φ()=2Φ()-1>0.9⎬0.25n⎭0.25n0.25n0.25 n0.1n0.25n)>0.95查表0.1n0.25n>1.65⇒n≥688.某螺丝钉厂的废品率为0.01,今取500个装成一盒.问废品不超过5个的概率是多少?解:设X表示废品数,则X:B(500,0.01) p=0.01,np=5,npq=4.955-5⎫⎧X-5P{X≤5}=P⎨≤⎬=Φ(0)=0.54.95⎭⎩4.95第二篇:概率论第一章习题解答1.写出下列随机试验的样本空间:1)记录一个小班一次数学考试的平均分数(以百分制记分);2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;4)在单位圆内任意取一点,记录它的坐标.解:1)设小班共有n 个学生,每个学生的成绩为0到100的整数,分别记为x1,x2,Λxn,则全班平均分为x=∑xi=1nin,于是样本空间为12100niS={0,,Λ,}={|i=0,1,2,3,Λ100n}nnnn32)所有的组合数共有C5=10种,S={123,124,125,134,135,145,234,235,245,345} 3)至少射击一次,S={1,2,3,Λ}4)单位圆中的坐标(x,y)满足x2+y2<1,S={(x,y)|x2+y2<1}2.已知A⊂B,P(A)=0.3,P(B)=0.5,求P(A),P(AB),P(AB)和P(AB).解 P(A)=1-P(A)=1-0.3=0.7 P(AB)=P(A)=0.3(因为A⊂B)P(AB)=P(B-A)=P(B)-P(A)=0.2P(AB)=P(B)=0.5(因为A⊂B,则B⊂A)3.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率:1)只有一件次品; 2)最多1件次品; 3)至少1件次品.12C4C 解 1)设A表示只有一件次品,P(A)=36.C102)设B为最多1件次品,则表示所取到的产品中或者没有次品,或者只有一件次312C6C4C品,P(B)=3+36.C10C103)设C表示至少1件次品,它的对立事件为没有一件次品,3C6P(C)=1-P(C)=1-3C104.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码.(1)求最小号码为5的概率.(2)求最大号码为5的概率.解1)若最小号码为5,则其余的2个球必从6,7,8,9,10号这5个球中取得。

人教B版高中同步学案数学必修第二册精品课件 第5章 统计与概率 第5章 综合训练

人教B版高中同步学案数学必修第二册精品课件 第5章 统计与概率 第5章 综合训练

5.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄
分布扇形图、90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的
是( D )
注:90后指1990年及以后出生,80后指1980~1989年出生,80前指1979年及以前出生.
A.互联网行业从业人员中90后占一半以上
B.互联网行业中90后从事技术岗位的人数超过总人数的20%
故选D.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
7
4.在5件产品中,有3件一等品和2件二等品,从中任取2件,以 10 为概率的事件
是( C )
A.恰有1件一等品
B.至少有一件一等品
C.至多有一件一等品
D.都不是一等品
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
个样本点.
6
故恰有1件一等品的概率为P(A)= 10
.
记B:恰有2件一等品,则B={(1,2),(1,3),(2,3)},共包含3个样本点.
3
故恰有2件一等品的概率为P(B)= 10
3
7
概率为 P=1-P(B)=1- = .
10
10
,其对立事件是“至多有一件一等品”,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
解析 将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件,样本空
间Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)},共包含10个样

人教B版高中数学必修第二册课后习题 第5章 统计与概率 5.1.3 数据的直观表示

人教B版高中数学必修第二册课后习题 第5章 统计与概率 5.1.3 数据的直观表示

第五章5.1.3 数据的直观表示A级必备知识基础练1.[探究点一]小李于底贷款购置了一套房子,将通过10年期每月向银行还数额相同的房贷,且截止底,他没有再购买第二套房子,下图是和小李的家庭收入用于各项支出的比例分配图,根据以上信息,判断下列结论中正确的是( )A.小李一家用于饮食的支出费用与相同B.小李一家用于其他方面的支出费用是的3倍C.小李一家的家庭收入比增加了1倍D.小李一家用于房贷的支出费用比减少了2.[探究点一·四川成都高一校考期末]“社保”已经走入了我们的生活,它包括养老保险、医疗保险、失业保险、工伤保险、生育保险,全年支出最重要的三项分别为养老保险、失业保险、工伤保险,下图是近五年三项社会保险基金的收支情况,下列说法中错误的是( )近五年三项社会保险基金收支情况A.三项社会保险基金在以前收入为逐年递增B.三项社会保险基金在以前支出为逐年递增C.三项社会保险基金在~间收支并未出现“赤字”(收入低于支出)D.三项社会保险基金支出合计57 580亿元,比上年增加3 088亿元,约增长6.7%3.[探究点一]如图所示是小王与小张二人参加某射击比赛的预赛的五次测试成绩的折线图,设小王与小张成绩的样本平均数分别为x A和x B,方差分别为s A2和s B2,则( )A.x A<x B,s A2>s B2B.x A<x B,s A2<s B2C.x A>x B,s A2>s B2D.x A>x B,s A2<s B24.[探究点二]一名篮球运动员在最近8场比赛中所得分数的茎叶图如图所示,则该运动员这8场比赛得分的平均数和中位数分别为( )A.18.5,19B.19,19C.19,18.5D.18,18.55.[探究点三]从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图所示).由图中数据可知a= .若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为.6.[探究点二]在如图所示的茎叶图中,甲、乙两组数据的75%分位数分别是, .7.[探究点三]为了了解高一年级学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小矩形的面积之比为2∶4∶17∶15∶9∶3,第二小组的频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,则抽取学生的达标率是多少?B级关键能力提升练8.某市将试行“3+1+2”的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物学、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是( )A.甲的化学成绩领先年级平均分最多B.甲有2个科目的成绩低于年级平均分C.甲的成绩最好的前两个科目是化学和地理D.对甲而言,物理、化学、地理是比较理想的一种选科结果9.(多选题)某企业退休职工黄师傅退休前后每月各类支出占比情况如下,已知退休前工资收入为6 000元/月,退休后每月旅行的金额比退休前每月旅行的金额多450元,则下面结论中正确的是( )A.黄师傅退休后储蓄支出900元/月B.黄师傅退休工资收入为5 000元/月C.黄师傅退休后每月的衣食住支出与退休前相比未发生变化D.黄师傅退休后的其他支出比退休前的其他支出多50元/月10.为了增强中学生诈骗预防意识,某中学随机抽取30名学生参加相关知识测试,得分(十分制)如图所示,假设得分的中位数为m,众数为n,平均数为x,则m,n,x的大小关系为.(用“<”连接)11.已知样本容量为200,在样本的频率分布直方图中,共有n个小矩形,若,则该组的频数中间一个小矩形的面积等于其余(n-1)个小矩形面积和的13为.12.某学校组织“数学文化”知识竞赛,分为初赛和决赛,有400名学生参加知识竞赛的初赛,满分为150分,根据初赛成绩依次分为[80,90),[90,100),[100,110),[110,120),[120,130),[130,140]这六组,得到如图所示的频率分布直方图.(1)求本次初赛成绩的平均数;(2)若计划决赛人数为80,估计参加决赛的最低分数线.C级学科素养创新练13.[四川眉山高二]某校高二(2)班的一次化学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(1)求全班人数及全班分数的中位数;(2)补全频率分布直方图;(3)根据频率分布直方图估计该班本次测试的平均成绩.(同一组中的数据用该组区间的中点值作代表)参考答案5.1.3 数据的直观表示1.B 由于小李每月向银行还数额相同的房贷,故可知用于房贷方面的支出费用跟相同,故D选项错误;设一年房贷支出费用为n,则可知小李的家庭收入为n60%=5n3.小李的家庭收入为n40%=5n2,5n3×150%=5n2,所以小李一家的家庭收入比增加了50%.故C选项错误;,用于饮食的支出费用分别为5n3×25%=5n12,5n2×25%=5n8.故A选项错误;,用于其他方面的支出费用分别为5n3×6%=n10,5n2×12%=3n10,故B选项正确.故选B.2.D 由条形图可知,三项社会保险基金在以前收入为逐年递增的,故A正确;三项社会保险基金在以前支出为逐年递增的,故B正确;三项社会保险基金在~间收支并未出现“赤字”,故C正确;三项社会保险基金支出合计57580亿元,比上年增加3088亿元,约增长5.7%,故D错误.故选D.3.C 观察题图可知,实线中的数据都大于或等于虚线中的数据,所以小王成绩的平均数大于小张成绩的平均数,即x A>x B;显然实线中的数据波动都大于或等于虚线中的数据波动,所以小王成绩的方差大于小张成绩的方差,即s A2>s B2.故选C.4.C 该运动员这8场比赛得分的平均数为11+14+16+17+20+23+25+268=19,中位数为17+202=18.5.故选C.5.0.030 3 因为频率分布直方图中的各个矩形的面积之和为1,所以有10×(0.005+0.035+a+0.020+0.010)=1,解得a=0.030.由频率分布直方图可知三个区域内的学生总数为100×10×(0.030+0.020+0.010)=60(人),其中身高在[140,150]内的学生人数为10,所以从身高在[140,150]内抽取的学生人数为1060×18=3.6.57 53 甲组数据为28,31,39,42,45,55,57,58,66,共9个,9×75%=6.75,所以甲组数据的75%分位数是57,乙组数据为29,34,35,42,46,48,53,55,67,共9个,9×75%=6.75,乙组数据的75%分位数是53.7.解(1)频率分布直方图是以面积的形式来反映数据落在各小组内的频率大小的,因此第二小组的频率为42+4+17+15+9+3=0.08.因为第二小组的频率=第二小组的频数样本容量,所以样本容量=第二小组的频数第二小组的频率=120.08=150.(2)抽取学生的达标率为17+15+9+3×100%=88%.2+4+17+15+9+38.A 根据雷达图,可知物理成绩领先年级平均分最多,A不正确;甲的政治、历史两个科目的成绩低于年级平均分,B正确;甲的成绩最好的前两个科目是化学和地理,C正确;对甲而言,物理成绩比年级平均分高,历史成绩比年级平均分低,而化学、生物学、地理、政治中优势最明显的两科为化学和地理,故物理、化学、地理的成绩是比较理想的一种选科结果,D正确.故选A.9.BD 根据条形图,黄师傅退休前储蓄支出:6000×0.3=1800元,衣食住支出:6000×0.45=2700元,旅行支出:6000×0.05=300元,其他支出:6000×0.2=1200元.退休后,旅行支出为300+450=750元,退休后收入为750=5000元,0.15储蓄支出:5000×0.15=750元,衣食住支出:5000×0.45=2250元,其他支出:5000×0.25=1250元.对照各选项,B,D正确,A,C错误.故选BD.10.n<m<x将分数从小到大排列,中间两个数为5,6,∴中位数为m=5.5.由图可知众数n=5.平均数x =2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97,∴n<m<x .11.50 设除中间一个小矩形外的(n-1)个小矩形面积的和为p,则中间一个小矩形面积为13p,p+13p=1,p=34,则中间一个小矩形的面积等于13p=14,200×14=50,即该组的频数为50. 12.解(1)由题意有(0.005+0.010+0.020+m+0.020+0.015)×10=1,解得m=0.030.本次初赛成绩的平均数为85×0.05+95×0.1+105×0.2+115×0.3+125×0.2+135×0.15=114.5.(2)因为1-80400=0.8,所以决赛成绩的最低分为80%分位数.前四个矩形的面积之和为0.05+0.1+0.2+0.3=0.65,前五个矩形的面积之和为0.05+0.1+0.2+0.3+0.2=0.85.设80%分位数为x(120<x<130),则0.65+(x-120)×0.02=0.8,解得x=127.5.因此,若计划决赛人数为80,则估计参加决赛的最低分数线为127.5.13.解(1)由频率分布直方图得,[50,60)之间的频率为0.006×10=0.06. 由茎叶图知,[50,60)之间有3人,所以全班人数为3÷0.06=50.又[60,70)有11人,[70,80)有16人,[90,100)有8人,则[80,90)有50-11-16-8-3=12人,=76.5. 显然3+11<25<3+11+16,故中位数在[70,80)之间,故中位数为76+772(2)(3)由频率分布直方图知,该班本次测试的平均成绩为0.06×55+0.22×65+0.32×75+0.24×85+0.16×95=77.2.。

