最新中考数学第一轮复习—数与式
中考数学专题复习资料数与式
![中考数学专题复习资料数与式](https://img.taocdn.com/s3/m/7b008c30f8c75fbfc77db2fe.png)
第一轮中考复习——数及式知识梳理:一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点及全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且及原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式及多项式统称为整式。
单项式:只含有数及字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)
![2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)](https://img.taocdn.com/s3/m/0ec16055571252d380eb6294dd88d0d233d43c39.png)
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
中考数学一轮复习:第1单元 数与式完整ppt课件
![中考数学一轮复习:第1单元 数与式完整ppt课件](https://img.taocdn.com/s3/m/cc3815d90912a21615792946.png)
6.近似数:一个近似数四舍五入到哪一位,那么就说这个近
似数精确到哪一位.有计数单位的近似数,由近似数的位数和后面
的单位共同确定.如 3.618 万,数字 8 实际上是十位上的数字,即
精确到十位.
完整版ppt课件
6
考点聚焦
归类探究
中考预测
第1讲┃实数的有关概念
解 析 无理数就是无限不循环小数。理解无理数的概念, 一定要同时理解有理数的概念,有理数是整数与分数的统称, 即有限小数和无限循环小数都是有理数,而无限不循环小数 是无理数.无理数有:-π,0.1010010001…(相邻两个1之 间依次多一个0),共有2个。
完整版ppt课件
归类探究
回归教材
中考预测
第1讲┃实数的有关概念 2.按正负分类:
正有理数
正实数
正整数 正分数
实数
正无理数 零
负有理数
负实数
负整数 负分数
负无理数
22 3 [注意](1)任何分数都是有理数,如 7 ,-11等;
(2)0 既不是正数,也不是负数,但 0 是自然数。
完整版ppt课件
4
考点聚焦
解
原式=-1+1-2+3=1.
完整版ppt课件
26
考点聚焦
归类探究
回归教材
中考预测
第2讲┃实数的运算与实数的大小比较
(1)在进行实数的混合运算时,首先要明确与实数有 关的概念、性质、运算法则和运算律,要弄清按怎样的运 算顺序进行.中考中常与绝对值、锐角三角函数、根式结 合在一起考查.
(2)要注意零指数幂和负整数指数幂的意义.负整数
完整版ppt课件
2023年九年级中考数学第一复习试卷:数与式 试卷(含解析)
![2023年九年级中考数学第一复习试卷:数与式 试卷(含解析)](https://img.taocdn.com/s3/m/199eb840ae1ffc4ffe4733687e21af45b307fe83.png)
2023年中考数学第一复习试卷:数与式一、选择题1. (2020秋•镇原县期末)下列说法中,正确的是( ) A.x 2﹣3x 的项是x 2,3x B.3ba +是单项式C.,πa,a 2+1都是整式D.3a 2bc ﹣2 是二次二项式2. (2021·贵州铜仁)2的相反数是( ) A.2B.-2C.12D.12-3. (2020秋•福田区校级)在代数式x 2+5,-a,x 2-3x+2,π,x5,x 21x 1++中,整式有( ) A.3个 B.4个 C.5个 D.6个 4. (2020秋•涪城区校级期末)若a+2b =3,则多项式2a+4b-1的值为( ) A.3 B.4 C.5 D.65. (2020秋•抚顺县期末)若x 2﹣3x ﹣2=0,则2x 2﹣6x+2020的值为( ) A.2021 B.2022 C.2023 D.20246. (2020秋•荔湾区校级月考)若关于x,y 的多项式kxy 2-kxy-3xy 2+xy+x+y-k 是二次多项式,则k 的值是( ) A.3 B.-3 C.1 D.-1 7. (2020秋•汝阳县期末)无论x 取任何实数,下列一定是二次根式的是( )A.2x --B.xC.2x 2+D.2x 2-8. (2020秋•绥中县期末)已知xy =3,x ﹣y =﹣2,则代数式x 2y ﹣xy 2的值是( ) A.6 B.﹣1 C.﹣5 D.﹣69. (2020秋•会宁县期末)观察下列各算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式的规律,你认为22020的末位数字应该是( ) A.2 B.4 C.6 D.8 10. (2020秋•福田区期末)观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;根据此规律,第10个等式的右边应该是a 2,则a 的值是( ) A.45 B.54 C.55 D.65 二、填空题11. (2022·贵州黔东南)若()225240x y x y +-+++=,则x-y 的值是________.12. (2020•浙江自主招生)分解因式:2x 2+7xy-15y 2-3x+11y-2= .13. (2020•成都模拟)已知实数a,b 互为相反数,且|a+2b|=1,b <0,则b = .14. (2020•吉安模拟)如图,有一个正三角形图片高为2厘米,A 是三角形的一个顶点,现在A 与数轴的原点O 重合,将图片沿数轴负方向滚动一周,点A 恰好与数轴上点A ′重合,则点A ′对应的实数是 .15. (2020秋•沙坪坝区校级月考)实数a,b在数轴上对应点的位置如图所示,则下列式子正确的是.(填序号)①ab<0;②|a|<|b|;③﹣a>b;④a﹣b>0.16. (2020秋•顺城区期末)有一数值转换器,原理如图所示,如果开始输入x的值为1,则第一次输出的结果是4,第二次输出的结果是5,……;那么2021次输出的结果是.三、解答题17. (2020秋•长春期末)已知多项式A=2m2-4mn+2n2,B=m2+mn-3n2,求:(1)3A+B;(2)A-3B.18. (2020秋•达州期中)有理数a,b,c在数轴上的位置如图所示:(1)用“>”或“<”填空:b-c 0,a+b 0,c-a 0.(2)化简:|a+b|-|a+c|+|b-c|-|a|.19. (2020•河北模拟)对于题目:实数a,b,c的大小如图中数轴所示,化简:|a-c|-|a-b|+|c-b|+2c.张皓程的解法如图所示:(1)张皓程从第步开始出错.(2)请你写出正确的解答过程.20. (2020春•江阴市期中)甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9).