沥青混合料的类型及结构组成

沥青混合料的类型及结构组成
沥青混合料的类型及结构组成

AC-13沥青混凝土配合比设计过程

热拌沥青混合料配合比设计方法 1.矿质混合料组成设计 (1)根据道路等级、路面结构层位及结构层厚度等方面要求,按照上述方法,选择适用的沥青混合料类型,并按照表8-22和表8-23(现行规范)或8-24和表8-25(新规范稿)的内容确定相应矿料级配范围,经技术经济论证后确定。 (2)矿质混合料配合比计算 1)组成材料的原始数据测定 按照规定方法对实际工程使用的材料进行取样,测试粗集料、细集料及矿粉的密度,并进行筛分试验,测定各种规格集料的粒径组成。 2)确定各档集料的用量比例 根据各档集料的筛分结果,采用计算法或图解法,确定各规格集料的用量比例,求得矿质混合料的合成级配。矿质混合料的合成级配曲线必须符合设计级配范围的要求,不得有过多的犬牙交错。当经过反复调整仍有两个以上的筛孔超出设计级配范围时,必须对原材料进行调整或更换原材料重新设计。 通常情况下,合成级配曲线宜尽量接近设计级配中限,尤其应使0.075mm、2.36mm、4.75mm等筛孔的通过量尽量接近设计级配范围的中限。对于交通量大、轴载重的道路,合成级配可以考虑偏向级配范围的下限,而对于中小交通量或人行道路等,合成级配宜偏向级配范围的上限。 2.沥青混合料马歇尔试验 沥青混合料马歇尔试验的主要目的是确定最佳沥青用量(以OAC表示)。沥青用量可以通过各种理论公式计算得到,但由于实际材料性质的差异,计算得到

的最佳沥青用量,仍然要通过试验进行修正,所以采用马歇尔试验是沥青混合料配合比设计的基本方法。 (1)制备试样 1)马歇尔试件制备过程是针对选定混合料类型,根据经验确定沥青大致用量或依据表4-10推荐的沥青用量范围,在该用量范围内制备一批沥青用量不同、且沥青用量等差变化的若干组(通常为五组)马歇尔试件,并要求每组试件数量不少于4个。 2)按已确定的矿质混合料级配类型,计算某个沥青用量条件下一个马歇尔试件或一组试件中各种规格集料的用量(实践中大多是一个标准马歇尔试件矿料总量1200g左右)。 3)确定一个或一组马歇尔试件的沥青用量(通常采用油石比),按要求将沥青和矿料拌制成沥青混合料,并按上节表8-7(现行规范要求)或表8-9(新规范要求)规定的击实次数和操作方法成型马歇尔试件。 (2)测定试件的物理力学指标 首先,测定沥青混合料试件的密度,并计算试件的理论最大密度、空隙率、沥青饱和度、矿料间隙率等参数。在测试沥青混合料密度时,应根据沥青混合料类型及密实程度选择测试方法。在工程中,吸水率小于0.5%的密实型沥青混合料试件应采用水中重法测定;较密实的沥青混合料试件应采用表干法测定;吸水率大于2%的沥青混合料、沥青碎石混合料等不能用表干法测定的试件应采用蜡封法测定;空隙率较大的沥青碎石混合料、开级配沥青混合料试件可采用体积法测定。 随后,在马歇尔试验仪上,按照标准方法测定沥青混合料试件的马歇尔稳定度和流值。 3.最佳沥青用量的确定

道路沥青混合料种类与性质

第七章沥青混合料的组成设计 沥青混合料从颗粒均匀预涂沥青的沥青涂层碎石(coated stone)到沥青玛碲脂(mastic asphalt)其成分变化无穷。然而,沥青混合料大体上可以分为沥青混凝土(asphalt)和沥青碎石(macadam)两大类。 沥青混凝土与碎石的主要区别如下: ●沥青混凝土的集料级配一般由颗粒大致均匀的粗集料加上大量的细集料和很 少量的中等大小的集料组成。 ●沥青混凝土的强度与砂/填料/沥青成份的劲度即沥青砂浆有关;为了砂浆 要有足够的劲度,制造沥青混凝土时要用比较硬的沥青和含量高的填料;至于沥青碎石的强度,主要是依靠摩擦和集料颗粒间的机械互锁力,因此可以用较软等级的沥青。 ●由于沥青混凝土含的填料比例很大,也即是集料有大幅的表面积要用沥青裹 覆,因而沥青用量较高;而沥青碎石含细小的集料少,因此用以裹覆集料的沥青少量也够了;沥青碎石内的沥青主要功能是在压实时作为润滑剂和在使用过程中粘结着集料颗粒。 ●沥青混凝土的空隙率低,基本上不透水并且用予繁重交通的道路上非常耐久 ;沥青碎石的空隙率相对较高而具透水性,并不如前者耐久。从沥青涂层碎石到沥青玛蹄脂各种沥青合料中,使用的沥青等级愈来愈硬,沥青、矿料和砂的含量增加,粗集料含量减少。 图7-1 各种沥青混合料的典型级配曲线

§7.1道路沥青混合料的种类与性质 7.1.1沥青混凝土 用不同粒径的碎石、天然砂、矿粉和沥青按一定比例以及最佳密实级配原则设计、在拌和机中热拌所得的混合料称沥青混凝土混合料。这种混合料的矿料部分应有严格的级配要求。它们经过压实后所得的材料具有规定的强度和孔隙率时称作沥青混凝土。沥青混凝土的强度和密实度是一般沥青混合料中最大的,但它们在常温或高温下都具有一定的塑性。沥青混凝土的高密实度使得它水稳性好,因此有较强的抗自然侵蚀能力,故寿命长、耐久性好,适合作为现代高速公路的柔性面层。从国外以及国内的工程实践来看,以沥青混凝土作为高等级公路或城市道路的路面材料已经相当普遍。 由于沥青混凝土的胶结料主要为沥青,沥青是一种对温度十分敏感的材料,这就导致了沥青混凝土的性质(主要为力学性能)受温度的影响十分突出(这也是沥青混合料最大的特点),如它们的劈裂强度随温度的变化可从零下温度的几兆帕到高温的零点几兆帕而不同。 沥青混凝土的分类从广义来说,可包括沥青玛碲脂(MA)、热压式沥青混凝土(HRA)、传统的密级配沥青混凝土(HMA)、多空隙沥青混凝土(PA)、沥青玛碲脂碎石(SMA)以及其它新型的沥青混凝土。 传统沥青混凝土、SMA和多空隙沥青混凝土典型级配曲线的比较见下图: 图7-2 三种典型混凝土级配比较 上图中,曲线1为传统沥青混凝土,孔隙率3%;曲线2为SMA,孔隙率3%;曲线3为多孔沥青混凝土、孔隙率20%。就孔隙率而言,当马歇尔设计孔隙率小于4%(或路面实际孔隙率小于8%)时,它已形成较为密实的结构,水不易进入沥青混凝土,整个结构的耐久性较好;或者路面实际孔隙率大于15%时,