人教版B版(2019)高中数学必修第二册:第五章 统计与概率 综合测试(附答案与解析)

人教版B版(2019)高中数学必修第二册:第五章 统计与概率 综合测试(附答案与解析)

第五章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲一定会胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指明天降水的可能性是90%2.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1图2A.1%B.2%C.3%D.5%3.如图是容量为100的某样本的质量的频率分布直方图,则由图可估计样本质量的中位数为()A.11B.11.5C.12D.12.54.从一批羽毛球中任取一个,如果取到质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)范围内的概率是()A.0.62B.0.38C.0.70D.0.685.空气质量指数AQI是一种反映和评价空气质量的标准,AQI指数与空气质量对应如表所示:下图是某城市2018年11月全月的AQI变化统计图.根据统计图判断,下列结论正确的是()A.从整体上看,这个月的空气质量越来越差B.从整体上看,前半月的空气质量好于后半月的空气质量C.从AQI数据看,前半月的方差大于后半月的方差D.从AQI数据看,前半月的平均值小于后半月的平均值6.AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI 共分六级:一级优(0~50);二级良(51~100);三级轻度污染(101~150);四级中度污染(151~200);五级重度污染(201~300);六级严重污染(大于300).如图是某市2019年4月份随机抽取10天的AQI指数的茎叶图,利用该样本估计该市2020年4月份空气质量为优的天数为()A .3B .4C .12D .217.黄冈市的天气预报显示,大别山区在今后的三天中,一天有强浓雾的概率为40%,现用随机模拟的方法计这三天中至少有两天有强浓雾的概率:先利用计算器产生0~9之间整数值的随机数,并用0,1,2,3,4,表示没有强浓雾,用6,7,8,9表示有强浓雾,再以每个随机数作为一组,代表三天的天气情况,产生了如20组随机数:779 537 113 730 588 506 027 394 357 231 683 569 479 812 842 273 925 191 978 520则这三天中至少有两天有强浓雾的概率近似为( ) A .14B .25C .310D .158.如果3个正整数可作为一个直角三角形三条边的长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .310B .15C .110D .1209.洛书古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图像,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从4个阴数中随机抽取2个数,则能使这2个数与居中阳数之和等于15的概率是( )A .12B .23C .14D .1310.某公司10位员工的月工资(单位:元)为1210,,,x x x L ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A .22,100x s +B .22100,100x s ++C .2,x sD .2100,x s +二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.如图是某电视台主办的歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),则下列结论中不正确的是( )A .甲选手的平均分有可能和乙选手的平均分相等B .甲选手的平均分有可能比乙选手的平均分高C .甲选手得分的中位数比乙选手得分的中位数低D .甲选手得分的众数比乙选手得分的众数高12.如图是国家统计局发布的2018年3月到2019年3月全国居民消费价格的涨跌幅情况折线图(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比),根据该折线图,下列结论正确的是( )A .2018年3月至2019年3月全国居民消费价格同比均上涨B .2018年3月至2019年3月全国居民消费价格环比有涨有跌C .2019年3月全国居民消费价格同比涨幅最大D .2019年3月全国居民消费价格环比变化最快三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.某单位200名职工的年龄分布情况如图所示,现要从中抽取50名职工的年龄作为样本,若采用分层抽样方法,则40~50岁年龄段应抽取________人.14.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈L .若||1a b −≤,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为________.16.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a = ________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)直接根据茎叶图判断哪个班学生的平均身高较高;(2)计算甲班的样本方差;(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率.18.(12分)改革开放40年来,体育产业的蓬勃发展反映了“健康中国”理念的普及.如图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图表示体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(1)从2007年至2016年这十年中随机选出一年,求该年体育产业年增加值比前一年多500亿元以上的概率;(2)从2007年至2011年这五年中随机选出两年,求至少有一年体育产业年增长率超过25%的概率;(3)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(只写结论,不要求证明)19.(12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),月用水量不超过x 的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的情况,通过抽样,获得了100位L分成9组,制成了如图所示的频率居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分布直方图.(1)求频率分布直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.20.(12分)一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每枝2元,云南空运来的百合花每枝进价1.6元,本地供应商处百合花每枝进价1.8元,微店这10天的订单中百合花的日需求量(单位:枝)依次为251,255,231,243,263,241,265,255,244,252.(1)求今年四月前10天订单中百合花日需求量的平均数和众数,并完成频率分布直方图;(2)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(1)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250枝还是255枝百合花,才能使四月后20天百合花销售总利润更大?21.(12分)2018年8月8日是我国第十个全民健身日,其主题是新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄(单位:岁)分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80],得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数和中位数的估计值;(2)①若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;②已知该小区年龄在[10,80]内的总人数为2 000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.,两道题目22.(12分)在一次高三年级统一考试中,数学试卷有一道满分10分的选做题,学生可以从A B中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生该选做题的得分情况,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001—900.(1)若采用随机数表法抽样,并按照以下随机数表,以方框内的数字5为起点,从左向右依次读取数据,每次读取三位随机数,一行读数用完之后接下一行左端,写出样本编号的中位数;05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 7407 97 10 88 23 09 98 42 99 64 61 71 62 99 15 58 05 77 09 5151 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 4826 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 9414 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43(2)采用分层抽样的方法按照学生选择A题目或B题目,将成绩分为两层,且样本中A题目的成绩有8个,平均数为7,方差为4;样本中B题目的成绩有2个,平均数为8,方差为1.用样本估计总体,求900名考生选做题得分的平均数与方差。