请你分析一下a、b的值,并写出正确的因式分解过程.21. (2020秋•内江期中)仔细观察,探索规律:(1)(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4.(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=①(其中n为正整数,且n≥2).②(2-1)(2+1)=;③(2-1)(22+2+1)=;④(2-1)(23+22+2+1)=;⑤(2n-1+2n-2+…+2+1)=;(2)根据上述规律,求22019+22018+22017+…+2+1的个位数字是多少?(3)根据上述规律,求29-28+27-…+23-22+2的值?答案一、选择题1. 【答案】故选:C.2. 【答案】B 2的相反数是-2.故选:B.3. 【答案】解:整式有x2+5,-a,x2-3x+2,π,共4个;故选:B.4. 【答案】解:∵a+2b=3,∴2a+4b-1=2(a+2b)-1=2×3-1=6-1=5.故选:C.5. 【答案】解:∵x2﹣3x﹣2=0,∴x2﹣3x=2,∴2x2﹣6x+2020=2(x2﹣3x)+2020=2×2+2020=2024,故选:D.6. 【答案】解:kxy2-kxy-3xy2+xy+x+y-k=(k-3)kxy2+(1-k)xy+x+y-k,∵关于x,y的多项式kxy2-kxy-3xy2+xy+x+y-k是二次多项式,∴k-3=0,∴k=3.故选:A.7. 【答案】故选:C.8. 【答案】解:x2y﹣xy2=xy(x﹣y)=3×(﹣2)=﹣6,故选:D.9. 【答案】解:2n的个位数字是2,4,8,6四个一循环,所以2020÷4=505,则22020的末位数字是6.故选:C.10. 【答案】解:观察下列等式:(1)13=12;(2)13+23=32;(3)13+23+33=62;(4)13+23+33+43=102;…∴第十个等式为:13+23+…+93+103=(1+2+3+4+…+9+10)2=552;故选:C.二、填空题11. 【答案】912. 【答案】解:∵2x2+7xy-15y2=(x+5y)(2x-3y),∴可设2x2+7xy-15y2-3x+11y-2=(x+5y+a)(2x-3y+b),a、b为待定系数,∴2a+b=-3,5b-3a=11,ab=-2,解得a=-2,b=1,∴原式=(x+5y-2)(2x-3y+1).故答案为:(x+5y-2)(2x-3y+1).13. 【答案】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.14. 【答案】故答案为:-4315. 【答案】解:由图可得:a<0<b,且|a|>|b|,∴ab<0,﹣a>b,a﹣b<0,∴正确的有:①③;故答案为:①③.16. 【答案】故答案为:10.三、解答题17. 【答案】解:(1)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴3A+B=3(2m2-4mn+2n2)+(m2+mn-3n2)=6m2-12mn+6n2+m2+mn-3n2=7m2-11mn+3n2;(2)∵A=2m2-4mn+2n2,B=m2+mn-3n2,∴A-3B=(2m2-4mn+2n2)-3(m2+mn-3n2)=2m2-4mn+2n2-3m2-3mn+9n2=-m2-7mn+11n2.18. 【答案】解:(1)由数轴可得,a<0<b<c,且|b|<|a|<|c|,∴b-c<0,a+b<0,c-a>0, 故答案为:<,<,>;(2)∵b-c<0,a+b<0,a+c>0,∴|a+b|-|a+c|+|b-c|-|a|=-a-b-(a+c)+(-b+c)-(-a)=-a-b-a-c-b+c+a=-a-2b.19. 【答案】解:(1)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,所以|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c所以是第①步出错,原因是去绝对值符号时,负数没有变号;故答案为:①;(2)因为c<0<a<b,且|b|>|a|>|c|,所以a-c>0,a-b<0,c-b<0,|a-c|-|a-b|+|c-b|+2c=(a-c)+(a-b)-(c-b)+2c=a-c+a-b-c+b+2c=2a.20. 【答案】解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴x2+6x+9=(x+3)2.21. 【答案】解:(1)由上式的规律可得,a n-b n,①故答案为:a n-b n;由题干中提供的等式的规律可得,②(2+1)(2-1)=22-1;故答案为:22-1;③(2-1)(22+2+1)=23-1,故答案为:23-1;④(2-1)(23+22+2+1)=24-1故答案为:24-1;⑤(2n-1+2n-2+…+2+1)=(2-1)(2n-1+2n-2+…+2+1)=2n-1,故答案为:2n-1;(2)22019+22018+22017+…+2+1=(2-1)(22019+22018+22017+…+2+1)=22020-1,又∵21=2,22=4,23=8,24=16,25=32,……∴22020的个位数字为6,∴22020-1的个位数字为6-1=5,答:22019+22018+22017+…+2+1的个位数字是5.(3)(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=2n-1,取a=2,b=-1,n=10,∴(2-1)(29-28+27-…+23-22+2-1)=210-1∴29-28+27-…+23-22+2=210=1024.。
(完整版)中考数学第一轮复习精品讲解第一单元数与式(共126张PPT)
![(完整版)中考数学第一轮复习精品讲解第一单元数与式(共126张PPT)](https://img.taocdn.com/s3/m/65daf4ae76eeaeaad1f330a1.png)
示,则化简|1-a|+ a2的结果为( A )
A.1
B.-1
图 2-1 C.1-2a
10.如果 a=22001110,b=22001112,那么 a,b 的大小关系是 a__<____b. [解析] 因为 a>0,b>0,a÷b=22001110÷22001112=22001110×22001112<1, 所以 a<b.
·新课标
第2讲 │ 考点随堂练
·新课标
第2讲 │归类示例
归类示例
3)0=1;
3 -8=-2;|-3|=3,这些都是有理数. 12=2 3,是无理数; π
无理数还有 2-1, 3 ,0.1010010001….
·新课标
第1讲 │归类示例
(1)一个数是不是无理数,应先计算或者化简再判断. (2)常见的几种无理数:①根号型: 2, 8等开方开不尽的; ②三角函数型:sin60°,tan30°等;③构造型:如 1.323223…; ④与 π 有关的:如π3 ,π-1 等.