沥青混合料组成设计

沥青混合料组成设计 热拌沥青混合料的配合比设计包括3个阶段: 1、目标配合比设计阶段——确定所用材料、计算矿料配合比、据马歇尔试验确定最佳沥青用量,把这个结果作为目标配合比进行试拌,确定拌合机各冷料仓的供料比例、进料速度。 2、生产配合比设计阶段——从二次筛分后进入各热料仓的材料取样筛分,确定各热料仓的材料比例(供控制室使用)。同时调整冷料仓的进料速度,确定生产配合比得最佳沥青用量(目标配合比的最佳沥青、±0.3%)。 3、生产配合比验证阶段——用生产配合比进行试拌、铺试验段,做马歇尔试验进行检验,确定生产用的标准配合比。标准配合比是生产控制的依据和质量检验的标准。矿料级配至少0.075、2.36、4.75三档的筛孔通过率接近要求的中值。 沥青混合料目标配合比设计阶段如何根据马歇尔试验确定沥青最佳用量1).首先根据选用矿料颗粒组成确定各种矿料的比例,使混合的矿料级配符合设计或规范要求。 2).根据规范和经验估计适宜的沥青用量,以此沥青用量为中值、0.5%为间隔取5个不同的沥青用量,分别拌和沥青混合料,制备5组马歇尔试验试件。3).测定试件的密度,计算孔隙率和饱和度。并进行马歇尔试验,测定稳定度和流值等物理力学指标。 4).整理试验结果。以沥青用量为横坐标,以密度、孔隙率、稳定度、流值和饱和度指标为纵坐标,分别点出试验结果,并绘制关系曲线图。 5).在图中求取密度最大值对应的沥青用量为a1,稳定度最大值对应的沥青用量为a2,规定空隙率范围的中值对应的沥青用量为a3。计算出沥青最佳用量的初始值OAC1=(a1+a2+a3)/3。 6).求出符合规范或设计的沥青用量范围OACmin~OACmax,并求取中值OAC2=(OACmin+OACmax)/2。 7).按沥青最佳用量初始值OAC1在曲线图上求取相应的各项指标值,当各项指标均符合要求时,OAC1和OAC2综合决定沥青最佳用量。若不满足要求时,

沥青混合料分类代号

类别 ?沥青混合料的规格?性能及用途 普通沥青及改性沥青密级配沥青混合料?AC-25、AC-20、 AC-16、 ?AC-13、AC-10、 ATB-40、 ?ATB-30、ATB-25 ?密级配沥青混合料是按密实级配原理设计组成 的各种粒径颗粒的矿料与沥青结 ?合料拌和而成,设计空隙率较小(对不同交通及 气候情况、层位可作适当调整 ?)的密实式沥青混凝土混合料(以AC表示)和 密实式沥青稳定碎石混合料(以 ?ATB表示)。按关键性筛孔通过率的不同又可分 为细型、粗型密级配沥青混合 ?料。该类产品可以广泛应用于公路、城市道路、 桥面、隧道、机场、停车场等 ?诸多方面及沥青路面结构的各个层次,是沥青混 凝土中最常用的混合料。 沥青马蹄脂碎石混合料?SMA-16、SMA-13、 SMA-10 ?沥青玛蹄脂碎石混合料,是一种由沥青、纤维稳 定剂、矿粉及少量的细集料组 ?成的沥青玛蹄脂填充间断级配的粗集料骨架间 隙组成一体的沥青混合料,具 ?有空隙率小,良好的高、低温性能及耐久性能等 特点。由于其良好的路用性 ?能,该类混合料主要应用于高等级公路和城市主 干道沥青路面的表面层。

厂拌热再生沥青混合料?AC-25、AC-20、 AC-16、 ?AC-13 ?再生沥青混合料是将回收的旧料,掺加部分再生 剂或新料充分拌和而成,具有 ?节能环保等特点。通过优选再生剂和矿料级配热 再生沥青混合料的路用性能与 ?普通热拌沥青混合料相同,在沥青路面结构中可 同等使用。 密级配及开级配橡胶沥青混合料?ARAC-25、 ARAC-20、 ?RAC-16、ARAC-13、 ARAC-10 ?橡胶粉用于沥青混合料中,有利于改善沥青混合 料的高温稳定性、抗疲劳性能 ?、水稳定性和低温性能等路用性能。橡胶沥青混 合料适用于各种等级的道路沥 ?青路面结构层,尤其对降低城市道路的行车噪音 有明显效果。 抗车辙沥青混合料?KAC-25、KAC-20、 KAC-16、 ?KAC-13 ?抗车辙沥青混合料是通过调整矿料级配、优选沥 青结合料、选用适宜的外掺剂 ?等手段,提高沥青混合料的高温稳定性,同时保 证混合料的低温性能、水稳定 ?性以及耐久性的沥青混合料。由于其具有非常好 的高温抗车辙性能,主要应用 ?于不同等级公路、城市道路的路口、停车港湾、 收费站、重载交通及长上坡路 ?段。