《第五章 统计与概率》试卷及答案_高中数学必修第二册_人教B版_2024-2025学年

《第五章 统计与概率》试卷及答案_高中数学必修第二册_人教B版_2024-2025学年

《第五章统计与概率》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、从袋子里随机抽取两个球,设抽出的两个球的颜色分别为A和B,下面哪个概率表示抽出的两个球颜色相同的概率?A、P(A) + P(B)B、P(A且B)C、P(A) - P(B)D、P(A) × P(B)2、某校高二年级有男生240人,女生210人,现要采用分层抽样方法从中抽取45人进行一项身体健康状况调查,则男生抽取的人数为()。

A、20人B、21人C、22人D、23人3、某地区气象局统计今年7月份的降雨量,记录了连续10天的降雨量(单位:毫米),计算得到这10天的降雨量平均值为75毫米,方差为20平方毫米。

已知这10天的降雨量平均值为这10年内同期降雨量的两倍。

若将这10年的同期降雨量平均值为x 毫米,则x约为()A. 60毫米B. 80毫米C. 85毫米D. 90毫米4、从一副52张的标准扑克牌中(不含大小王),随机抽取一张牌,抽取到红桃的概率是:A. 1/4B. 1/2C. 1/13D. 1/265、某学校对800名学生进行了体重情况的调查,调查结果显示,体重在50kg以下的学生有320名,体重在50kg至55kg之间的学生有240名,体重在55kg至60kg之间的学生有180名,体重在60kg以上的有80名。

若采用分层随机抽样的方式,从这800名学生中抽取一个容量为40的样本,那么体重在50kg至55kg之间的学生应该抽取多少名?A、10名B、12名C、15名D、16名6、一组数据:1、2、3、4、5、6、7、8、9、10,如果需要计算这组数据的平均数,以下哪个步骤是错误的?A、将所有数据相加得到总和B、将总和除以数据的个数C、判断数据是否为等差数列D、验证数据中是否包含重复值7、某班有50名学生,从中随机抽取5名学生进行调查,其中至少有一名学生是男生的概率为()。

B、0.8C、0.968D、0.9728、一个袋子里有3个白球,2个黑球,5个红球。

人教B版高中数学必修第二册精品课件 第五章 5.4 统计与概率的应用

人教B版高中数学必修第二册精品课件 第五章 5.4 统计与概率的应用

0.1
0.2
0.3
0.2
0.2
L2的频率
0
0.1
0.4
0.4
0.1
(2)记事件A1,A2分别表示甲选择L1和L2时,在40 min内赶到火车站;
记事件B1,B2分别表示乙选择L1和L2时,在50 min内赶到火车站.
由(1)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),所以甲应
的,则从这种野生动物中任逮一只,设逮到带有标记的该种动物为事件A,则
1 200
由古典概型可知,P(A)= .第二次被逮到的 1 000 只中,有 100 只带有标记,
100
1
即事件 A 发生的频数 m=100,由概率的统计定义可知 P(A)≈
= ,故
1 000 10
1 200
1

,解得
x≈12
000.
两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目.(1)
班的文娱委员利用分别标有数字1,2,3,4,5,6,7的两个转盘(如图所示),设计
了一种游戏方案:两人分别转动转盘1和转盘2,转盘停止后,将两个指针指
向的数字相加,当和为偶数时,(1)班获胜;否则,(2)班获胜.该方案对双方是否
公平?为什么?
成绩,由此能否判定甲、乙两名同学成绩的优劣?
提示:能.可计算平均分和方差.
2.为了解某市汽车尾气情况,在路口A对通行的30辆私家车进行抽测,这种
方法是否合理?
提示:不合理.抽样方法不正确.
1 +2 +…+
3.(1)数据 x1,x2,…,xn 的平均数 =

概率论与数理统计教程第二版茆诗松课件第五章

概率论与数理统计教程第二版茆诗松课件第五章

第28页
二、茎叶图
把每一个数值分为两部分,前面一部分(百 位和十位)称为茎,后面部分(个位)称为 叶,然后画一条竖线,在竖线的左侧写上茎, 右侧写上叶,就形成了茎叶图。如:
数值 分开 茎 和 叶 112 11 | 2 11 和 2
8 July 2019
第五章 统计量及其分布
第29页
例5.2.3 某公司对应聘人员进行能力测试,测试 成绩总分为 150分。下面是50位应聘人员的测 试成绩(已经过排序):
• 另一方面,样本在抽取以后经观测就有确定的 观测值,因此,样本又是一组数值。此时用小 写字母 x1, x2, …, xn 表示是恰当的。
简单起见,无论是样本还是其观测值,样本一般 均用 x1, x2,… xn 表示,应能从上下文中加以区别。
8 July 2019
第五章 统计量及其分布
第11页
例5.1.3 啤酒厂生产的瓶装啤酒规定净含量为640 克。由于随机性,事实上不可能使得所有的啤酒 净含量均为640克。现从某厂生产的啤酒中随机 抽取10瓶测定其净含量,得到如下结果:
第五章 统计量及其分布
第5页
例5.1.1 考察某厂的产品质量,以0记合格品,以1记 不合格品,则
总体 = {该厂生产的全部合格品与不合格品} = {由0或1组成的一堆数}
若以 p 表示这堆数中1的比例(不合格品率),则该 总体可由一个二点分布表示:
X01 P 1p p
8 July 2019
第五章 统计量及其分布
我们用这批数据给出一个茎叶图,见下页。
8 July 2019
第五章 统计量及其分布
第30页
6 47 7 024669 8 01223568 9 112333566779 10 0 0 2 4 6 6 7 8 8 11 2 2 4 6 8 9 9 12 2 3 5 6 8 13 3