·新课标
第1讲 │归类示例
[解析] 解决这类题最好的方法是借助于方程来求解,可避免 出错.设这个数为 x,则(1)-x=x,x=0;
(2)x1=x,∴x2=1,∴x=±1; (3)x2=x,x2-x=0,x=0 或 x=1; (4)± x=x,x2=x,x=0 或 x=1(不合题意,舍去); (5)|x|=x,x≥0.
·新课标
第1讲 │归类示例
类型之二 实数的有关概念
命题角度: 1.数轴、相反数、倒数等概念 2.绝对值的概念及计算
填空题: (1)相反数等于它本身的数是_____0___. (2)倒数等于它本身的数是____±__1__. (3)平方等于它本身的数是___0_或__1__. (4)平方根等于它本身的数是____0____. (5)绝对值等于它本身的数是__非_负__数___.
中考第一轮复习数与式-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载
![中考第一轮复习数与式-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载](https://img.taocdn.com/s3/m/865327d567ec102de2bd89ea.png)
中考第一轮复习数与式-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------中考第一轮复习数与式第一单元Ⅰ. 考点透视1、实数及其运算(1)实数的概念(有理数、无理数和实数,数轴,相反数,绝对值,倒数,科学记数法,精确度与有效数字)例1、(1)(-2)3与-23() A.相等 B.互为相反数 C.互为倒数 D.它们的和为16(2)已知实数ab在数轴上对应的点如图所示.①用“<”连接下列各数:a,b,-a,-b,1+a,-1-a,1-b②化简:2b+2+b-a+1-a-b(2)实数的运算(有理数的加、减、乘、除、乘方、开方运算法则,运算律及其运算顺序,实数大小比较的方法)例2、(1) 计算的结果是()A.4B.3C.2D.1(2)计算:①-22+(-2)3-[64-()÷(-)4]÷(-63)②+-62、整式及其运算(1)整式的概念(单项式、多项式和整式,同类项)例3、(1)下列运算中正确的是()A.a2·a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=2a10(2)如图是某花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆).观察图形并探索:在第n个图案中,红花和黄花的盆数分别是.(2)整式的运算(整式的加减运算—去括号,合并同类项、乘除及乘方运算法则—幂的运算性质、乘法公式及其几何背景)例4、(1)先化简,再求值:5x2-(3y2+5x2)+(4y2+7xy),其中x=-1,y=1-(2) 化简求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y= -1.53、因式分解(因式分解的概念,因式分解的方法—提取公因式法、运用公式法,因式分解的一般步骤)例5、(1)分解因式:x3y2-4x=.(2)请写一个三项式,使它先提取公因式,再用公式来分解因式。
中考数学第一轮复习资料(超全)
![中考数学第一轮复习资料(超全)](https://img.taocdn.com/s3/m/03ac6b7fdd3383c4ba4cd2a5.png)
中考一轮复习第一部分数与代数第一章数与式第1讲实数第2讲代数式第3讲整式与分式第1课时整式第2课时因式分解第3课时分式第4讲二次根式第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组第2课时分式方程第3课时一元二次方程第2讲不等式与不等式组第三章函数第1讲函数与平面直角坐标系第2讲一次函数第3讲反比例函数第4讲二次函数第二部分空间与图形第四章三角形与四边形第1讲相交线和平行线第2讲三角形第1课时三角形第2课时等腰三角形与直角三角形第3讲四边形与多边形第1课时多边形与平行四边形第2课时特殊的平行四边形第3课时梯形第五章圆第1讲圆的基本性质第2讲与圆有关的位置关系第3讲与圆有关的计算第六章图形与变换第1讲图形的轴对称、平移与旋转第2讲视图与投影第3讲 尺规作图 第4讲 图形的相似 第5讲 解直角三角形第三部分 统计与概率第七章 统计与概率 第1讲 统计 第2讲 概率第一部分 数与代数第一章 数与式 第1讲 实数考点一、实数的概念及分类 (3分) 1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分) 1、相反数实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= -b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
2024年福建省中考数学一轮知识点梳理复习课件+1.2 代数式与整式
![2024年福建省中考数学一轮知识点梳理复习课件+1.2 代数式与整式](https://img.taocdn.com/s3/m/3691a6a6f9c75fbfc77da26925c52cc58bd69087.png)
相差320元,则( C )
C.|10x-19y|=320
D.|19x-10y|=320
3.(2023·沈阳)当a+b=3时,代数式2(a+2b)-(3a+5b)
+5的值为 .
C
2
4.(2023·河北)根据表中的数据,写出a的值为 ,b的值
2.因式分解的方法(1)提公因式法:
(2)公式法:①平方差公式:a2-b2= ;②完全平方公式:a2±2ab+b2= .
mc
(3)多项式乘以多项式:用第一个多项式的每一项去乘另一
个多项式的每一项,再把所得的积 ,如:(m+n)
(a+b)= ;(4)乘法公式:①平方差公式:(a+b)(a-b)= ;②完全平方公式:(a±b)2= .
号,原括号内各项的符号与原来的符号 ,即:a-(b
+c)=a- ,a-(b-c)=a- .
相同
b+c
b-c
相反
b-c
b+c
(2)添括号法则:①所添括号前面是“+”,括到括号内的各项都不改变符号,
am÷an= (a≠0);(3)幂的乘方: 不变, 相乘,即:(am)n= ;(4)积的乘方:等于积中每一个因式分别乘方,再把所得的
算得出的结果,叫做代数式的值.解答代数式求值问题的常用方法:(1)直接代入法:把已知字母的值代入代数式,并按原来的
运算顺序计算求值.
2.代数式的值
(2)整体代入法:①观察已知条件和所求代数式的关系;②将所求代数式变形后与已知代数式成倍分关系,一般会用到
提公因式法、平方差公式法、完全平方公式法;③把已知代数式看成一个整体代入所求代数式中求值.