沥青混合料复习资料

一、名词解释: 1、蠕变:黏弹性物体在应力保持不变的情况下,应变随时间的增加而增加的现象。 2、松弛:黏弹性物体在保持应变不变的条件下,应力随时间的增加而逐渐减小的现象。 3、有效密度:沥青混合料的总质量与有效体积的比值。有效体积包括集料实体体积、闭口孔隙体积以及部分开口孔隙体积。(P96~97) 4、毛体积密度:沥青混合料的总质量与毛体积的比值。毛体积包括沥青体积、有效体积以及空隙体积。 5、SMA:是沥青玛蹄脂碎石,是由大量的沥青、矿粉、粗集料和少量的纤维稳定剂、细集料组成的一种沥青混合料。 6、VCA:是粗集料间隙率,包括粗集料骨架间隙率VCA DRA和压实沥青混合料时间粗集料间隙率VCA mix。VCA DRA是指粗集料实体之外的空间体积占整个试件体积的百分率(P17)。VCA mix是指压实沥青混合料试件内粗集料骨架以外的体积占整个试件体积的百分率(P133)。 7、VFA(沥青饱和度):是指压实沥青混合料试件中沥青实体体积占矿料骨架实体以外的空间体积百分率,又称为沥青填隙率。(P100)8、公称最大粒径:是指全部通过或允许少量不通过的最小一级标准筛的筛孔尺寸,通常比最大粒径小一个粒径级。(P94) 9、乳化沥青:是黏稠沥青经热熔和机械作用以微滴状态分散于含有乳化剂—稳定剂的水中,形成水包油(O/W)型的沥青乳液。 10、橡胶沥青:是指含量15%以上的橡胶粉在高温条件下(180℃以

上)与沥青均匀拌合而得到的改性沥青结合料。 二、简答题: 1、沥青的体膨胀系数与沥青的路用性能有何关系? 答:沥青的体体膨胀系数与沥青的路用性能有密切关系。体膨胀系数越大,则夏季沥青路面越容易产生泛油,而冬季又容易出现收缩裂缝。 2、采用沥青化学组分分析方法可将沥青分离为哪几个组分?与沥青的技术性质有何关系? 答:三组分:沥青质、胶质、油分。四组分:沥青质、胶质、芳香族、饱和分。 ①沥青质含量对沥青的流变特性有很大影响。增加沥青质含量,变生产出较硬、针入度较小和软化点较高的沥青,黏度较大。 ②胶质具有很好的黏附力,是沥青质的扩散剂或胶溶剂,胶质对沥青质的比例在一定程度上决定了沥青胶体结构的类型。 ③芳香族和饱和分在沥青中主要使胶质—沥青质软化(塑化),使沥青胶体体系保持稳定。 3、沥青可划分为几种胶体结构,及其分类方法? 答:溶胶型沥青:这类沥青对温度变化敏感,高温黏度较小,低温黏度大流动性小,冷却时变成脆性材料。凝胶型沥青:这类沥青有很好的粘弹性的温度定性,温度升高流动性加大、低温抗裂性差。溶凝胶型沥青:介于两者之间。 分类方法:根据胶团粒子大小、数量及其在连续相中的分散状态,沥青的胶体结构分类。也可通过针入度指数进行划分,2- PI为溶胶型 <

沥青混合料组成及结构

第五章普通沥青混合料 本章着重阐述了热拌沥青兴混合料的组成结构、强度形成原理、沥青混合料的体积特征参数、应具有的技术性质、影响因素及评价方法,重点介绍了热拌沥青混合料的马歇尔设计方法,包括组成材料的选择和配合比设计方法,同时对Superpave与GTM沥青混合料设计方法进行了简要介绍。通过学习,要求掌握沥青混合料的组成结构、强度形成原理、技术性质和技术要求,并能按马歇尔法设计沥青混合料的配合组成,同时对Superpave与GTM设计法有一定了解。 5.1 沥青混合料组成及结构 ⑴沥青混合料 ⑵沥青混凝土混合料 ⑶沥青碎石混合料 ⑷沥青玛蹄脂碎石混合料 ⑴按结合料分类 石油沥青混合料煤沥青混合料 石油沥青混合料又包括粘稠石油沥青、乳化石油沥青及液体石油沥青混合料 ⑵按矿料的级配类型划分 ①连续级配沥青混合料 ②间断级配沥青混合料 ⑶按矿料级配组成及空隙率大小划分 ①密级配沥青混合料设计空隙率为3%~6% 密级配沥青混凝土混合料(AC) 密级配沥青稳定碎石混合料(ATB)

沥青玛蹄脂碎石混合料(SMA) ②半开级配沥青混合料剩余空隙率在6%~12% 沥青碎石(AM) ③开级配沥青混合料设计空隙率为18%的混合料 排水式沥青磨耗层(OGFC) 排水式沥青基层(ATPB) ⑷按矿料公称最大粒径划分 ①特粗式沥青混合料等于或大于31.5mm ②粗粒式沥青混合料公称最大粒径等于或大于26.5mm ③中粒式沥青混合料:集料公称最大粒径为16mm或19mm的沥青混合料。 ④细粒式沥青混合料:集料公称最大粒径为9.5mm或13.2mm的沥青混合料。 ⑸按制造工艺划分 ①热拌热铺沥青混合料 ②冷拌沥青混合料 ③再生沥青混合料 ⑴表面理论 ⑵胶浆理论 ①粗分散系。以粗集料为分散相,分散在沥青砂浆的介质中。 ②细分散系。以细集料为分散相,分散在沥青胶浆的介质中。 ③微分散系。以矿粉填料为分散相,分散在高稠度的沥青介质中。 图5-1 3种类型矿质混合料级配曲线 ⑴悬浮一密实结构 特点是粘聚力较高,混合料的密实性与耐久性较好,但内摩阻力较小,高温稳定性较差。我国传统的AC型沥青混凝土是典型的悬浮一密实结构。 ⑵骨架一空隙结构 特点:内摩擦角较高,高温稳定性较好,但粘聚力较低,耐久性差。沥青

沥青混合料生产配合比组成设计

沥青混合料生产配合比组成设计 分项工程:SBS改性沥青下面层 级配类型:AC—25Ⅰ改进型 试验日期:二〇〇四年十二月 吉林省交通建设集团 盐通高速公路YT—YC21标