新教材 人教B版高中数学必修第二册 第五章 统计与概率 知识点考点及解题方法提炼汇总

新教材 人教B版高中数学必修第二册 第五章 统计与概率 知识点考点及解题方法提炼汇总

第五章统计与概率5.1统计 (1)5.1.1数据的收集 (1)第1课时总体与样本、简单随机抽样 (1)第2课时分层抽样 (5)5.1.2数据的数字特征 (8)5.1.3数据的直观表示 (14)5.1.4用样本估计总体 (21)5.3概率 (25)5.3.1样本空间与事件 (25)5.3.2事件之间的关系与运算 (28)5.3.3古典概型 (32)5.3.4频率与概率 (36)5.3.5随机事件的独立性 (38)5.4统计与概率的应用 (42)5.1统计5.1.1数据的收集第1课时总体与样本、简单随机抽样知识点总体所考察问题涉及的__对象全体__是总体个体总体中__每个对象__都是个体样本抽取的部分对象组成总体的一个样本样本一个样本中包含的__个体数目__是样本容量容量知识点普查与抽样调查一般地,对总体中__每个个体__都进行考察的方法称为普查(也称全面调查),只抽取__样本__进行考察的方法称为抽样调查.知识点简单随机抽样(1)定义:一般地,简单随机抽样(也称纯随机抽样)就是从总体中不加任何__分组__、划类、__排队__等,完全随机地抽取个体.(2)两种常见方法:①__抽签法__;②__随机数表法__.思考1:抽签法与随机数表法的异同点是什么?提示:抽签法随机数表法不同点①抽签法比随机数表法简单;②抽签法适用于总体中的个体数相对较少的情况①随机数表法要求编号的位数相同;②随机数表法适用于总体中的个体数相对较多的情况相同点①都是简单随机抽样,并且要求被抽取样本的总体的个数有限;②都是从总体中逐个不放回地抽取知识点随机数表法进行简单随机抽样的步骤思考2:用随机数表进行简单随机抽样的规则是什么?提示:(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.题型简单随机抽样的概念典例剖析典例1下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震救灾工作;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签;(5)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.[分析]若抽取样本的方式是简单随机抽样,它应具备哪些特点?[解析](1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为50名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.(4)是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.(5)不是简单随机抽样.因为它是有放回抽样.规律方法:1.如果一个总体满足下列两个条件,那么可用简单随机抽样抽取样本:(1)总体中的个体之间无差异;(2)总体个数不多.2.判断所给的抽样是否为简单随机抽样的依据是简单随机抽样的四个特征:上述四点特征,如果有一点不满足,就不是简单随机抽样.题型抽签法典例剖析典例2要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试.请选择合适的抽样方法,并写出抽样过程.[分析]已知N=30,n=3.抽签法抽样时编号1、2、…、30,抽取3个编号,对应的汽车组成样本.[解析]应使用抽签法,步骤如下:①将30辆汽车编号,号码是1、2、3、 (30)②将1~30这30个编号写到大小、形状都相同的号签上;③将写好的号签放入一个不透明的容器中,并搅拌均匀;④从容器中每次抽取一个号签,连续抽取3次,并记录上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.规律方法:抽签法的5个步骤题型随机数表法典例剖析典例3假设要考查某企业生产的袋装牛奶的质量是否达标,现从500袋牛奶中抽取60袋进行检验,利用随机数表法抽取样本时,先将500袋牛奶按000,001,…,499进行编号,如果从随机数表第8行第26列的数开始,按三位数连续向右读取,最先检验的5袋牛奶的号码是(下面摘取了某随机数表第7行至第9行)(B)844217533157245506887704744767217633502583921206766301647859169555671998105071851286735807443952387933211A.455068047447176B.169105071286443C.050358074439332D.447176335025212[解析]第8行第26列的数是1,依次取三位数169、555、671、998、105、071、851、286、735、807、443、…,而555、671、998、851、735、807超过最大编号499,故删掉,所以最先检验的5袋牛奶的号码依次为:169、105、071、286、443,故选B.规律方法:用随机数表法抽取样本的步骤:(1)将总体中的每个个体编号(每个号码位数一样).(2)在随机数表中任选一个数作为起始号码.(3)从选定的数开始,按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或与前面取出的数重复,则跳过不取,如此进行下去,直到取满为止.(4)根据选定的号码抽取样本.易错警示典例剖析典例4 一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽取的可能性是__12__;第三次抽取时,每个小球被抽取的可能性是__14__.[错解] 因为简单随机抽样时每个个体被抽取的可能性均为n N ,所以两空均填12. [辨析] 本题解答错误的原因在于混淆了抽样中,样本被抽到的可能性与每次抽取中个体被抽到的可能性.[正解] 因为简单随机抽样时每个个体被抽取的可能性为n N ,所以第一个空填12,而抽样是无放回抽样,所以第一次抽取时,每个小球被抽取的可能性为16,第二次抽取时,剩余5个小球被抽取的可能性为15,第三次抽取时,剩余4个小球,每个小球被抽取的可能性为14.因此,第二个空填14.第2课时 分层抽样 知识点分层抽样1.定义一般地,如果相对于要考察的问题来说,总体可以分成有__明显差别__的、__互不重叠__的几部分时,每一部分可称为层,在各层中按__层在总体中所占比例__进行随机抽样的方法称为分层随机抽样(简称为分层抽样)思考1:如何理解“层在总体中所占比例”?提示:从N 个个体中抽取n 个个体,若将总体分为A ,B ,C 三层,含有的个体数目分别是x ,y ,z ,在A ,B ,C 三层应抽取的个体数目分别是a ,b ,c ,那么a x =b y =c z =n N .2.应用的广泛性(1)分层抽样所得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.(2)分层抽样在各层中抽样时,还可根据各层的特点灵活地选用不同的随机抽样方法.(3)想同时获取总体的信息和各层的内部信息时,常采用分层抽样.思考2:简单随机抽样和分层抽样的联系和区别是什么?提示:类别简单随机抽样分层抽样各自特点从总体中逐个抽取将总体分成几层,分层进行抽取相互联系在各层抽样时采用简单随机抽样适用范围总体中的个体数较少总体由存在明显差异的几部分组成共同点①抽样过程中每个个体被抽到的可能性相等②每次抽出个体后不再放回,即不放回抽样题型分层抽样的概念典例剖析典例1下列问题中,最适合用分层抽样抽取样本的是(B)A.从10名同学中抽取3人参加座谈会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户.为了了解生活购买力的某项指标,要从中抽取一个容量为100户的样本C.从1 000名工人中抽取100人调查上班途中所用的时间D.从生产流水线上抽取样本检查产品质量[分析]根据分层抽样的特点选取.[解析]A中总体所含个体无差异且个数较少,适合用简单随机抽样;C和D中总体所含个体无差异且个数较多,不适合用分层抽样;B中总体所含个体差异明显,适合用分层抽样.规律方法:分层抽样的依据(1)适用于总体由差异明显的几部分组成的情况.(2)样本能更充分地反映总体的情况.(3)等可能抽样,每个个体被抽到的可能性都相等.题型分层抽样中的有关计算典例剖析典例2(1)某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师__182__人.(2)某网站针对“2020年法定节假日调休安排”提出的A,B,C三种放假方案进行了问卷调查,调查结果如下:支持A方案支持B方案支持C方案35岁以下的人数200400800 35岁以上(含35岁)的人数100100400的人中抽取了6人,求n的值.②从支持B方案的人中,用分层抽样的方法抽取5人,这5人中在35岁以上(含35岁)的人数是多少?35岁以下的人数是多少?[解析](1)设该校其他教师有x人,则16x=5626+104+x,解得x=52,经检验,x=52是原方程的根,故全校教师共有26+104+52=182人.(2)①由题意得6100+200=n200+400+800+100+100+400,解得n=40.②35岁以下的人数为5500×400=4人,35岁以上(含35岁)的人数为5-4=1人.[母题探究]将本例的条件改为“A,B,C三种放假方案人数之比为2∶3∶5.现用分层抽样方法抽取一个容量为n的样本,样本中A方案有16人”,求样本的容量n.[解析]由于A,B,C三种放假方案人数之比为2∶3∶5,样本中A方案有16人,则210=16n,解得n=80.规律方法:分层抽样中的求解技巧(1)样本容量n总体的个体数N=该层抽取的个体数该层的个体数.(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.题型分层抽样的方案设计典例剖析典例3一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人,为了了解职工的某种情况,要从中抽取一个容量为20的样本,写出用分层抽样的方法抽取样本的过程.[分析]分层抽样中各层抽取个体数依各层个体数之比来分配,确定各层抽取的个体数之后,可采用简单随机抽样在各层中抽取个体.[解析]三部分所含个体数之比为112∶16∶32=7∶1∶2,设三部分各抽个体数为7x,x,2x,则由7x+x+2x=20得x=2.故业务人员、管理人员、后勤服务人员抽取个体数分别为14,2和4.对112名业务人员进行编号,用随机数表法抽样抽取14人.再用抽签法可抽出管理人员和服务人员的号码.将以上各层抽出的个体合并起来,就得到容量为20的样本.规律方法:分层抽样的注意事项分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,各层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层应采用同一抽样比,等可能抽样.(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样.[特别提醒]保证每个个体等可能入样是简单随机抽样、分层抽样共同的特征,为了保证这一点所有层按同一抽样比,等可能抽样.易错警示典例剖析抽样方法选择不当导致所得样本不具有代表性典例4某单位有职工120人,欲从中抽取20人调查职工的身体状况.领导安排工会某干部负责抽样,他应该怎样做?[错解]将120名职工编号,用随机数表法抽样抽取20人作为样本.[辨析]年龄对人的身体状况有较大影响,这种不考虑年龄抽取的样本不能准确反应单位职工的身体状况.[正解]先将这120名职工根据年龄分为老年组、中年组、青年组,再按1 6的比例在各组中抽取相应的人数,即用分层抽样的方法抽取样本.5.1.2数据的数字特征知识点最值一组数据的最值指的是其中的最大值与最小值,最值反映的是这组数最极端的情况.一般地,最大值用max 表示,最小值用min 表示. 知识点平均数1.定义:如果给定的一组数是x 1,x 2,…,x n ,则这组数的平均数为x -=1n (x 1+x 2+…+x n ).这一公式在数学中常简记为x -=1n ∑i =1n x i .2.求和符号∑具有的性质(1)∑i =1n (x i +y i )=∑i =1n x i +∑i =1n y i .(2)∑i =1n (kx i )=k ∑i =1n x i .(3)∑i =1n t =nt .3.如果x 1,x 2,…,x n 的平均数为x -,且a ,b 为常数,则ax 1+b ,ax 2+b ,…,ax n +b 的平均数是a x -+B .思考1:(1)x 5+x 6+…+x 15如何用符号∑表示?(2)如何证明∑i =1n (kx i )=k ∑i =1nx i?提示:(1)x 5+x 6+…+x 15=∑i =515x i .(2)∑i =1n (kx i )=kx 1+kx 2+…+kx n=k (x 1+x 2+…+x n )=k ∑i =1nx i .知识点中位数1.如果一组数有奇数个数,并按照从小到大排列后为x 1,x 2,…,x 2n +1,则称x n +1为这组数的中位数.2.如果一组数有偶数个数,且按照从小到大排列后为x 1,x 2,…,x 2n ,则称x n +x n +12为这组数的中位数.知识点百分位数1.定义:一组数的p %(p ∈(0,100))分位数指的是满足下列条件的一个数值:至少有p %的数据不大于该值,且至少有(100-p )%的数据不小于该值.2.计算方法:设一组数按照从小到大排列后为x 1,x 2,…,x n ,计算i =np %的值,如果i 不是整数,设i 0为大于i 的最小整数,取xi 0为p %分位数;如果i 是整数,取x i +x i +12为p %分位数.