人教版中考数学一轮复习专题一《数与式》知识点+练习(共33张PPT)
![人教版中考数学一轮复习专题一《数与式》知识点+练习(共33张PPT)](https://img.taocdn.com/s3/m/3130722b5727a5e9856a6195.png)
(3)、有理数分类:
正整数 整数 0 负整数 有理数 正分数 分数 负分数
正整数 正有理数 正分数 有理数 0(0既不是正数也不是负数 ) 负整数 负有理数 负分数
2、数轴的三要素为 原点 、正方向 和单位长度. 数轴上的点与 实数 是一一对应. 3、实数a的相反数为 -a . 若a、b互为相反数,则 a+b=0 . 4、非零实数a的倒数为 1/a . 若a、b互为倒数,则 ab=1 . 5、绝对值: (a 0) a
a 0 (a 0) -a (a 0)
6、数的开方: ⑴ 任何正数都有 2 个平方根,它们互为相反数. 其中正的平方根 a 叫 算术平方根 负数 没有平方根, 0的算术平方根为 0 . ⑵ 任何一个实数a都有立方根,记为 ⑶ .
3
a
.
a ( a 0 ) 2 a a -a (a 0)
※3. 用换元法解分式方程的一般步骤: ① 设辅助未知数,并用含辅助未知 数的代数式去表示方程中另外的代数式; ② 解所得到的关于辅助未知数的新 方程,求出辅助未知数的值;
③ 把辅助未知数的值代入原设中,
求出原未知数的值;
④ 检验作答.
4.分式方程的应用题要注意检验: (1)检验所求的解是否是所列 分式方程的解 ; (2)检验所求的解是否 符合实际意义 .
(2) 多项式:几个单项式的 和 叫做多项 式.在多项式中,每个单项式叫做多项式 的 项 ,其中次数最高的项的 次数 叫做这 个多项式的次数.不含字母的项叫做常数项 .
(3) 整式: 单项式 与 多项式 统称整式.
2. 同类项:在一个多项式中,所含字母 相 同并且相同字母的指数 也分别相等的项叫 做同类项. 3.合并同类项:把同类项的系数 相加 .所 得的结果作为系数,字母以及字母的指数 不变。
中考数学第一轮复习“数与式”知识点总结
![中考数学第一轮复习“数与式”知识点总结](https://img.taocdn.com/s3/m/acb7316b42323968011ca300a6c30c225901f0cd.png)
中考数学第一轮复习“数与式”知识点总结1. 实数-实数的定义与分类:实数包括有理数和无理数。
有理数进一步分为整数(正整数、0、负整数)和分数(正分数、负分数)。
无理数则是不能表示为两个整数之比的数。
-实数的性质:包括实数的有序性、数轴上的表示(实数与数轴上的点一一对应)、相反数、绝对值、倒数等概念。
-实数的运算:掌握实数加、减、乘、除、乘方等基本运算法则,特别是对于带有绝对值和根号的实数的运算,要特别注意运算顺序和运算法则。
2. 代数式-代数式的概念:用字母表示数(或式)的式子叫做代数式。
它可以是单独的一个数、一个字母,也可以是数与字母的积或幂等形式。
-代数式的书写规则:掌握代数式书写的基本规则,如乘法时数应写在字母前面,乘号通常省略不写等。
-代数式的值:当代数式中的字母取定一个值时,代数式就有了一个确定的值。
了解代数式求值的基本步骤和方法。
3. 整式-整式的概念:单项式和多项式统称为整式。
单项式是只含有一个项的代数式,多项式则是由有限个单项式相加或相减得到的代数式。
-整式的加减:整式的加减实际上就是合并同类项的过程,要理解同类项的概念,并会识别和合并同类项。
-整式的乘除:掌握单项式乘单项式、单项式乘多项式、多项式乘多项式等运算法则。
对于整式的除法,重点是掌握多项式除以单项式的运算方法。
-整式的乘方与开方:了解整式乘方的基本性质和运算法则,特别是积的乘方和幂的乘方的运算规则。
对于开方,要了解算术平方根和平方根的概念,并能进行简单的开方运算。
4. 分式-分式的概念:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式。
了解分式有意义、无意义、值为零的条件。
-分式的基本性质:分式的基本性质是分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变。
-分式的加减乘除:掌握分式的加减(需要通分)、乘除(转化为乘法进行)、乘方(幂的乘方与积的乘方)等运算法则。
特别地,对于分式的除法,要会将其转化为乘法进行运算。
2025年湖南中考数学一轮复习考点研析 第一章 数与式第3讲 整式与因式分解
![2025年湖南中考数学一轮复习考点研析 第一章 数与式第3讲 整式与因式分解](https://img.taocdn.com/s3/m/77d6b31703768e9951e79b89680203d8cf2f6a11.png)
单项式乘 先用单项式乘多项式中的每 多项式 一项,再把所得的积相加
m(a+b+c)=__m__a_+__m_b_+__m_c____
类别
运算法则
举例
先用一个多项式的每一项 多项式乘 多项式 分别乘另一个多项式的每 (a+b)(m+n)__a_m_+__a_n_+__b_m__+__b_n__
一项,再把所得的积相加
类别
内容
整式 单项式和__多__项__式__统称整式
单项式
概念 系数
(1)由数与字母的__积___组成的代数式叫作单项式. (2)单独一个字母或者一个数也是单项式 单项式中的数字因数
次数 单项式中的所有字母的__指__数___的和
类别
内容
概念 几个单项式的__和___叫作多项式
多项式
项 次数
组成多项式的每个单项式 多项式中__次__数__最__高__的项的次数
8a3b÷4ab=__2_a_2_
多项式
除以单 先用这个多项式的每一项除以这个单 (14m5n3-7m2)÷7m2=
项式 项式,再把所得的商相加
_2_m_3_n_3-__1_
类别
运算法则
举例 (2x2+3x-20)÷(2x- 5)=x+4
把被除式和除式按同一字母的降 多项式除 以多项式 幂排列(若有缺项,则用0补齐)后,用
解
(3)不恒成立.理由如下: ∵ C2 - A·B=(2a - 2b)2 - (a - 3b)(3a - b)=4a2 - 8ab + 4b2 - (3a2 - 10ab + 3b2)=4a2-8ab+4b2-3a2+10ab-3b2=a2+2ab+b2=(a+b)2≥0, ∴C2≥A·B, ∴(2)中的C2与A·B的大小关系不恒成立.