生产配合比设计说明 一、生产配合比组成设计依据 1、盐通YT-YC21标AC-25I改进型SBS改性沥青下面层目标配合比。 2、公路沥青路面施工技术规范(JTJ032—94) 3、公路改性沥青路面施工技术规范(JTJ036—98) 4、公路工程沥青及沥青混合料试验规程(JTJ052—2000) 5、公路工程集料试验规程(JTJ058—2000) 6、江苏省高速公路建设指挥部沥青路面施工技术指导意见汇编 二、原材料检测与确定 1、沥青:采用江阴宝利AH-90#SBS改性沥青,针入度为74(0.1mm),延度 为41cm,软化点为75℃。检测结果符合规范要求; 2、集料:采用镇江茅迪公司生产的石灰岩碎石,经过二次筛分,1仓(0-3mm) 2仓(3-6mm)3仓(6-11mm)4仓(11-24mm)5仓(24-34mm)共计5仓。 5仓毛体积相对密度为2.687,表观相对密度为2.721。4仓毛体积相对 密度为2.690,表观相对密度为2.722。3仓毛体积相对密度为2.691, 表观相对密度为2.727。2仓表观相对密度为2.714。1仓表观相对密度 为2.718。 3、填料:采用大丰市腾龙建材厂生产的石灰岩矿粉,矿粉表观相对密度为 2.711,含水量为0.39%,亲水系数为0.74。 三、沥青混合料试验 1、混合料级配试验:5仓:4仓:3仓:2仓:1仓:矿粉=8:28:22:16:

22.5:3.5 2、沥青混合料马歇尔试验:在确定目标配合比为4.2%基础上分别配制了 3.6%,3.9%, 4.2%,4.5%,4.8%五组油石比的混合料进行马歇尔试验。 3、沥青混合料最佳油石比选定:分别测定了五组试件的密度,稳定度,流 值。并计算空隙率,沥青体积百分率,粒料间隙率,饱和度。试验结 果整理如下: a1=4.4% a2=4.4% a3=3.8% OAC1=(a1+a2+a3)/3=4.2% OAC max=4.6% OAC min=4.0% OAC2=(OAC max+OAC min)/2=4.3% 且OAC min

江苏省高速公路沥青面层混合料类型的选择

江苏省高速公路沥青面层混合料类型的选择 贺薇吴建浩王捷 【江苏省交通科学研究院南京 210017】 摘要在对目前国内外广泛应用的几种沥青混合料性能分别进行分析的基础上,提出了适应于不同情况下沥青混合料类型选择的建议,为今后我省高速公路沥青路面面层混合料类型的选择提供参考。 关键词高速公路路面沥青选择 1概述 江苏省夏季炎热,冬季寒冷,一年四季雨量充沛,复杂的气候条件以及日益增大的交通量,无疑给沥青混合料路面的抗高温车辙、低温开裂及抗水损害性能提出了严格的要求。本文旨在探讨如何选择合适的沥青混合料类型以提高路面的使用性能,延长路面的使用寿命。 2沥青混合料性能 对于沥青混合料类型的选择首先应考虑其气候与交通状况,并同时满足相应层次沥青混合料的性能要求。 2.1高温稳定性能 研究表明,沥青混合料的高温稳定性能,即抵抗车辆反复压缩变形及侧向流动的能力,首先取决于矿料骨架,尤其是粗集料的相互嵌挤作用,同时沥青胶结料的性质与含量则起到阻碍混合料发生剪切的牵制作用。但高温时沥青的粘度较低,粘结集料的能力有限。通常情况下,当矿料级配的贡献率大到60%,沥青胶结料就能提供40%的抗车辙能力,由此可见,要提高沥青混合料的高温稳定性应兼顾沥青胶结料和混合料类型两个方面的选择。 2.2低温抗裂性能 沥青混合料的低温抗裂性能主要取决于沥青混合料的低温拉伸变形性能,沥青胶结料的贡献率达到80%,而矿料级配对抵抗低温开裂性能的贡献率只有2

0%,因此,选择适当的沥青胶结料对提高沥青混合料的低温抗裂性能具有决定性的意义。 一般而言,较硬沥青的混合料比较软沥青的混合料更容易形成低温开裂,空隙率过大的混合料中的沥青胶结料由于过度的氧化作用而使沥青老化,因而更容易导致低温开裂。因此,为克服沥青路面的低温开裂,除选择适当的沥青胶结料外还必须严格控制混合料的空隙率,加强路面压实,这与沥青混合料类型的选择有直接的关系。 2.3水稳定性能 沥青路面水损害是沥青路面最常见的破坏现象之一。改善沥青混合料的水稳定性可以通过选择合适的路面材料(包括沥青与集料)、合理选用级配类型、优化配合比设计、加强施工压实以及减少离析等措施来实现。 2.4抗滑性能 沥青混合料路面的抗滑性与矿质集料的微表面性质、混合料的级配组成以及沥青用量等因素有关,尤其是沥青用量对抗滑性能的影响非常敏感,超过最佳用量的0.5%即可使抗滑系数明显降低。从提高沥青路面的抗滑性能的角度出发,应选取具有粗糙的表面、尖锐的棱角和抗磨光性的粗集料,避免因过高的沥青用量而导致路表面泛油、使路面丧失纹理结构。同时倾向于选取较粗的集料级配以及较高的空隙率水平,使沥青路面有较多的粗纹理,为沥青在高温季节膨胀时提供足够的空间,这也可以防止出现泛油现象。 3沥青混合料类型的选择 3.1国内外研究现状 美国公路战略研究计划经过系统的研究,提出了建立在路用性能基础上的沥青性能规范,在混合料设计方面也提出了一整套的Superpave沥青混合料设计、分析体系,对沥青路面性能的提高和改善耐久性等方面做出了卓越的贡献。另外,相对于传统的密级配混合料提出了开级配的抗滑磨耗表层(OGFC),对路面排水、行车安全、减噪等方面有显著效果。德国道路工作者于六十年代中期开发的沥青玛蹄脂碎石混合料(SMA),在提高路面抗滑和承载能力方面功效显著,在高温抗车辙、低温抗裂、疲劳抗裂、抗水损害、抗老化等方面,均优于传统的沥青混凝土路面。由我国道路工作者提出的介于传统的ACⅠ型级配和Ⅱ

沥青混合料生产配合比组成设计模板

沥青混合料生产配合比组成设计模板

沥青混合料生产配合比组成设计 分项工程: SBS改性沥青下面层级配类型: AC—25Ⅰ改进型 试验日期: 二〇〇四年十二月 吉林省交通建设集团 盐通高速公路YT—YC21标