规定:0分位数是x 1(即最小值),100%分位数是x n (即最大值).思考2:中位数和百分位数的关系是什么?提示:中位数是50%分位数.知识点众数一组数据中,某个数据出现的次数称为这个数据的频数,出现次数最多的数据称为这组数据的众数.知识点极差一组数的极差指的是这组数的最大值减去最小值所得的差.知识点方差与标准差(1)如果x 1,x 2,…,x n 的平均数为x -,则方差s 2=1n i =1n (x i -x -)2,方差的算术平方根称为标准差.(2)如果x 1,x 2,…,x n 的方差为s 2,且a ,b 为常数,则ax 1+b ,ax 2+b ,……,ax n +b 的方差是a 2s 2.思考2:(1)方差和标准差的取值范围是什么?方差、标准差为0的含义是什么?(2)方差和标准差是如何反映一组数据的离散程度的?提示:(1)标准差、方差的取值范围:[0,+∞).标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度.(2)标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.题型最值、平均数、众数的确定典例剖析典例1 某公司员工的月工资情况如表所示: 月工资/元 8 000 5 000 4 000 2 000 1 000 800 700 员工/人125820122(2)你认为用哪个数来代表该公司员工的月工资更合理?[解析] (1)该公司员工月工资的最大值为8 000元,最小值为700元,众数为1 000元.平均数为150(8 000×1+5 000×2+4 000×5+2 000×8+1 000×20+800×12+700×2)=1 700(元).(2)用众数,因为最大值为8 000元且只有一个,无法代表该公司员工的月工资,平均数受到最大值的影响,也无法代表该公司员工的月工资,每月拿1 000元的员工最多,众数代表该公司员工的月工资最合理.规律方法:1.把数据从小到大排列,根据定义即可确定最值和众数. 2.平均数的求法 (1)用定义式; (2)用平均数的性质;(3)在容量为n 的一组数据中,若数据x 1有n 1个,x 2有n 2个,…,x k 有n k 个,且n =n 1+n 2+…+n k ,则这组数据的平均数为1n (n 1x 1+n 2x 2+…+n k x k )=n 1n x 1+n 2nx 2+…+n kn x k .题型中位数、百分位数的计算典例剖析典例2 (1)已知一组数据8,6,4,7,11,6,8,9,10,5,则该组数据的中位数是__7.5__;(2)甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,29,31,38,39,51.求甲、乙两名运动员得分的25%分位数,75%分位数和90%分位数. [解析] (1)已知数据从小到大排列为:4,5,6,6,7,8,8,9,10,11,共10个数,所以中位数是7+82=7.5.(2)两组数据都是12个数,而且12×25%=3,12×75%=9,12×90%=10.8, 因此,甲运动员得分的25%分位数为x 3+x 42=20+252=22.5,甲运动员得分的75%分位数为x9+x102=37+392=38,甲运动员得分的90%分位数为x11=44.乙运动员得分的25%分位数为x3+x42=14+162=15,乙运动员得分的75%分位数为x9+x102=31+382=34.5,乙运动员得分的90%分位数为x11=39.规律方法:1.求中位数的一般步骤(1)把数据按大小顺序排列.(2)找出排列后位于中间位置的数据,即为中位数.若中间位置有两个数据,则求出这两个数据的平均数作为中位数.2.求百分位数的一般步骤(1)排序:按照从小到大排列:x1,x2,…,x n.(2)计算:求i=np%的值.(3)求值:分数p%分位数i不是整数xi0,其中i0为大于i的最小整数i是整数x i+x i+12题型极差、方差、标准差的计算典例剖析典例3已知一组数据:2,2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6.(1)求极差;(2)求方差;(3)求标准差.[解析](1)最大值为6,最小值为2,极差为4.(2)可将数据整理为x23456频数34562每一个数都减去4x-4-2-1012频数34562120×[(-2)×3+(-1)×4+0×5+1×6+2×2]=0,120×[(-2)2×3+(-1)2×4+02×5+12×6+22×2]=32.因此,所求平均值为4,方差为32. (3)由(2)知标准差为62. 规律方法:求方差的基本方法(1)先求平均值,再代入公式s 2=1n ∑i =1n (x i -x -)2,或s 2=1n ∑i =1n x 2i -x 2.(2)用性质.(3)当一组数据重复数据较多时,可先整理出频数表,再计算s 2. 题型分层抽样的方差典例剖析典例4 甲、乙两班学生参加了同一考试,其中甲班50人,乙班40人.甲班的平均成绩为80.5分,方差为500;乙班的平均成绩为85分,方差为360.那么甲、乙两班全部90名学生的平均成绩和方差分别是多少?[解析] 设甲班50名学生的成绩分别是a 1,a 2,…,a 50,那么甲班的平均成绩和方差分别为x -甲=a 1+a 2+…+a 5050=80.5(分),s 2甲=(a 1-x -甲)2+(a 2-x -甲)2+…+(a 50-x -甲)250=500. 设乙班40名学生的成绩分别是b 1,b 2,…,b 40,那么乙班的平均成绩和方差分别为x -乙=b 1+b 2+…+b 4040=85(分),s 2乙=(b 1-x -乙)2+(b 2-x -乙)2+…+(b 40-x -乙)240=360. 如果不知道a 1,a 2,…,a 50和b 1,b 2,…,b 40,只知道甲、乙两班的平均成绩、方差及甲、乙两班的人数,那么根据前面的分析,全部90名学生的平均成绩应为x -=50x -甲+40x -乙50+40=50×80.5+40×8590=82.5(分),方差s 2=50[s 2甲+(x -甲-x -)2]+40[s 2乙+(x -乙-x -)2]50+40=50×[500+(80.5-82.5)2]+40×[360+(85-82.5)2]90=50×500+50×4+40×360+40×6.2590≈442.78.规律方法:若样本中有两层,第一层有m 个数,分别为x 1,x 2,…,x m ,平均数为x -,方差为s 2;第二层有n 个数,分别为y 1,y 2,…,y n ,平均数为y -,方差为t 2,则样本的均值为a -=m x -+n y-m +n,方差为m [s 2+(x --a -)2]+n [t 2+(y --a -)2]m +n.易错警示典例剖析典例5 下面是某赛季甲、乙两名篮球队员每场比赛得分情况: 甲:4 14 14 24 25 31 32 35 36 36 39 45 49 乙:8 12 15 18 23 27 25 32 33 34 41 则甲、乙得分的中位数之和是( B ) A .56分 B .57分 C .58分 D .59分[错解] D 因为甲的中位数是32,乙的中位数是27,所以甲、乙得分的中位数之和是59.[辨析] 本题易忽视求乙得分的中位数时,没有将数据从小到大排列起来,将原始数据中的中间一个数误认为就是乙得分的中位数而导致错误.因此理解样本的数字特征的含义较为重要.[正解] 由题可知甲得分的中位数为32分,乙得分的数据从小到大排列为:8,12,15,18,23,25,27,32,33,34,41,故乙得分的中位数为25分,因此甲、乙两人得分的中位数之和为57分.5.1.3 数据的直观表示柱形图(也称为条形图) 知识点作用 形象地比较各种数据之间的数量关系特征(1)一条轴上显示的是所关注的数据类型,另一条轴上对应的是数量、个数或者比例.(2)每一矩形都是__等宽__的折线图知识点作用形象地表示数据的变化趋势特征一条轴上显示的通常是时间,另一条轴上是对应的__数据__扇形图(也称为饼图、饼形图)知识点作用形象地表示出各部分数据在全部数据中所占的__比例__特征每一个扇形的圆心角以及弧长,都与这一部分表示的数据大小成__正比__茎叶图知识点作用(1)如果每一行的数都是按从大到小(或从小到大)顺序排列,则从中可以方便地看出这组数的__最值__、__中位数__等数字特征(2)可以看出一组数的分布情况,可能得到一些额外的信息(3)比较两组数据的集中或分散程度特征所有的茎都竖直排列,而叶沿__水平__方向排列(2)茎叶图的优点是什么?提示:(1)应用茎叶图进行统计时,注意重复出现的数据要重复记录,不能遗漏.(2)茎叶图能保留原始数据,并方便随时添加记录数据.知识点画频数分布直方图与频率分布直方图的步骤(1)找出最值,计算极差.(2)合理分组,确定区间.(3)整理数据.(4)作出有关图示.频数分布直方图纵坐标是频数,每一组数对应的矩形的__高度__与频数成正比频率分布直方图纵坐标是__频率组距__,每一组数对应的矩形高度与频率成正比,每个矩形的面积等于这一组数对应的频率,所有矩形的面积之和为1思考2:频数分布直方图与频率分布直方图有什么不同?提示:频数分布直方图能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各小组数据在所有数据中所占的比例大小的角度来表示数据分布的规律.知识点频数分布折线图和频率分布折线图把频数分布直方图和频率分布直方图中每个矩形上面一边的__中点__用线段连接起来,且画成与横轴相交.题型柱形图与折线图典例剖析典例12020年1月6日的《中国青年报》报道:“根据调查,有担当(76.3%)和踏实(74.5%)的年轻人最被受访者欣赏.奋进(54.7%)、坚毅(54.1%)、有梦想(50.2%)、有闯劲儿(40.1%)、沉稳(36.7%)、直率(34.6%)、幽默(33.4%)、活泼(27.2%)、庄重(20.3%)、洒脱(20%)也是受访者欣赏的品质.”为形象地表示这一调查结果.(1)作出柱形图;(2)作出折线图.[解析](1)柱形图如图①.(2)方法一:取图①中各小矩形上面的中点用线段连接起来(图略),即得折线图.方法二:直接作出折线图如图②其中横轴上的1,2,3,…,12分别表示“有担当”,“踏实”,…,“洒脱”.规律方法:1.柱形图中,各小矩形宽相等.2.注意横、纵轴的意义.3.由柱形图可以作出折线图:取各小矩形上边的中点,再用线段连接,取各小矩形下边的中点并标注上数字,要说明标注数字所对应的数据类型.题型扇形图典例剖析典例2某企业三个分厂生产同一种电子产品,三个分厂的产量分布如图所示,现在用分层随机抽样方法从三个分厂生产的产品中共抽取100件进行使用寿命的测试,则第一分厂应抽取的件数为__50__;测试结果为第一、二、三分厂取出的产品的平均使用寿命分别为1 020小时,980小时,1 030小时,估计这个企业生产的产品的平均使用寿命为__1_015__小时.[解析]由分层随机抽样可知,第一分厂应抽取100×50%=50(件),该产品的平均使用寿命为50×1 020+20×980+30×1 030100=1 015(小时).规律方法:在扇形图中,部分数据在全部数据中的比例等于对应扇形的圆心角度数与360°之比,等于对应扇形的弧长与周长之比,也等于对应扇形面积与圆面积之比.题型茎叶图的画法及应用典例剖析典例3下面是甲、乙两名运动员某赛季一些场次得分的茎叶图:(1)甲、乙两名运动员的最高得分各是多少?(2)哪名运动员的成绩好一些?[解析](1)甲、乙两名运动员的最高得分分别为51分,52分.(2)从茎叶图可以看出,甲运动员得分大致对称,乙运动员的得分除一个52分以外,也大致对称.而甲运动员的平均得分高于乙运动员的平均得分,因此甲运动员的成绩更好.规律方法:1.利用茎叶图进行数据分析时,通常从茎叶图中各个“叶”上的数字多少来分析该组数据的分布对称性、稳定性等.2.如果茎叶图中的数据大致集中在某一行附近,那么说明这组数据比较稳定.3.茎叶图只适用于样本数据较少的情况.题型频率分布表和频率分布直方图典例剖析典例4从高一学生中抽取50名参加调研考试,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[70,80)的学生占总体的百分比.[分析]计算频率、列表与绘图.[解析](1)频率分布表如下:成绩分组频数频率[40,50)20.04[50,60)30.06[60,70)100.2[70,80)150.3[80,90)120.24[90,100]80.16合计50 1.00(2)绘制频率分布直方图如图,由题意知组距为10,取小矩形的高为频率组距,计算得到如下的数据表:成绩分组频率小矩形的高[40,50)0.040.004[50,60)0.060.006[60,70)0.20.02[70,80)0.30.03(3)由频率分布直方图可知成绩在[70,80)分的学生所占总体的百分比是0.03×10=0.3=30%.规律方法:绘制频率分布直方图的方法:(1)先制作频率分布表,然后作直角坐标系.(2)把横轴分成若干段,每一段对应一个组.(3)在上面标出的各点中,分别以相邻两点为端点的线段为底作长方形,它的高等于该组的频率组距.每个长方形的面积恰好是该组的频率,这些长方形构成了频率分布直方图.易错警示典例剖析典例5某中学同年级40名男生的体重数据如下(单位:kg):61605959595858575757575656565656565655555555545454545353535252525251515150504948列出样本的频率分布表,绘出频率分布直方图.[错解](1)极差61-48=13.(2)取组距2,分组132=6.5分7组.(3)分点及分组如下:48~50,50~52,52~54,54~56,56~58,58~60,60~62.(4)列频率分布表:。