完整版初三数学一轮总结复习数与式
![完整版初三数学一轮总结复习数与式](https://img.taocdn.com/s3/m/a64738fb0b4e767f5acfcef2.png)
数与式(-)考点一:相反数、倒数、绝对值的概念相反数:只有符号不同的两个数互称为相反数.特别地, 0 的相反数是 0.相反数的性质:⑴代数意义⑵几何意义:一对相反数在数轴上应分别位于原点两侧,并且到原点的距离相等.这两点是关于原点对称的.⑶求任意一个数的相反数,只要在这个数的前面添上“—号”即可.一般地,数 a 的相反数是 a ;这里以 a 表示任意一个数,可以为正数、 0、负数,也可以是任意一个代数式.注意 a 不一定是负数.当a 0时,a 0 ;当a 0 时,a 0 ;当a 0 时,a 0.⑷互为相反数的两个数的和为零,即若 a 与b 互为相反数,则a b 0,反之,若a b 0,则 a 与b 互为相反数.绝对值的几何意义:一个数 a 的绝对值就是数轴上表示数 a的点与原点的距离 .数a 的绝对值记作 a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0 的绝对值是 0.a(a 0)求字母 a 的绝对值: a 0( a 0)a(a 0)【例1】有理数- 2 的相反数是()B.-2C.12 D.12【例2】 13的倒数是()A. 3B. 3C.12 D.13【例3】23的倒数的绝对值为()A.23 B.32C.3D. 21考点二:科学计数法及有效数字n科学记数法:把一个大于 10 的数表示成 a 10 的形式(其中1 a 10,n 是整数),此种记法叫做科学记数法.例如: 5200000 2 10 就是科学记数法表示数的形式.710200000 10 也是科学记数法表示数的形式.有效数字:从一个数的左边第一个非 0 数字起,到末位数字止,所有数字都是这个数的有效数字.如:有两个有效数字: 2,7 ;有 5 个有效数字: 1,2,0,2,7.注意:万 410 ,亿8 10【例4】 2009 年初甲型 H1N1 流感在墨西哥爆发并在全球蔓延,研究表明,甲型 H1N1 流感球形病毒细胞的直径约为 m,用科学记数法表示这个数(保留两位有效数字)是()5 5A .×10 m B.0.156 ×10 m6 6C.×10 m D.×10 m【例5】 2010 年上海世博会开园第一个月共售出门票 664 万张,664 万用科学计数法表示为( )×104 ×l05 ×106 ×l07【例6】在电子显微镜下测得一个圆球体细胞的直径是 55 10 cm,32 10 个这样的细胞排成的细胞链的长是 ( )A . 2 110 cm B.10 cm C.3 410 cm D.10 cm考点三:有理数的大小比较①代数法:正数大于非正数,零大于负数,对于两个负数,绝对值大的反而小.②数轴法:数轴右边的数比左边的数大.③作差法:a b 0 a b ,a b 0 a b,a b 0 a b .a ④作商法:若a 0,b 0 , 1b a ba, 1ba ba, 1ba b .⑤取倒法:分子一样,通过比较分母从而判定两数的大小.【例7】已知有理数 a 与b 在数轴上的位置如图所示,那么 a ,b , a ,b的大小顺序为b 0 a【巩固】 在数轴上表示下列各数,再按大小顺序用 “< ”号连接起来 .4 , 0 , ,1 1 2, 2, ,1, 2 1 222【例 8】 已知 0 x 1,则x , x ,1 x的大小顺序为 考点四:绝对值的化简【例 9】 若 a <1,化简(a 1)21( )A . a 2B . 2 aC . aD . a【例 10】 若化简绝对值2a 6 的结果为6 2a ,则a 的取值范围是( )A. a 3B. a 3C. a 3D. a 3【例 11】 若 x 2 x 2 0 ,则x 的取值范围是【例 12】 如果有理数 a 、b 、c 在数轴上的位置如图所示,则a b b 1 a c 1 c 的值为______.a b 0 c 1 考点五: 整式的运算代数式的定义: 用基本的运算符号 (加、减、乘、除、乘方等 )把数或表示数的字母连结而成 的式子叫做代数式 .单独的一个数或字母也是代数式 .单项式: 像 2a ,2r , 1 3 2 x y , abc ,3 2x yz7,⋯ ⋯这些代数式中,都是数字与字 母的积,这样的代数式称为单项式 .也就是说单项式中不存在数字与字母或 字母与字母的加、减、除关系,特别的单项式的分母中不含未知数 .单独的 一个字母或数也叫做单项式,例: a 、 3.单项式的次数: 是指单项式中所有字母的指数和 .例如:单项式1 22ab c ,它的指数为 1 2 1 4,是四次单项式 .单独的一个数 (零除外 ),它们的次数规定为零,叫做零次单项式 .单项式的系数:单项式中的数字因数叫做单项数的系数 .例如: 我们把47 叫做单项式 24x y 7的 系数 .同类项: 所含字母相同,并且相同字母的指数也分别相同的项叫做同类项 . 多项式: 几个单项式的和叫做多项式 .例如:7 92x 3x 1 是多项式 . 多项式的项: 其中每个单项式都是该多项式的一个项.多项式中的各项包括它前面的符号 .多项式中不含字母的项叫做常数项.多项数的次数: 多项式里,次数最高项的次数就是这个多项式的次数 .整式:单项式和多项式统称为整式 . 3合并同类项:把多项式中同类项合并成一项,叫做合并同类项 .合并同类项时,只需把系数相加,所含字母和字母指数不变 .整式乘除:⑴同底数幂相乘.同底数的幂相乘,底数不变,指数相加.用式子表示为:m n m na a a (m,n都是正整数).⑵幂的乘方.幂的乘方的运算性质:幂的乘方,底数不变,指数相乘.用式子表示为:nm mna a (m ,n 都是正整数).⑶积的乘方.积的乘方的运算性质:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.用式子表示为:n n nab a b (n 是正整数).⑷同底数幂相除.同底数的幂相除,底数不变,指数相减.用式子表示为:m n m na a a (a≠0 ,m , n 都是正整数)⑸规定0 1 0a a ≠;a p1pa(a≠0,p 是正整数).【例1】下列各对单项式中不是同类项的是()A.34 4 2x y 与224x y B.4 328x y 与3 415y xC. 215a b 与2D.43 与34【例2】单项式13 a b a 1x y 与23x y 是同类项,求a b 的值.【例3】填空:若单项式 2 1 nn 2 x y 是关于x,y的三次单项式,则 n【例4】当m 取什么值时,2m 1 2 3(m 2) x y 3xy 是五次二项式?【例5】下列运算正确的是 ( )A . 2 2 42x 3x 6x B.2 22x 3x 1C. 2 2 2 22x 3x x D.32 2 42x 3x 5x【例6】若实数 a 满足 2 a2 2 4 0a a ,则2a 4 5 。