生产配合比设计说明 一、生产配合比组成设计依据 1、盐通YT-YC21标AC-25I改进型SBS改性沥青下面层目标配合比。 2、公路沥青路面施工技术规范( JTJ032—94) 3、公路改性沥青路面施工技术规范( JTJ036—98) 4、公路工程沥青及沥青混合料试验规程( JTJ052— ) 5、公路工程集料试验规程( JTJ058— ) 6、江苏省高速公路建设指挥部沥青路面施工技术指导意见汇编 二、原材料检测与确定 1、沥青: 采用江阴宝利AH-90#SBS改性沥青, 针入度为74( 0.1mm) , 延 度为41cm, 软化点为75℃。检测结果符合规范要求; 2、集料: 采用镇江茅迪公司生产的石灰岩碎石, 经过二次筛分, 1仓( 0- 3mm) 2仓( 3-6mm) 3仓( 6-11mm) 4仓( 11-24mm) 5仓( 24-34mm) 共计5仓。5仓毛体积相对密度为2.687, 表观相对密度为2.721。4仓毛体 积相对密度为2.690, 表观相对密度为2.722。3仓毛体积相对密度为 2.691, 表观相对密度为2.727。2仓表观相对密度为2.714。1仓表观 相对密度为2.718。 3、填料: 采用大丰市腾龙建材厂生产的石灰岩矿粉, 矿粉表观相对密度为 2.711, 含水量为0.39%, 亲水系数为0.74。 三、沥青混合料试验 1、混合料级配试验: 5仓: 4仓: 3仓: 2仓: 1仓: 矿粉=8: 28: 22: 16: 22.5: 3.5

沥青与沥青混合料复习知识点及试题

沥青与沥青混合料复习知识点 1、按来源,1天然沥青(湖沥青,岩沥青)、2石油沥青、3焦油。 2、沥青路面必须满足的基本要求:具有一定的强度刚度、稳定性、耐久性、平整性、抗滑性。 3、老化:沥青中的有机高分子材料,在环境因素的作用下发生氧化等各种反应。 4、原油是由不同分子量和沸点幅度的碳氢化合物组成的混合物。 5、根据基属不同,分为石蜡基沥青、中间基沥青、环烷基沥青。 6、实验对沥青质的影响:溶剂的性质、溶剂的用量、温度。 7、沥青质的含量增加,软化点升高,胶质芳香族增加,软化点下降,饱和族对软化点影响较小。 8、沥青质含量增加,针入度减小,软化点增高,粘度增大。 9、胶质化学稳定性差,能使沥青具有足够的粘附力,对沥青的粘弹性形成良好的胶体溶液等方面都有重要作用。 10、油分,混合烃及非化合物组成的混合物,起柔软和润滑作用。 11、腊,原油、渣油及沥青在冷冻时,能结晶出的熔点在25以上的混合组分.测定腊含量(脱胶步骤,脱腊步骤) 12、沥青分子的结构形态和状态与胶体性质、流变性质和路用性质有关。 13、胶体结构的分类:溶胶型结构,溶-凝胶型结构,凝胶型结构(-2《PI《2) 14、优质路用沥青:化学组分比例适当,腊含量少,化学结构环数多,芳环多,烷侧链少,溶-凝胶型结构的沥青。 15、评价沥青与矿料的粘附性:1沥青与集料粘附性实验,2沥青混合料粘附性实验 16、改善沥青粘附性措施:1活化集料表面 2在沥青中加入抗剥落剂 17、耐久性:保持良好的流变性能、凝聚力和粘附性的能力 18、沥青变脆变硬的原因:蒸发损失,暗处氧化,光照氧化 19、延性:沥青在外力作用下发生拉伸变形而不破坏的能力 20、延性的影响因素:内,化学组分,化学结构;外,试验温度,拉伸速度。 21、沥青的低温性质:沥青低温脆性,温度收缩系数和低温延性 22、改性沥青混合料:掺和橡胶、树脂、高分子聚合物、天然沥青、磨细橡胶粉或其他改性剂,从而使沥青或沥青混合料改善的沥青结合料 23、改性剂:在沥青或沥青混合料中加入天然的或人工的有机无机材料,可熔融,分散在沥青中,改善和提高沥青路面性能的材料 24、高聚物基本特征:巨大的分子量,复杂的链结构,晶态与非晶态共存,同一种高聚物可加工成不同性质的材料,高的品质系数 25、高聚物的性能用途分:塑料,橡胶,纤维 26、聚乙烯:强度高,延伸率大,耐寒性好,优良的改性剂 27、改性沥青聚合物:热塑性橡胶类(SBS),橡胶类(SBR),树脂类(EVA,PE) 28、1老化试验仪,2动态剪切流变仪-粘弹性,3旋转式粘度计-粘度,4弯曲梁流变仪-低温劲度,5直接拉伸试验仪-低温变形 29、岩石:岩浆岩,沉积岩,变质岩 30、石料的技术性质:1物理性质,密度,吸水性,耐水性,抗冻性,耐热性,坚固性。2力学性质,抗压强度,冲击韧性,硬度,耐磨性。3工艺性质,加工性,磨光性,抗钻性。4化学性质 31、抗冻性:材料在饱和水状态下,能经受多次冻结和融化作用而不破坏也不严

沥青路面结构设计与计算书

沥青路面结构设计与计算书 1 工程简介 本路段属于安图至汪清段二级公路.K0+000~K3+500,全线设计时速为60km/h的二级公路,路面采用60km/h的二级公路标准。路基宽度为10m,行车道宽度为2×3. 5m,路肩宽度为2×0.75m硬路肩、2×0.75土路肩。路面设计为沥青混凝土路面,设计年限为12年。路面设计以双轮组单轴载100KN为标准轴载,以BZZ-100表示;根据沿线工程地质特征及结合当地筑路材料确定路面结构为:路面的面层采用4cm厚细粒式沥青混凝土和6cm厚中粒式沥青混凝土,基层采用20cm厚水泥稳定碎石,底基层采用石灰粉煤灰土。 2 土基回弹模量的确定 本设计路段自然区划位于Ⅱ3区,当地土质为粘质土,由《公路沥青路面设计规范(JTG D50-2004)》表F.2查得,土基回弹模量在干燥状态取39Mpa,在中湿状态取34.5Mpa. 3 设计资料 (1)交通量年增长率:5% 设计年限:12年

。 4 设计任务 4.1 沥青路面结构组合设计 4.2 沥青路面结构层厚度计算,并进行结构层层底拉应力验算 4.3 绘制沥青路面结构图 5 沥青路面结构组合设计 5.1 路面设计以双轮组单轴载100KN 为标准轴载,以BZZ -100表示。标准轴载计算参数如表10-1所示。 5.1.1.1 轴载换算 轴载换算采用如下的计算公式: 35 .41 21∑=? ?? ??=k i i i P P n C C N ,()11 1.211c m =+?-=,计算结果如下表所示。

