西工大数字信号处理实验报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》实验报告学院:信息科学与工程学院专业班级:通信1303姓名学号:实验一 常见离散时间信号的产生和频谱分析一、 实验目的(1) 熟悉MATLAB 应用环境,常用窗口的功能和使用方法;(2) 加深对常用离散时间信号的理解;(3) 掌握简单的绘图命令;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号进行频域分析。

二、 实验原理(1) 常用离散时间信号a )单位抽样序列⎩⎨⎧=01)(n δ00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ0≠=n k n b )单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n c )矩形序列 ⎩⎨⎧=01)(n R N 其他10-≤≤N nd )正弦序列)sin()(ϕ+=wn A n xe )实指数序列f )复指数序列()()jw n x n e σ+=(2)离散傅里叶变换:设连续正弦信号()x t 为0()sin()x t A t φ=Ω+这一信号的频率为0f ,角频率为002f πΩ=,信号的周期为00012T f π==Ω。

如果对此连续周期信号()x t 进行抽样,其抽样时间间隔为T ,抽样后信号以()x n 表示,则有0()()sin()t nT x n x t A nT φ===Ω+,如果令w 为数字频率,满足000012s sf w T f f π=Ω=Ω=,其中s f 是抽样重复频率,简称抽样频率。

为了在数字计算机上观察分析各种序列的频域特性,通常对)(jw e X 在[]π2,0上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n), 有∑-=-=10)()(N n n jw jw k k e n x e X其中 1,,1,02-==M k k Mw k ,π 通常M 应取得大一些,以便观察谱的细节变化。

取模|)(|k jw e X 可绘出幅频特性曲线。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。

在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。

本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。

实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。

通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。

实验设置如下:1. 设置采样频率为8kHz。

2. 生成一个正弦信号:频率为1kHz,振幅为1。

3. 生成一个方波信号:频率为1kHz,振幅为1。

4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。

这体现了正弦信号和方波信号在时域上的不同特征。

实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。

在实际应用中,信号的采样和重构对信号处理的准确性至关重要。

实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。

2. 设置采样频率为8kHz。

3. 对正弦信号进行采样,得到离散时间信号。

4. 对离散时间信号进行重构,得到连续时间信号。

5. 将重构的信号通过DAC输出到示波器上进行显示。

实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。

这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。

实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。

2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。

3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。

4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。

实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。

2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。

3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。

实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。

在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。

二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。

2、数据采集卡。

三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。

在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。

2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。

通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。

3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。

四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。

2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。

3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。

4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。

(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。

五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。

通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。

2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。

课程大作业 数字信号处理实验报告

课程大作业   数字信号处理实验报告

课程大作业数字信号处理实验报告课程大作业-数字信号处理实验报告实验一信号、系统和系统响应一.实验目的1.熟悉理想采样的性质,了解信号采用前后的频谱变化,加深对采样定理的理解。

2.熟悉离散信号和系统的时域特性。

3.熟悉线性卷积的计算和编程方法:用卷积法观察和分析系统响应的时域特性。

4.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。

二、实验原理1.连续时间信号的采样这有助于理解信号从时域到频域的变化,也有助于理解信号从时域到时域的变化。

对一个连续时间信号进行理想采样的过程可以表示为该信号和个周期冲激脉冲的乘积,即a(t)?xa(t)m(t)(1-1)x?A(T)是连续信号Xa(T)的理想采样,m(T)是周期脉冲,其中XM(T)?N(t?nt)(1-2)它也可以用傅立叶级数表示为:1.吉咪?stm(t)??e(1-3)tn其中t为采样周期,?s?2?/t是采样角频率。

设xa(s)是连续时间信号xa(t)的双边拉氏变换,即有:xa(s)xa(t)e?stdt(1-4)a(t)的拉氏变换为此时理想采样信号x??1?(s)?x?a(t)edtxa(s?jm?s)(1-5)xa?tmst??作为拉普拉斯变换的特例,信号理想采样的傅里叶变换1xa(j?)??xa?j(??m?s)?(1-6)tm从方程(1-5)和(1-6)可以看出,信号理想采样后的频谱是原始信号频谱的周期扩展,其扩展周期等于采样频率。

根据香农采样定理,如果原始信号是带限信号,且采样频率高于原始信号最高频率分量的两倍,则采样后不会出现频率混淆。

在计算机处理时,不采用式(1-6)计算信号的频谱,而是利用序列的傅立a(t)?Xa(T)m(T),根据z变量叶变换计算信号的频谱,并定义序列x(n)?xa(新界)?根据X变换的定义,序列X(n)的Z变换可以得到:X(Z)?Nx(n)zn(1-7)以ej?代替上式中的z,就可以得到序列x(n)的傅立叶变换x(e)?j?nx(n)e???j?n(1-8)式(1-6)和式(1-8)具有以下关系:(j)x(ej)x(1-9)at由式(1-9)可知,在分析一个连续时间信号的频谱时,可以通过取样将有将相关性的计算转化为序贯傅里叶变换的计算。