李贤平 第2版《概率论基础》第五章答案word精品文档19页

李贤平 第2版《概率论基础》第五章答案word精品文档19页

第5章 极限定理1、ξ为非负随机变量,若(0)a Eea ξ<∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。

2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 4、{}k ξ各以12概率取值s k 和sk -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξ的算术平均值?6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件:(1)1{2}2kk P X =±=; (2)(21)2{2}2,{0}12k k k k k P X P X -+-=±===-; (3)11221{2},{0}12kk k P X k P X k --=±===-。

7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的,证明这时对{}k ξ大数定律成立。

8、已知随机变量序列12,,ξξ的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明对{}k ξ成立大数定律。

9、对随机变量序列{}i ξ,若记11()n n n ηξξ=++,11()n n a E E nξξ=++,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞⎧⎫-=⎨⎬+-⎩⎭。

10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而0mn→时, 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试求有10个或更多终端在使用的概率。

13、求证,在x o >时有不等式222111222211t x x x x e e dt e x x-∞--≤≤+⎰。

14、用德莫哇佛——拉普拉斯定理证明:在贝努里试验中,01p <<,则不管k 是如何大的常数,总有{||}0()n P np k n μ-<→→∞。

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案

概率论与数理统计(茆诗松)第二版课后第五章习题参考答案
i =1 i =1 n
n
n
= ∑ [( xi − x )( y i − y ) + ( x − c)( y i − y ) + ( xi − x )( y − d ) + ( x − c)( y − d )]
i =1 n n n
= ∑ ( x i − x )( y i − y ) + ( x − c)∑ ( y i − y ) + ( y − d )∑ ( x i − x ) + n( x − c)( y − d )
1
习题 5.2
1. 以下是某工厂通过抽样调查得到的 10 名工人一周内生产的产品数 149 156 160 138 149 153 153 169 156 156 试由这批数据构造经验分布函数并作图. 解:经验分布函数
⎧0, ⎪0.1, ⎪ ⎪0.3, ⎪ Fn ( x) = ⎨0.5, ⎪0.8, ⎪ ⎪0.9, ⎪ ⎩1,
(2)上班所需时间在半小时以内有 25 + 60 + 85 = 170 人. 5. 40 种刊物的月发行量(单位:百册)如下: 5954 5022 14667 6582 6870 1840 2662 4508 1208 3852 618 3008 1268 1978 7963 2048 3077 993 353 14263 1714 11127 6926 2047 714 5923 6006 14267 1697 13876 4001 2280 1223 12579 13588 7315 4538 13304 1615 8612 (1)建立该批数据的频数分布表,取组距为 1700(百册) ; (2)画出直方图. 解: (1)最大观测值为 353,最小观测值为 14667,则组距为 d = 1700, 区间端点可取为 0,1700,3400,5100,6800,8500,10200,11900,13600,15300, 频率分布表为 组序 1 2 3 4 5 6 7 8 9 合计 (2)作图略.