注:轴载小于25KN 的轴载作用不计 5.1.1.2 累计当量轴次 根据设计规范,二级公路沥青路面设计年限取12年,车道系数η=0.7,γ=5.0% 累计当量轴次: ()[][] 329841405 .07 .005.8113651)05.01(3651112 =???-+=??-+= ηγ γN N t e 次 5.1.2 验算半刚性基层层底拉应力的累计当量轴次 5.1.2.1 轴载验算 验算半刚性基层层底拉应力的轴载换算公式为:

热拌沥青混合料路面

7 热拌沥青混合料路面 7.1 一般规定 7.1.1热拌沥青混合料适用于各种等级公路的沥青面层。高速公路和一级公路沥青面层的上面层、中面层及下面层应采用沥青混凝土混合料铺筑,沥青碎石混合料仅适用于过渡层及整平层。其他等级公路的沥青面层上面层宜采用沥青混凝土混合料铺筑。 7.1.2 热拌沥青混合料的种类应按表7.1.2选用,其规格以方孔筛为准,集料最大粒径不宜超过31.5mm。当采用圆孔筛作为过渡时,集料最大粒径不宜超过40mm。 7.1.3 应根据不同地区道路等级及所处层位的功能性要求,从表7.1.3中选择适当的结构组合,并应遵循以下原则: 7.1.3.1应综合考虑满足耐久性、抗车撤、抗裂、抗水损害能力、抗滑性能等多方面要求,根据施工机械、工程造价等实际情况选择沥青混合料的种类。

注:当铺筑抗滑表面层时,可采用AK-13或AK-16型热拌沥青混合料,也可在AC-10(LH-15)型细粒式沥青混凝土上嵌压沥青预拌单粒径碎石S-10铺筑而成。 7.1.3.2 沥青混凝土混合料面层宜采用双层或三层式结构,其中至少必须有一层是I 型密级配沥青混凝土混合料。当各层均采用沥青碎石混合料时,沥青面层下必须做下封层。 7.1.3.3 多雨潮湿地区的高速公路和一级公路的上面层宜采用抗滑表面混合料,其他等级公路及少雨干燥地区的高速公路和一级公路宜采用I型沥青混凝土混合料做表层。 7.1.3.4 沥青面层的集料最大粒径宜从上至下逐渐增大,中粒式及细粒式用于上层,粗粒式只能用于中下层。砂粒式仅适用于通行非机动及行人的路面工程。 7.1.3.5 上面层沥青混合料的集料最大粒径不宜超过层厚的1/2,中、下面层及联结层的集料最大粒径不宜超过层厚的2/3。 7.1.3.6 高速公路的硬路肩沥青面层宜采用I型沥青混凝土混合料作表层。 7.1.4 热拌热铺沥青混合料路面应采用机械化连续施工。 7.2 施工准备 7.2.1 基层准备应符合本规范第3章的要求。

沥青混合料分类代号

类别沥青混合料的规格性能及用途 普通沥青及改性沥青密级配沥青混合料AC-25、AC-20、AC-16、 AC-13、AC-10、ATB-40、 ATB-30、ATB-25 密级配沥青混合料是按密实级配原理设计组成的各种粒径颗粒的矿料 与沥青结 合料拌和而成,设计空隙率较小(对不同交通及气候情况、层位 可作适当调整 )的密实式沥青混凝土混合料(以AC表示)和密实式沥青稳定碎石 混合料(以 ATB表示)。按关键性筛孔通过率的不同又可分为细型、粗型密级配 沥青混合 料。该类产品可以广泛应用于公路、城市道路、桥面、隧道、机 场、停车场等 诸多方面及沥青路面结构的各个层次,是沥青混凝土中最常用的 混合料。 沥青马蹄脂碎石混合料SMA-16、SMA-13 SMA-1C 沥青玛蹄脂碎石混合料,是一种由沥青、纤维稳定剂、矿粉及少量的 细集料组 成的沥青玛蹄脂填充间断级配的粗集料骨架间隙组成一体的沥青混合 料,具 有空隙率小,良好的高、低温性能及耐久性能等特点。由于其良好的 路用性 能,该类混合料主要应用于高等级公路和城市主干道沥青路面的表面 层。 厂拌热再生沥青混合料AC-25、AC-20、AC-16、 AC-13 再生沥青混合料是将回收的旧料,掺加部分再生剂或新料充分拌 和而成,具有 节能环保等特点。通过优选再生剂和矿料级配热再生沥青混合料的路 用性能与 普通热拌沥青混合料相同,在沥青路面结构中可同等使用。 密级配及开级配橡胶沥青混合料ARAC-25、ARAC-20 RAC-16、ARAC-13 ARAC-10 橡胶粉用于沥青混合料中,有利于改善沥青混合料的高温稳定性、抗 疲劳性能 、水稳定性和低温性能等路用性能。橡胶沥青混合料适用于各种等级 的道路沥 青路面结构层,尤其对降低城市道路的行车噪音有明显效果。 抗车辙沥青混 合料KAC-25、KAC-20、KAC- 16、 KAC-13 抗车辙沥青混合料是通过调整矿料级配、优选沥青结合料、选用 适宜的外掺剂 等手段,提高沥青混合料的高温稳定性,同时保证混合料的低温性 能、水稳定 性以及耐久性的沥青混合料。由于其具有非常好的高温抗车辙性 能,主要应用 于不同等级公路、城市道路的路口、停车港湾、收费站、重载交通及 长上坡路 段。 钢渣沥青混合 料GAC-25、GAC-20 GAC-16 GAC-13、GAC-10及钢渣 SMA-10、SMA-13 SMA-16 在沥青混合料中采用钢渣作为集料,充分利用钢渣强度高、耐磨 性好、表面粗 糙、与沥青粘附性好的特点,经过合理的配合比设计,形成具有