数与式综合测试卷(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)
![数与式综合测试卷(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)](https://img.taocdn.com/s3/m/4b86b772443610661ed9ad51f01dc281e43a5651.png)
数与式综合测试卷考试时间:60分钟;满分:100分姓名:___________班级:___________考号:___________考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2023·青海西宁·统考中考真题)算式―3□1的值最小时,□中填入的运算符号是()A.+B.-C.×D.÷2.(3分)(2023·江苏宿迁·统考中考真题)下列运算正确的是()A.2a―a=1B.a3⋅a2=a5C.(ab)2=ab2D.(a2)4=a63.(3分)(2023·浙江衢州·统考中考真题)手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm),则下列信号最强的是()A.―50B.―60C.―70D.―804.(3分)(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于9.46×1012km.下列正确的是()A.9.46×1012―10=9.46×1011B.9.46×1012―0.46=9×1012C.9.46×1012是一个12位数D.9.46×1012是一个13位数5.(3分)(2023·重庆·×)A.4和5之间B.5和6之间C.6和7之间D.7和8之间6.(3分)(2023·天津·统考中考真题)计算1x―1―2x2―1的结果等于()A.―1B.x―1C.1x+1D.1x2―17.(3分)(2023·山东·统考中考真题)实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b―a)<0B.b(c―a)<0C.a(b―c)>0D.a(c+b)>08.(3分)(2023·河北·统考中考真题)若k为任意整数,则(2k+3)2―4k2的值总能()A .被2整除B .被3整除C .被5整除D .被7整除9.(3分)(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,n ―m ;第2次操作后得到整式串m ,n ,n ―m ,―m ;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是( )A .m +nB .mC .n ―mD .2n10.(3分)(2023·四川内江·统考中考真题)对于正数x ,规定f(x)=2xx+1,例如:f(2)=2×22+1=43,=2×1212+1=23,f(3)=2×33+1=32,=2×1313+1=12,计算:+++⋯+++f(1)+f(2)+f(3)+⋯+f(99)+f(100)+f(101)=( )A .199B .200C .201D .202二.填空题(共6小题,满分18分,每小题3分)11.(3分)(2023·四川巴中·统考中考真题)在0,,―π,―2四个数中,最小的实数是.12.(3分)(2023·江苏·统考中考真题)若圆柱的底面半径和高均为a ,则它的体积是 (用含a 的代数式表示).13.(3分)(2023·江苏泰州·统考中考真题)若2a ―b +3=0,则2(2a +b)―4b 的值为 .14.(3分)(2023·山东潍坊·统考中考真题)从―(□+○)2÷“□”与“○”中,计算该算式的结果是 .(只需写出一种结果)15.(3分)(2023·黑龙江大庆·统考中考真题)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,(a+b)7展开的多项式中各项系数之和为.16.(3分)(2023·湖南娄底·统考中考真题)若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n个同学均匀排成一个以O点为圆心,r为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a米,再左右调整位置,使这(n+2)个同学之间的距离与原来n个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这(n+2)个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移米(请用关于a的代数式表示),才能使得这(n+3)个同学之间的距离与原来n个同学之间的距离相等.三.解答题(共7小题,满分52分)17.(6分)(2023·江苏无锡·统考中考真题)(1)计算:(―3)2―+|―4|(2)化简:(x+2y)(x―2y)―x(x―y)18.(6分)(2023·广东广州·统考中考真题)已知a>3,代数式:A=2a2―8,B=3a2+6a,C=a3―4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.19.(8分)(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为S1,S2.(1)请用含a的式子分别表示S1,S2;当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.20.(8分)(2023·四川攀枝花·统考中考真题)2022年卡塔尔世界杯共有32支球队进行决赛阶段的比赛.决赛阶段分为分组积分赛和复赛.32支球队通过抽签被分成8个小组,每个小组4支球队,进行分组积分赛,分组积分赛采取单循环比赛(同组内每2支球队之间都只进行一场比赛),各个小组的前两名共16支球队将获得出线资格,进入复赛;进入复赛后均进行单场淘汰赛,16支球队按照既定的规则确定赛程,不再抽签,然后进行18决赛,14决赛,最后胜出的4支球队进行半决赛,半决赛胜出的2支球队决出冠、亚军,另外2支球队决出三、四名.(1)本届世界杯分在C 组的4支球队有阿根廷、沙特、墨西哥、波兰,请用表格列一个C 组分组积分赛对阵表(不要求写对阵时间).(2)请简要说明本届世界杯冠军阿根廷队在决赛阶段一共踢了多少场比赛?(3)请简要说明本届世界杯32支球队在决赛阶段一共踢了多少场比赛?21.(8分)(2023·福建厦门·统考模拟预测)“歌唱家在家唱歌”“蜜蜂酿蜂蜜”这两句话从左往右读和从右往左读,结果完全相同.文学上把这样的现象称为“回文”,数学上也有类似的“回文数”,比如252,7887,34143,小明在计算两位数减法的过程中意外地发现有些等式从左往右读的结果和从右往左读的结果一样,如:65―38=83―56;91―37=73―19;54―36=63―45.