西工大《信号与系统》实验报告

西工大《信号与系统》实验报告

西北工业大学信号与线性系统实验报告学院:班级:姓名学号:实验一 常用信号的分类与观察一、实验内容观察常用信号的波形特点及其产生方法;使用示波器对常用波形测量参数;掌握JH5004信号产生模块的操作;对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用的信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa (t )信号、钟形信号、脉冲信号等。

1、 指数信号:指数信号可表示为at Ke t f =)(。

对于不同的a 取值,其波形表现为不同的形式,如下图所示:在JH5004“信号与系统”实验平台的信号产生模块可产生a<0,t>0的at ke函数的波形。

通过示波器测量输出信号波形,测量at ke 函数的a 、K 参数。

2、 正弦信号:其表达式为)sin()(θ+⋅=t w K t f ,其信号的参数有:振幅K 、角频率w 、与初始相位θ。

其波形如下图所示:通过示波器测量输出信号测量波形,测量正弦信号的振幅K 、角频率w 参数。

3、 指数衰减正弦信号:其表达式为⎩⎨⎧><=-)0()0(0)(t Ke t t f at ,其波形如下图:4、 复指数信号:其表达式为)sin()cos()()(wt e jK wt e K e K e K t f t t t jw st ⋅⋅+⋅⋅=⋅=⋅=+σσσ一个复指数信号可分解为实、虚两部分。

其中实部包含余弦衰减信号,虚部则为正弦衰减信号。

指数因子实部表征了正弦与余弦函数振幅随时间变化的情况。

一般0<σ,正弦及余弦信号是衰减振荡。

指数因子的虚部则表示正弦与余弦信号的角频率。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实训总结

数字信号处理实训总结

数字信号处理实训总结一、实训目标本次数字信号处理实训的目标是掌握数字信号处理的基本原理,学会使用数字信号处理工具进行信号的分析、处理和优化。

我们希望通过实践操作,深入理解数字信号处理在通信、音频处理等领域的应用。

二、实训内容在这次实训中,我们主要学习了以下内容:1. 离散傅里叶变换(DFT)及其快速算法(FFT):理解了信号在频域的表现形式,学习了如何利用FFT快速计算信号的频谱。

2. 数字滤波器设计:掌握了IIR和FIR滤波器的设计方法,并在实践中应用了这些滤波器对信号进行滤波。

3. 信号调制与解调:学习了QAM、PSK等调制方式,并进行了模拟信号的调制与解调实验。

4. 频谱分析:利用工具对信号进行频谱分析,理解了信号在不同频率的分量。

5. 采样率转换:理解了采样定理,并学会了如何进行采样率转换。

三、实训过程在实训过程中,我们通过理论学习和实践操作相结合的方式,逐步深入理解数字信号处理的知识。

在掌握基本原理后,我们开始进行实验操作,利用MATLAB等工具对信号进行处理和分析。

我们通过观察和处理信号的频谱、滤波效果等,逐渐加深对数字信号处理的理解。

四、遇到的问题和解决方案在实训过程中,我们也遇到了一些问题。

例如,在进行FFT计算时,我们发现计算结果并不准确。

经过分析,我们发现是频率分辨率设置不当导致的。

通过调整频率分辨率,我们得到了准确的频谱分析结果。

另外,在进行数字滤波器设计时,我们也遇到了滤波器性能不佳的问题。

通过调整滤波器参数,我们成功地优化了滤波效果。

五、实训心得体会通过这次实训,我深刻体会到了数字信号处理在通信、音频处理等领域的重要应用。

我不仅掌握了数字信号处理的基本原理和工具使用方法,还学会了如何对信号进行分析、处理和优化。

这次实训提高了我的实践能力,也让我对数字信号处理产生了浓厚的兴趣。

我相信在未来的学习和工作中,数字信号处理将成为我的重要技能之一。

数字信号处理实验报告11-12-10

数字信号处理实验报告11-12-10

《数字信号处理》实验报告专业学号姓名实验一 利用FFT 实现快速卷积一、实验目的1.加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。

2.掌握循环卷积和线性卷积两者之间的关系。

二、实验原理用FFT 来快速计算有限长度序列的线性卷积。

这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样值()x k ,然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)。

现以FFT 求有限长序列的卷积及求有限长度序列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。

序列x(n)和h(n)的长差不多。

设x(n)的长为N 1,h(n)的长为N 2,要求∑-=-=⊗=1)()()()()(N m m n x m h n y n x n y用FFT 完成这一卷积的具体步骤如下:①为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运算,要求m N 2=(m 为整数)。

②用补零方法使x(n)和h(n)变成列长为N 的序列。

1122()01()01()01()01x n n N x n N n N h n n N h n N n N ≤≤-⎧=⎨≤≤-⎩≤≤-⎧=⎨≤≤-⎩③用FFT 计算x(n)和h(n)的N 点离散傅里叶变换。