沥青混合料——知识考点

第七章沥青混合料 一、填空题 1、沥青混合料是经人工合理选择组成的矿质混合料,与适量拌和而成的混合料的总称。 2、沥青混合料按公称最大粒径分类,可分为、、 、、。 3、沥青混合料按矿质材料的级配类型分类,可分为和。 4、沥青混合料按矿料级配组成及空隙率大小分类,可分为、、和。 5、沥青混合料按沥青混合料制造工艺分类可分为、、 ,目前公路工程中最常用的是。 6、目前沥青混合料组成结构理论有和两种。 7、沥青混合料的组成结构有、、三个类型。 8、沥青与矿料之间的吸附作用有与。 9、沥青混合料的强度主要取决于与。 10、根据沥青与矿料相互作用原理,沥青用量要适量,使混合料中形成足够多的沥青,尽量减少沥青。 11、沥青混合料若用的是石油沥青,为提高其粘结力则应优先选用矿料。 12、我国现行国标规定,采用试验和试验来评价沥青混合料高温稳定性,其技术指标项目包括、和。 13、沥青混合料配合比设计包括、和三个阶段。 14、在AC—25C中,AC表示;25表示;C 表示。 15、沥青混合料悬浮—密实结构中的粗集料数量比较,不能形成骨架。它的粘聚力比较,内摩阻角比较,因而高温稳定性。 16、标准马歇尔试件的直径为mm,高度为mm。 二、选择题 1、特粗式沥青混合料是指()等于或大于31.5mm的沥青混合料。 A、最大粒径 B、平均粒径 C、最小粒径 D、公称最大粒径

2、在沥青混合料AM—20中,AM指的是() A、半开级配沥青碎石混合料 B、开级配沥青混合料 C、密实式沥青混凝土混合料 D、密实式沥青稳定碎石混合料 3、关于沥青混合料骨架—空隙结构的特点,下列说法有误的是() A、粗集料比较多 B、空隙率大 C、耐久性好 D、热稳定性好 4、关于沥青混合料骨架—密实结构的特点,下列说法有误的是() A、密实度大 B、是沥青混合料中差的一种结构类型 C、具有较高内摩阻角 D、具有较高粘聚力 5、关于沥青与矿料在界面上的交互作用,下列说法正确的是() A、矿质集料颗粒对于包裹在表面上的沥青分子只具有物理吸附作用 B、矿质集料颗粒对于包裹在表面上的沥青分子只具有化学吸附作用 C、物理吸附比化学吸附强 D、化学吸附比物理吸附强; 6、关于沥青与矿粉用量比例,下列说法正确的是() A、沥青用量越大,沥青与矿料之间的粘结力越大 B、沥青用量越小,沥青与矿料之间的粘结力越大 C、矿粉用量越大,沥青与矿料之间的粘结力越大 D、以上说法都不对 7、沥青混合料马歇尔稳定度试验中,MS指的是() A、马歇尔稳定度 B、流值 C、沥青饱和度 D、马氏模数 8、沥青混合料马歇尔稳定度试验中,FL指的是() A、马歇尔稳定度 B、流值 C、沥青饱和度 D、马式模数 9、车辙试验所用的标准试件大小是() A、150mm×150mm×150mm B、150mm×150mm×300mm C、150mm×150mm×450mm D、300mm×300mm×50mm ; 10、关于沥青混合料的高温稳定性,下列说法错误的是() A、可采用马歇尔稳定度试验来评定 B、其影响因素有沥青用量、沥青粘度等 C、提高沥青混合料粘结力可以提高高温稳定性 D、提高内摩阻力不能提高高温稳定性 11、关于沥青混合料的耐久性,下列说法错误的是()

沥青混合料的强度构成

沥青混合料强度的构成 姓名:王海滨学号:145109020 班级:0914511 摘要:简要介绍了沥青混合料强度的构成机理 关键词:组成结构表面理论胶浆理论强度影响因素措施 正文:沥青混凝土混合料指用不同粒径的碎石、附作用。天然砂、矿粉和沥青按一定的比例以最佳密实级配原则设计。在拌和机中热拌所得的混合料。包括沥青混凝土(压实后剩余空隙≤10%)和沥青碎石(压实后剩余空隙>1O%),还有开级配或间断级配沥青混合料。 1、组成结构 根据混合料中嵌挤结构和密实结构所占比例的不同,沥青混合料的结构通常可分为下列三种方式:悬浮密实结构:这种结构通常按最佳级配原理进行设计,因此密实度与强度较高,但受沥青材料的性质和物理状态的影响较大,故温度稳定性较差;骨架空隙结构:在这种结构中,粗集料之间的内摩阻力起着重要作用,其结构强度受沥青性质和物理状态的影响较小,因而温度稳定性较好;骨架密实结构:是综合以上两种结构的优点而组成的结构。混合料中既有一定数量的粗集料形成骨架,又根据粗料空隙的多少加入细料,形成较高的密实度和明显的骨架结构,间断级配即是按此原理构成。 随着混合料组成结构的研究的深入,对沥青混合料的组成结构有下列两种互相对立的理论。 (1)表面理论:按传统的理解,沥青混合料是由粗集料、细集料和填料经人工组配成密实的级配矿质骨架,此矿质骨架由稠度较稀的

沥青混合料分布其表面,而将它们胶结成为一个具有强度的整体。(2)胶浆理论:近代某些研究从胶浆理论出发,认为沥青混合料是一种多级空间网状胶凝结构的分散系。它是以粗集料为分散相而分散在沥青砂浆的介质中的一种粗分散系;同样,砂浆是以细集料为分散相而分散在沥青浆介质中的一种细分散系;而胶浆又是以填料为分散相而分散在高稠度的沥青介质中的一种微分散系。这3级分散系以沥青胶浆(沥青—矿粉系统)最为重要,典型的沥青混合料的弹-粘-塑性,主要取决于起粘结料的作用的沥青-矿粉系统的结构特点。这种多级空间网状胶凝结构的特点是,结构单元(固体颗粒)通过液相的薄层(沥青)而粘结在一起。胶凝结构的强度,取决于结构单元产生的分子力。胶凝结构具有力学破坏后结构触变性复原自发可逆的特点。 对于胶凝结构,固体颗粒之间液相薄层的厚度起着很大的作用。相互作用的分子力随薄层厚度的减小而增大,因而系统的粘稠度增大,结构就变得更加坚固。此外,分散介质(液相)本身的性质对于胶凝结构的性质亦有很大的影响。 2、沥青与矿料之间的作用 沥青与矿料之间的相互作用是沥青混合料结构形成的决定性因素。它直接关系到沥青混合料的强度、温度稳定性、水稳定性以及老化速度等一系列重要性能。研究表明,沥青与矿料相互作用时,所发生的效应是各种各样的,主要与表面效应有关。沥青与矿料之间的相互作用过程包括沥青层被矿物表面的物理吸附过程、沥青与矿料接触面上