数学上把这类等式叫做“减法回文等式”.(1)①观察以上等式,请你再写出一个“减法回文等式”;②请归纳“减法回文等式”的被减数ab (十位数字为a ,个位数字为b )与减数cd 应满足的条件,并证明.(2)两个两位数相乘,是否也存在“乘法回文等式”?如果存在,请你直接写出“乘法回文等式”的因数xy 与因数mn 应满足的条件.22.(8分)(2023·山东青岛·统考中考真题)如图①,正方形ABCD 的面积为1.(1)如图②,延长AB到A1,使A1B=BA,延长BC到B1,使B1C=CB,则四边形AA1B1D的面积为______;(2)如图③,延长AB到A2,使A2B=2BA,延长BC到B2,使B2C=2CB,则四边形AA2B2D的面积为______;(3)延长AB到A n,使A n B=nBA,延长BC到B n,使B n C=nCB,则四边形AA n B n D的面积为______.23.(8分)(2023·山东潍坊·统考中考真题)[材料阅读]用数形结合的方法,可以探究q +q 2+q 3+...+q n +…的值,其中0<q <1.例求12+++⋯++⋯的值.方法1:借助面积为1的正方形,观察图①可知12+++⋯++⋯的结果等于该正方形的面积,即12+++⋯++⋯=1.方法2:借助函数y =12x +12和y =x 的图象,观察图②可知12+++⋯++⋯的结果等于a 1,a 2,a 3,…,a n …等各条竖直线段的长度之和,即两个函数图象的交点到x 轴的距离.因为两个函数图象的交点(1,1)到x 轴的距为1,所以,12+++⋯++⋯=1.【实践应用】任务一 完善23+++⋯++⋯的求值过程.方法1:借助面积为2的正方形,观察图③可知23+++⋯++⋯=______.方法2:借助函数y =23x +23和y =x 的图象,观察图④可知因为两个函数图象的交点的坐标为______,所以,23+++⋯++⋯=______.任务二 参照上面的过程,选择合适的方法,求34+++⋯++⋯的值.任务三 用方法2,求q +q 2+q 3+⋯+q n +⋯的值(结果用q 表示).【迁移拓展】的矩形是黄金矩形,将黄金矩形依次截去一个正方形后,得到的新矩形仍是黄金矩形.观察图⑤+++⋯++⋯的值.。
人教版中考第一轮复习九年级第一章:数与式(含答案)
![人教版中考第一轮复习九年级第一章:数与式(含答案)](https://img.taocdn.com/s3/m/b3573af1bb4cf7ec4afed09f.png)
第一章:数与式 1.1:实数考点一:实数的相关概念 实数 ✧实数的分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负无理数负分数负有理数负实数零正无理数正整数正有理数正实数实数✧ 实数大小的比较在数轴上表示两个数的点,右边的点表示的数 ,左边的点表示的数 。
正数大于零,负数小于零;两个正数,绝对值大的较 ;两个负数,绝对值大的较 。
设a 、b 是任意两实数:若0>-b a 。
则a b ;若0=-b a 。
则b a =;若0<-b a 。
则a b ;数轴: ✧数轴的三要素为 、正方向和单位长度。
数轴上的点与 一 一对应。
相反数、倒数、绝对值 ✧ 实数a 、b 互为相反数,则=+b a 。
实数a 、b 互为倒数,则=ab 。
✧绝对值:()()⎩⎨⎧<≥=00a a a aa 的集合意义是数轴上表示数a 的点与原点的距离。
数的乘方与开方 ✧ 负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都是0; ✧ 正数有两个平方根,负数没有平方根,0的平方根是0,正数的正的平方根叫做 。
✧ 若a b =3,则b 叫做a 的立方根。
考点1 正数、负数的意义1.(2019 滨州)2.(2019 云南)若零上8℃记作+8℃,则零下6℃记作 ℃.3.(2019 乐山)某天早晨的气温是℃,到中午升高了℃,晚上又降低了℃.则晚上的温度是 .4.(2019 乐山)4.一定是( )A. 正数B. 负数C.0D.以上选项都不正确 考点2 实数及其分类1.(2019·玉林)下列各数中,是有理数的是( )A .ΠB .1.2 C. 2 D.33 2.(2018·重庆)下列四个数中,是正整数的是( ) A .-1 B .0 C.12D .13.(2018·菏泽)下列各数:-2,0,13,0.020 020 002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1(2018巴中)1. 下列各数:,0,,023,,,0.30003……,中无理数个数为( )A . 2个B . 3个C .4个D .5个4.(2019·桂林)若海平面以上1 045米,记作+1 045米,则海平面以下155米,记作( ) A .-1 200米 B .-155米 C .155米 D .1 200米考点3 数轴、相反数、绝对值、倒数 5.(2019·威海)-3的相反数是( )A .-3B .3 C.13 D .-136.(2019·德州)-12的倒数是( )A .-2 B.12 C .2 D .17.(2019·遂宁)-|-2|的值为( )A. 2 B .- 2 C .± 2 D .28.(2019·陇南)如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是( )A.0 B.1 C.2 D.39.(2018·攀枝花)如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q10.(2019·成都)若m+1与-2互为相反数,则m的值为.考点4 科学记数法和近似数11.(2019·荆门)已知一天有86 400秒,一年按365天计算共有31 536 000秒,用科学记数法表示31 536 000正确的是( )A.3.153 6×106 B.3.153 6×107 C.31.53 6×106 D.0.315 36×108 12.(2019·潍坊)“十三五”以来,我国启动实施了农村饮水安全巩固提升工程.截止去年9月底,各地已累计完成投资1.002×1011元.数据1.002×1011可以表示为( )A.10.02亿 B.100.2亿 C.1 002亿 D.10 020亿13.(2019·烟台)某种计算机完成一次基本运算的时间约为1纳秒(ns),已知1纳秒=0.000 000 001秒,该计算机完成15次基本运算,所用时间用科学记数法表示为( )A.1.5×10-9秒 B.15×10-9秒 C.1.5×10-8秒 D.15×10-8秒14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是( )A.131 000 B.0.131×106 C.1.31×105 D.13.1×104【能力提升】15.