人教B版高中数学必修第二册课后习题 第5章 统计与概率 第5章末测评卷

人教B版高中数学必修第二册课后习题 第5章 统计与概率 第5章末测评卷

第五章测评一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.古代科举制度会试分南卷、北卷、中卷,按比例录取,录取比例为11∶7∶2.若某年会试录取人数为100,则中卷录取人数为( )A.10B.15C.30D.352.某老师为了解某班41名同学居家学习期间上课、锻炼、休息等时间安排情况,决定将某班学生编号为01,02,…,41,利用下面的随机数表选取10个学生调查,选取方法是从随机数表第1行第3列数字开始由左到右依次选取两个数字,下表为随机数表第1行与第2行,则选出来的第4个学生的编号为( )A.04B.06C.13D.143.甲、乙两名同学在5次体育测试中的成绩如茎叶图所示,若甲、乙两人的平均成绩分别是x甲,x乙,则下列结论正确的是( )A.x甲<x乙;乙比甲成绩稳定B.x甲>x乙;甲比乙成绩稳定C.x甲>x乙;乙比甲成绩稳定D.x甲<x乙;甲比乙成绩稳定4.如图是公布的下半年快递运输量情况,请根据图中信息选出错误的选项( )A.下半年,同城和异地快递量最高均出现在11月B.10月份异地快递增长率小于9月份的异地快递增长率C.7月至11月,异地快递量逐渐递增D.下半年,每个月的异地快递量都是同城快递量的6倍以上5.某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了部分党员,对他们一周的党史学习时间进行了统计,统计数据如下表所示:则该单位党员一周学习党史时间的众数及40%分位数分别是( )A.8,8.5B.8,8C.9,8D.8,96.已知100件产品中有5件次品,从这100件产品中任意取出3件,设E 表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G 表示事件“3件产品中至少有1件是次品”,则下列结论正确的是( )A.F与G互斥B.E与G互斥但不对立C.E,F,G任意两个事件均互斥D.E与G对立7.一道竞赛题,A,B,C三人可解出的概率依次为12,13,14,若三人独立解答,则仅有1人解出的概率为( )A.124B.1124C.1724D.18.在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中错误的是( )A.成绩在[70,80)分的考生人数最多B.不及格的考生人数为1 000C.考生竞赛成绩的平均分约70.5分D.考生竞赛成绩的中位数为75二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某篮球运动员在最近几次参加的比赛中的投篮情况如下表:投篮次数投中两分球的次数投中三分球的次数100 55 18记该篮球运动员在一次投篮中,投中两分球为事件A,投中三分球为事件B,没投中为事件C,用频率估计概率的方法,得到的下述结论中,正确的是( )A.P(A)=0.55B.P(B)=0.18C.P(C)=0.27D.P(B+C)=0.5510.已知在一次射击预选赛中,甲、乙两人各射击10次,两人成绩(所中环数越大,成绩越好)的频数分布表分别为:下面判断正确的是( )A.甲所中环数的平均数大于乙所中环数的平均数B.甲所中环数的中位数小于乙所中环数的中位数C.甲所中环数的方差小于乙所中环数的方差D.甲所中环数的方差大于乙所中环数的方差11.盒子里有2个红球和2个白球,从中不放回地依次取出2个球,设事件A=“两个球颜色相同”,B=“第1次取出的是红球”,C=“第2次取出的是红球”,D=“两个球颜色不同”,则下列说法正确的是( )A.A与B相互独立B.A与D互为对立C.B与C互斥D.B与D相互独立12.将一个均匀的骰子连续掷两次,设先后得到的点数为m,n,则( )A.m=1的概率为16B.m 是偶数的概率为12C.m=n 的概率为16D.m>n 的概率为12三、填空题:本题共4小题,每小题5分,共20分.13.甲、乙两人下棋,甲获胜的概率为15,和棋的概率为12,则乙不输的概率为 .14.一组数据的平均数与中位数的大小关系是不确定的,现有一组数据满足下面两个条件:(1)一共有6个互不相等的数;(2)中位数小于平均数.这组数据可以是 .15.某中学拟从4月16号至30号期间,选择连续两天举行春季运动会,从以往的气象记录中随机抽取一个年份,记录天气结果如下:估计运动会期间不下雨的概率为 .16.某小组有3名男生和2名女生,从中任选出2名同学去参加演讲比赛,则:①至少有1名男生和至少有1名女生,②恰有1名男生和恰有2名男生,③至少有1名男生和全是男生,④至少有1名男生和全是女生.其中为互斥事件的是.(填序号)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:m)如下:甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67;乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75.经预测,跳高1.65 m就很可能获得冠军.该校为了获取冠军,可能选哪位选手参赛?若预测跳高1.70 m方可获得冠军呢?18.(12分)某校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中(每名同学只获得一个奖项)选出2名志愿者,参加运动会的服务工作.求:(1)选出的2名志愿者都是获得书法比赛一等奖的同学的概率;(2)选出的2名志愿者中,1名是获得书法比赛一等奖,1名是获得绘画比赛一等奖的同学的概率.19.(12分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(1)求样本中患病者的人数和图中a,b的值;(2)试估计此地区该项身体指标检测值不低于5的从业者的人数;(3)某研究机构提出,可以选取常数X0=4.5,若一名从业者该项身体指标检测值大于X0,则判定其患有这种职业病;若检测值小于X0,则判定其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.20.(12分)计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书.甲、乙、丙三人在理论考试中“合格”的概率依次为45,34,23,在实际操作考试中“合格”的概率依次为12,23,56,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.21.(12分)为响应国家“学习强国”的号召,培养同学们的“社会主义核心价值观”,某校团委鼓励全校学生积极学习相关知识,并组织知识竞赛,今随机对其中的1 000名同学的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图(有数据缺失).请大家完成下面的问题:(1)根据直方图求以下表格中x,y的值;(2)求参赛同学初赛成绩的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)若从这1 000名参加初赛的同学中按分层抽样的方法抽取一个容量为20的样本,再在该样本中成绩不低于80分的同学里任选2人继续参加教育局组织的校际比赛,求抽到的2人中恰好1人的分数低于90分且1人的分数不低于90分的概率.22.(12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34,乙每轮猜对的概率为23.在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响.求“星队”在两轮活动中猜对3个成语的概率.参考答案 第五章测评1.A2.D3.A 由茎叶图可知甲的平均数为x 甲=15×(72+77+78+86+92)=81,x 乙=15×(78+82+88+90+92)=86,∴x 甲<x 乙,由茎叶图中的数据可知乙的成绩比较集中,成绩比较稳定,而甲的成绩比较分散,所以乙比甲成绩稳定,故选A. 4.D5.A 由统计数表可知,学习7小时的有6人,学习8小时的有10人,学习9小时的有9人,学习10小时的有8人,学习11小时的有7人,共有40人.学习8小时的人数最多,故学习党史时间的众数是8;由40%×40=16,故40%分位数为数据从小到大排序第16项与第17项数据的平均数,即8+92=8.5,故学习党史时间的40%分位数是8.5.故选A. 6.D 设1表示取到正品,0表示取到次品,则样本空间Ω={(1,1,1),(1,1,0),(1,0,0),(0,0,0)}.则E={(1,1,1)},F={(0,0,0)},G={(1,1,0),(1,0,0),(0,0,0)},F∩G=F,故F 与G 不互斥,故A,C 错误;E∩G=⌀,E ∪G=Ω,故E 与G 互斥且对立,故B 错误,D 正确.故选D.7.B P=P(A BC)+P(ABC)+P(AB C)=12×23×34+12×13×34+12×23×14=1124.故选B.8.D 由频率分布直方图可得,成绩在[70,80)的频率最高,因此考生人数最多,故A正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4000×0.25=1000,故B正确;由频率分布直方图可得,平均分等于45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C正确;因为成绩在[40,70)的频率为0.45,由[70,80)的频率为0.3,所以中位数约为70+10×0.050.3≈71.67,故D错误.故选D.9.ABC 依题意,P(A)=55100=0.55,P(B)=18100=0.18,显然事件A,B互斥,则P(C)=1-P(A+B)=1-P(A)-P(B)=0.27.又事件B,C互斥,则P(B+C)=P(B)+P(C)=0.45,于是得选项A,B,C正确,选项D不正确.故选ABC.10.AC 甲所中环数的平均数为x 甲:5×0+6×1+7×2+8×4+9×3+10×00+1+2+4+3+0=7.9,乙所中环数的平均数为x 乙:5×1+6×2+7×2+8×2+9×2+10×11+2+2+2+2+1=7.5,所以甲所中环数的平均数7.9大于乙所中环数的平均数7.5,选项A 正确;甲所中环数的中位数为8,乙所中环数的中位数为7.5,所以甲所中环数的中位数大于乙所中环数的中位数,选项B 错误;甲所中环数的方差为s 12=∑i=110(x i -x 甲)210=0.89,乙所中环数的方差为s 22=∑i=110(x i -x 乙)210=2.25,所以乙所中环数的方差大于甲所中环数的方差,选项C 正确,选项D 错误.故选AC. 11.ABD 设2个红球为a 1,a 2,2个白球为b 1,b 2,则样本空间为Ω={(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 2,a 1),(a 2,b 1),(a 2,b 2),(b 1,a 1),(b 1,a 2),(b 1,b 2),(b 2,a 1),(b 2,a 2),(b 2,b 1)},共12个样本点,事件A={(b 1,b 2),(a 1,a 2),(b 2,b 1),(a 2,a 1)},共4个样本点;事件B={(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 2,a 1),(a 2,b 1),(a 2,b 2)},共6个样本点;事件C={(a 2,a 1),(b 1,a 1),(b 2,a 1),(a 1,a 2),(b 1,a 2),(b 2,a 2)},共6个样本点;事件D={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(b 1,a 1),(b 1,a 2),(b 2,a 1),(b 2,a 2)},共8个样本点;由于P(A)=412=13,P(B)=612=12,P(AB)=212=16,故P(A)P(B)=P(AB)成立,所以事件A 与B 相互独立,故A 正确;由于A∩D=⌀,A ∪D=Ω,故A 与D 是对立事件,故B 正确;由于B∩C≠⌀,故B 与C 不互斥,故C 不正确;由于P(D)=812=23,P(B)=12,P(BD)=412=13,故P(B)P(D)=P(BD)成立,所以事件B 与D 相互独立,故D 正确.故选ABD.12.ABC 由题可得,样本空间可记为Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},共包含36个样本点.记A:m=1,则A={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)},共包含6个样本点,则P(A)=636=16,A 选项正确;记B:m 是偶数,则B={(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)},共包含18个样本点,P(B)=1836=12,B 选项正确;记C:m=n,则C={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},共包含6个样本点,P(C)=636=16,C 选项正确;记D:m>n,则D={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)},共包含15个样本点,P(D)=1536,D 选项错误.故选ABC.13.45 记“甲获胜”为事件A,记“和棋”为事件B,记“乙获胜”为事件C,则P(A)=15,P(B)=12,P(C)=1-P(A)-P(B)=1-15−12=310,所以乙不输的概率为P=P(B ∪C)=P(B)+P(C)=12+310=45.14.1,2,3,4,5,8(答案不唯一)15.47 依题意,以每相邻两天为一个样本点,如(16,17),(17,18)为不同的两个样本点,则从4月16号至30号期间,共有14个样本点,它们等可能,其中相邻两天不下雨有(16,17),(19,20),(20,21),(21,22),(22,23),(26,27),(27,28),(28,29),共8个样本点,所以运动会期间不下雨的概率为P=814=47.16.②④17.解甲的平均成绩和方差如下:x 甲=18×(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)=1.69,s 甲2=18×[(1.70-1.69)2+(1.65-1.69)2+…+(1.67-1.69)2]=0.0006.乙的平均成绩和方差如下:x 乙=18×(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)=1.68,s 乙2=18×[(1.60-1.68)2+(1.73-1.68)2+…+(1.75-1.68)2]=0.00315.显然,甲的平均成绩好于乙的平均成绩,而且甲的方差小于乙的方差,说明甲的成绩比乙稳定.由于甲的平均成绩高于乙,且成绩稳定,且甲1.65m 以上的成绩有8次,乙1.65m 以上的成绩有5次,所以若跳高1.65m 就很可能获得冠军,应派甲参赛.由于甲1.70m 以上的成绩有3次,乙1.70m 以上的成绩有5次,所以若跳高1.70m 就很可能获得冠军,应派乙参赛.18.解(1)把4名获得书法比赛一等奖的同学编号为1,2,3,4,2名获得绘画比赛一等奖的同学编号为5,6.则样本空间Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4) ,(3,5),(3,6),(4,5),(4,6),(5,6)},共15个样本点.用A表示“从6名同学中任选2名,都是获得书法比赛一等奖的同学”,则A={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共6个样本点.所以选出的2名志愿者都是获得书法比赛一等奖的同学的概率P(A)=615=25.(2)用B表示“从6名同学中任选2名,1名是获得书法比赛一等奖,另1名是获得绘画比赛一等奖的同学”,则B={(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)},共8个样本点.所以选出的2名志愿者中,1名是获得书法比赛一等奖,1名是获得绘画比赛一等奖的同学的概率P(B)=815.19.解(1)根据分层抽样原则,容量为100的样本中,患病者的人数为100×3.48.5=40.a=1-0.10-0.35-0.25-0.15-0.10=0.05,b=1-0.10-0.20-0.3 0=0.40.(2)由(1)可知,抽取的100名从业者中,患病者的人数为40,未患病的人数为60,该项身体指标检测值不低于5的样本中,患病者人数为40×(0.30+0.40)=28,未患病者人数为60×(0.10+0.05)=9,共37人.故估计此地区该项身体指标检测值不低于5的从业者的人数为37100×85000=31450.(3)当X 0=4.5时,在100个样本数据中,有40×(0.10+0.20)=12名患病者被误判为未患病,有60×(0.10+0.05)=9名未患病者被误判为患病,因此判断错误的概率为21100.20.解(1)设“甲获得合格证书”为事件A,“乙获得合格证书”为事件B,“丙获得合格证书”为事件C,则P(A)=45×12=25,P(B)=34×23=12,P(C)=23×56=59.因为P(C)>P(B)>P(A),所以丙获得合格证书的可能性最大.(2)设“三人进行两项考试后恰有两人获得合格证书”为事件D,则P(D)=P(AB C )+P(A B C)+P(A BC)=25×12×49+25×12×59+35×12×59=1130.21.解(1)因为个体在区间[50,60)内的频率是0.005×10=0.05,所以频数x=1000×0.05=50,在[60,70),[80,90)内的频率是相等的,为12×(1-0.05-0.35-0.1)=0.25,所以频数y=1000×0.25=250.(2)平均数x =55×0.05+65×0.25+75×0.35+85×0.25+95×0.1=76,方差s 2=(55-76)2×0.05+(65-76)2×0.25+(75-76)2×0.35+(85-76)2×0.25+(95-76)2×0.1=109.第21页 共21页(3)由分层抽样的方法抽取一个容量为20的样本,则抽样比例为201000=150,所以在区间[80,90)和[90,100]内抽取的人数各为150×250=5,150×100=2,分别记这7人为a,b,c,d,e 和M,N,则样本空间为Ω={(a,b),(a,c),(a,d),(a,e),(a,M),(a,N),(b,c),(b,d),(b,e),(b,M),(b,N),(c,d),(c,e),(c,M),(c,N),(d,e),(d,M),(d,N),(e,M),(e,N),(M ,N)},共包含21个样本点. 记所求的事件为A,则A={(a,M),(a,N),(b,M),(b,N),(c,M),(c,N),(d,M),(d,N),(e,M),(e,N)},共包含10个样本点,所以抽到的2人中恰好1人的分数低于90分且1人的分数不低于90分的概率P(A)=1021.22.解设A 1,A 2分别表示甲两轮猜对1个,2个成语的事件,B 1,B 2分别表示乙两轮猜对1个,2个成语的事件.则P(A 1)=34×14+14×34=38,P(A 2)=(34)2=916.P(B 1)=23×13+13×23=49,P(B 2)=(23)2=49.设A=“两轮活动‘星队’猜对3个成语”,则A=A 1B 2∪A 2B 1,且A 1B 2与A 2B 1互斥,A 1与B 2,A 2与B 1分别相互独立,所以P(A)=P(A 1B 2)+P(A 2B 1)=P(A 1)P(B 2)+P(A 2)·P(B 1)=38×49+916×49=512.因此,“星队”在两轮活动中猜对3个成语的概率是512.。