沥青路面结构设计计算

路面设计 7.1基本资料 1.设计规范: 《公路沥青路面设计规范》(JTG D50-2006) 《公路水泥混凝土路面设计规范》(JTG D40-2002) 《公路路基设计规范》(JTG D30-2004) 车道系数:二级公路双向两车道在0.6~0.7,取0.6 年平均增长率:6% 3. 自然条件及气象资料 查询相关资料知,该公路地处 II区,年降雨量为1000(mm/年),最高气温 5 15.7℃,最低气温-4℃以上,日照21000多小时,属东部湿润季冻区。 4.地质资料与筑路材料 沿线土质为中液限粘性土,路基一般处于中湿状态。公路沿线有丰富的沙砾,石料,筑路材料丰富。路面所需水泥和沥青均需外购。 5.路面设计方案 本设计采用柔性路面和刚性路面即沥青混凝土路面和水泥混凝土路面两种方案进行设计,通过方案比选最终确定一种路面设计方案。 7.2沥青路面设计 采用沥青路面结构,确定设计年限12年,需进行沥青路面结构施工图设计。 (1)交通资料 据设计任务书得知其交通组成与交通量如表所示,预测其交通量年增长率为6%。不同车型的交通参数见表。 表7-1 设计交通组成、交通量与不同车型的交通参数

(2)计算标准轴载累计计算交通量Ne ,确定交通等级 a.用于弯沉验算和沥青层弯拉应力验算的Ne (A ) 35 .41 21∑=? ?? ??=K i i i P P n C C N (7-1) 式中:1C ——轮组系数,双轮组时为1.0,单轮组时为6.4,四轮组时为0.38; 2C ——轴数系数;当轴间距大于3米时,按单独的一个轴载计算,则C 2=1m, 当轴间距小于3m 时,按双轴或多轴计算C 2=1+1.2×(m-1),m 为轴数; 表7-2 用于弯沉验算和沥青层弯拉应力验算的Ne (A ) 交通量计算参数

沥青混合料的组成结构及强度原理

第六章沥青混合料的强度构成机理 §6.1 沥青混合料的组成结构及强度原理 6.1.1沥青混合料的组成结构 沥青混合料是一种复杂的多种成分的材料,其“结构”概念同样也是极其复杂的。因为这种材料的各种不同特点的概念,都与结构概念联系在一起。这些特点是:矿物颗粒的大小及其不同粒径的分布;颗粒的相互位置;沥青在沥青混合料中的特征和矿物颗粒上沥青层的性质;空隙量及其分布;闭合空隙量与连通空隙量的比值等。“沥青混合料结构”这个综合性的术语,是这种材料单一结构和相互联系结构的概念的总和。其中包括:沥青结构、矿物骨架结构及沥青-矿粉分散系统结构等。上述每种单一结构中的每种性质,都对沥青混合料的性质产生很大的影响。 随着混合料组成结构的研究的深入,对沥青混合料的组成结构有下列两种互相对立的理论。 (1)表面理论按传统的理解,沥青混合料是由粗集料、细集料和填料经人工组配成密实的级配矿质骨架,此矿质骨架由稠度较稀的沥青混合料分布其表面,而将它们胶结成为一个具有强度的整体。这种理论认识可图解如下: (2)胶浆理论近代某些研究从胶浆理论出发,认为沥青混合料是一种多级空间网状胶凝结构的分散系。它是以粗集料为分散相而分散在沥青砂浆的介质中的一种粗分散系;同样,砂浆是以细集料为分散相而分散在沥青浆介质中的一种细分散系;而胶浆又是以填料为分散相而分散在高稠度的沥青介质中的一种微分散系。这种理论认识可图解如下:

分散相—粗集料 沥青混合料(粗分散系)分散相—细集料 分散介质—砂浆(细分散系)分散相—填料 分散介质—沥青胶结物(微分散系) 分散介质—沥青这3级分散系以沥青胶浆(沥青—矿粉系统)最为重要,典型的沥青混合料的弹-粘-塑性,主要取决于起粘结料的作用的沥青-矿粉系统的结构特点。这种多级空间网状胶凝结构的特点是,结构单元(固体颗粒)通过液相的薄层(沥青)而粘结在一起。胶凝结构的强度,取决于结构单元产生的分子力。胶凝结构具有力学破坏后结构触变性复原自发可逆的特点。 对于胶凝结构,固体颗粒之间液相薄层的厚度起着很大的作用。相互作用的分子力随薄层厚度的减小而增大,因而系统的粘稠度增大,结构就变得更加坚固。此外,分散介质(液相)本身的性质对于胶凝结构的性质亦有很大的影响。 可以认为,沥青混合料的弹性和粘塑性的性质主要取决于沥青的性质、粘结矿物颗粒的沥青层的厚度,以及矿物材料与结合料相互作用的特性。沥青混合料胶凝健合的特点,也取决于这些因素。 沥青混合料的结构取决于下列因素:矿物骨架结构、沥青的结构、矿物材料与沥青相互作用的特点、沥青混合料的密实度及其毛细-孔隙结构的特点。 矿物骨架结构是指沥青混合料成分中矿物颗粒在空间的分布情况。由于矿物骨架本身承受大部分的内力,因此骨架应由相当坚固的颗粒所组成,并且是密实的。沥青混合料的强度,在一定程度上也取决于内摩阻力的大小,而内摩阻力又取决于矿物颗粒的形状、大小及表面特性等。 形成矿物骨架的材料结构,也在沥青混合料结构的形成中起很大作用。应把沥青混合料中沥青的分布特点,以及矿物颗粒上形成的沥青层的构造综合理解为沥青混合料中的沥青结构。为使沥青能在沥青混合料中起到自己应有的作用,应均匀地分布到矿物材料中,并尽可能完全包裹矿物颗粒。矿物颗粒表面上的沥青层厚度,以及填充颗粒间空隙的自由沥青的数量,具有重要的作用。自由沥青和矿物颗粒表面所吸附沥青的性质,对于沥青混合料的结构

相关文档
最新文档