(2019·天水)已知|a|=1,b是2的相反数,则a+b的值为( )A.-3 B.-1 C.-1或-3 D.1或-316.(2019·枣庄)点O,A,B,C在数轴上的位置如图所示,O为原点,AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A.-(a+1) B.-(a-1) C.a+1 D.a-117.(2019·泰安)2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A.4.2×109米 B.4.2×108米 C.42×107米 D.4.2×107米第2讲实数的运算【基础过关】考点1 平方根、算术平方根、立方根1.(2018·安顺)4的算术平方根是( )A .± 2 B. 2 C .±2 D .2 2.(2019·烟台)-8的立方根是( )A .2B .-2C .±2D .-2 2 3.(2019·南京)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根 4.(2019·通辽)16的平方根是( )A .±4B .4C .±2D .+2 考点2 实数的大小比较5.(2019·菏泽)下列各数中,最大的数是( )A .-12 B.14 C .0 D .-26.(2019·常德)下列各数中比3大比4小的无理数是( )A.10B.17 C .3.1 D.1037.(2019·宜昌)如图,A ,B ,C ,D 是数轴上的四个点,其中最适合表示无理数π的点是( )A .点AB .点BC .点CD .点D 考点3 实数的运算8.(2019·淄博)比-2小1的数是( )A .-3B .-1C .1D .3 9.(2019·天津)计算(-3)×9的结果等于( )A .-27B .-6C .27D .6 10.(2019·聊城)计算:(-13-12)÷54= .11.(2019·十堰)计算:(-1)3+|1-2|+38.12.(2019·黄石)计算:(2 019-π)0+|2-1|-2sin45°+(13)-1.【能力提升】13.(2019·广东)实数a ,b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a>bB .|a|<|b|C .a +b>0 D.ab<014.(2019·贺州)计算11×3+13×5+15×7+17×9+…+137×39的结果是( )A.1937 B.1939 C.3739 D.383915.(2018·潍坊)用教材中的计算器进行计算,开机后依次按下3x 2=,把显示结果输入如图的程序中,则输出的结果是 .16.64的算术平方根是 。
2023年中考数学一轮知识点梳理一 数+与+式
![2023年中考数学一轮知识点梳理一 数+与+式](https://img.taocdn.com/s3/m/f52677df162ded630b1c59eef8c75fbfc67d9447.png)
[非常点评] (1) 一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.(2) 求一个数的绝对值通常就是直接依据绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.(3) 求倒数有以下技巧:① 求整数的倒数,可以把整数看成分母为1的分数,再把这个分数的分子、分母颠倒位置即可;② 求分数的倒数,只要把这个分数的分子、分母颠倒位置即可;③ 求一个小数的倒数,要先把小数转化为分数,再求其倒数;④ 求一个带分数的倒数,要先把带分数转化为假分数,再求其倒数.
相同
相加
绝对值较大
较大的绝对值
较小的绝对值
0
相反数
正
负
正
负
倒数
乘方、开方
乘除
加减
括号
左
右
加法交换律
加法结合律
乘法交换律
乘法结合律
乘法分配律
考点一 有理数的意义例1 (2022·河池)如果将“收入50元”记作“+50元”,那么“支出20元”记作 ( )A. +20元 B. -20元C. +30元 D. -30元[思路点拨] 正数和负数表示一对相反意义的量,本题中,规定收入为正,则支出为负.[非常点评] 本题考查了正数与负数的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在用正数和负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学第一轮《数与式》测试卷
一、选择题:(5×5’=25’) 1、下列计算中正确的是 (
)
A.
±6
B.
2=
C. 4=
D. 1-= 2、下列各式由左到右的变形中,是因式分解的为 (
)
A. a(x+y)=ax+ay
B. 244(4)4x x x x -+=-+
C. 210x 55(21)x x x -=-
D. 2163(4)(4)3x x x x x -+=+-+ 3、若1221253()()m n n m a b a b a b ++-⋅⋅=,则m+n 的值为 ( )
A.1
B.2
C.4
D.3
4、在
17,sin 606。
,0.1010010001...(每两个1
之间依次多一个零)tan 45,π, 0.15172∙
∙
中,无理数的个数是 ( )
A.1
B.2
C. 3
D.4
5、已知5,4m n a a ==,则23m n a -=______ ( )
A.
2725 B. 2564
C. 39
D. 16125 二、填空题。
(6×5’=30’)
6.-5的相反数是________________.
7.数0.0000000002078用科学记数法且保留三个有效数字为_________________. 8.已知___________),0)2(320082=+=++-n m n m 则(
9.若0.5x y n 1+与338-m y x 是同类项,则m=_______,n=__________.
10.已知分式1
2--x x
x ,当x=___时,该分式的值为0;当满足______时,该分式无意义。
11.在实数的原有运算法则中我们补充定义新运算:“⊕”如下:当a b ≥时,a 2b b =⊕,当
a b <时,a a b =⊕,则当x=10时,(20⊕x )x -(8⊕x )的值为_________。
三、解答题(共45分,第12、13题4×6’=24分,第14题21分): 12、分解因式: (1) 22x x -
(2)2()()x x y y y x ---;
13、计算:(1)2234211
()(9)();32
a b ab a b ⋅-÷-
(2
)200720082)(22sin -45
°01
2008)6tan 2
+30°
14、化简求值:(1)222141
2211
a a a a a a --⋅÷+-+-,22a a a -=其中满足
(2) 222621
4432
x x x x x x x +-⋅--++-
,x =其中。