(常考题)人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)(4)

(常考题)人教版高中数学必修第二册第五单元《概率》测试(包含答案解析)(4)
A. B. C. D.以上都不正确
13.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中随机取出3个球,用完后装回盒中,用 表示此时盒中旧球个数,则 的值为()
A. B. C. D.
二、解答题
14.有四个编有1、2、3、4的四个不同的盒子,有编有1、2、3、4的四个不同的小球,现把四个小球逐个随机放入四个盒子里.
5.024
6.635
7.879
10.828
22.甲、乙、丙三名射箭选手每次射箭命中各环的概率分布如下面三个表格所示.
甲选手
环数
7
8
9
10
概率
0.1
0.2
0.4
0.3
乙选手
环数
7
8
9
10
概率
0.2
0.3
0.3
0.2
丙选手
环数
7
8
9
10
概率
0.1
0.4
0.4
0.1
(1)若甲、乙、丙各射箭一次,假设三位选手射箭所得环数相互独立,求这三位选手射箭所得总环数为28的概率;
(1)求这200名学生每周阅读时间的中位数 ( 的值精确到0.01);
(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为 , 的学生中抽取6名参加座谈会.
你认为6个名额应该怎么分配?并说明理由;
从这6名学生中随机抽取2人,求至多有一人每周读书时间在 的概率.
24.有n名学生,在一次数学测试后,老师将他们的分数(得分取正整数,满分为100分),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图(如图1),并作出样本分数的茎叶图(如图2)(图中仅列出了得分在[60,70),[90,100]的数据).

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<-="X" )103010(<-<-="X" 709.010<="" bdsfid="71" p="" x="">1.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<-="X" )2010020(<-<-="X" 8<="" bdsfid="77" p="" x="">7205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<="">解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<-<-="X" )<="" bdsfid="88" p="" x="">414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(?->?-=X P )2251020020000(>?-=X P 由独立同分布的中心极限定理,1020020000?-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>?-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--??-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--??-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<="" bdsfid="123" p="">()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--?-≤?-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=XP )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(?->?-=T P )91.03010300(>?-≈T P ,由独立同分布的中心极限定理,3010300?-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>?-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。

第5章《统计与概率》章末复习课件人教B版高中数学必修第二册

第5章《统计与概率》章末复习课件人教B版高中数学必修第二册
• 古典概型及其解法
• 1.古典概型是一种最基本的概率模型,也是学习其他概率模型的基础, 在高考题中,经常出现此种概率模型的题目.解题时要紧紧抓住古典概 型的两个基本特点,即有限性和等可能性.
• 2.在求古典概型问题的概率时,往往需要我们将所有样本点一一列举 出来,以便确定样本点总数及事件所包含的样本点数.这就是我们常说 的穷举法.在列举时应注意按一定的规律、标准,不重不漏.
• ②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求 事件M发生的概率.
• [解析] (1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分 层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取 6人、9人、10人.
(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A, C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}, {C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
• (2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,
B,C,D,E,F.
×”表示不
享受.现从这6人中随机抽取2人接受采访.
项目
员工 A B CDE F
子女教育
×
×
继续教育
××
×
大病医疗
×××
××
住房贷款利息
××
住房租金
××
×××
赡养老人
×××
• ①试用所给字母列举出所有可能的抽取结果;
对点训练
4.(1)某大学选拔新生补充进“篮球”“电子竞技”“国学”三个社
团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档