④完成X(k)和H(k)乘积,)()()(k H k x k Y = ⑤用FFT 计算 ()Y k 的离散傅里叶反变换得*10*10)(1)(1)(⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∑∑-=--=N k nk N nk N N k W k Y N W k Y N n y三、主要实验仪器及材料微型计算机、Matlab6.5教学版。

四、实验内容1.数字滤波器的脉冲响应为()22()1/2(),8nN h n R n N ==。

西北工业大学Matlab实验报告

西北工业大学Matlab实验报告

西北工业大学《基于MATLAB的数字信号处理》实验报告学院:计算机学院学号:姓名:专业:计算机科学与技术西北工业大学2017年 07 月实验二 MATLAB 基本编程实验一、实验目的及要求1. 回顾数字信号处理的主要内容;2. 掌握利用MATLAB 进行信号处理的方法;3. 了解信号处理工具箱中一些函数的功能;二、实验设备(环境)及要求1. 计算机2. Matlab 软件编程实验平台三、实验内容1 .任何实数序列x(n)都能分解成为它的偶部分量和奇部分量之和,编写一个MATLAB 函数文件,该函数的功能是将一给定序列分解成为它的偶部分量和奇部分量。

并通过M 文件或命令行调用该函数文件将以下序列分解成为偶部分量和奇部分量。

0.05()sin(0.1/3), 0n 100n x n e n ππ-=+≤≤441()10.8145j j j e H e e ωωω--+=-plot(w1,180/pi*(angle(h1)));xlabel('frequency Hz');ylabel('phase');title('巴特沃斯的相频特性');%椭圆带通滤波器rs=60;rp=0.1; %椭圆带通滤波器的指标[B,A]=ellip(N,rp,rs,wn)[h2,w2]=freqz(B,A,256,fs);subplot(2,3,3)plot(w2,20*log10(abs(h2)/max(abs(h2))));xlabel('frequency Hz');ylabel('magnitude /dB');title('椭圆滤波器的幅频特性');subplot(2,3,6)plot(w2,180/pi*(angle(h2)));xlabel('frequency Hz');ylabel('phase');title('椭圆滤波器的相频特性');六、实验结果1.原始序列及得到的奇偶序列如下图所示2.3 输入序列与滤波器的输出序列如下图所示3.带通滤波器设计根据上图结构可以看出:巴特沃斯带通滤波器的通带无波动,且设计出来的滤波器结构简单,相频变化表现较差,但带外衰减速度较慢。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。

二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。

其主要内容包括采样、量化、滤波、变换分析、重建等。

其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。

频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。

采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。

三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。

采集的信号包括噪声信号、含有正弦波和方波的混合信号等。

2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。

这一步通常通过ADC(模数转换器)实现。

3.滤波处理:将量化后的数字信号输入到数字滤波器中。

我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。

4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。

5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。

我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。

四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。

这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。

2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。

在频域分析中,我们可以更清楚地看到信号的频率特性。

例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。

数字信号处理2实验报告一西交大殷

数字信号处理2实验报告一西交大殷

数字信号处理II实验报告实验题目:维纳滤波器的计算机实现姓名:学号:班级:专业:一、实验目的1.利用计算机编程实现加性噪声信号的维纳滤波。

2.将计算机模拟实验结果与理论分析结果相比较,分析影响维纳滤波效果的各种因素,从而加深对维纳滤波的理解。

3.利用维纳一步纯预测方法实现对信号生成模型的参数估计。

二、实验原理维纳滤波是一种从噪声背景中提取信号的最佳线性滤波方法,假定一个随机信号x(n)具有以下形式:(n)s(n)v(n)x =+ 1-1其中,s(n)为有用信号,v(n)为噪声干扰,将其输入一个单位脉冲响应为h(n)的线性系统,其输出为(n)(m)x(n m)y h ∞-∞=-∑ 1-2 我们希望x(n)通过这个系统后得到的y(n)尽可能接近于s(n),因此,称y(n)为信号s(n)的估值。

按照最小均方误差准则,h(n)应满足下面的正则方程:(k)(m)(k m)xs xx h φφ∞-∞=-∑ 1-3 这就是著名的维纳-霍夫方程,其中是 (m)xx φ是x(n)的自相关函数,()xs m φ是 x(n)和s(n)是的互相关函数。

在要求 h(n)满足因果性的条件下,求解维纳-霍夫方程是一个典型的难题。

虽然目前有几种求解 h(n)的解析方法,但它们在计算机上实现起来非常困难。

因此,本实验中,利用近似方法,即最佳 FIR 维纳滤波方法,在计算机上实现随机信号的维纳滤波。

设 h(n)为一因果序列,其长度为 N ,则(n)(m)x(n m)y h ∞-∞=-∑ 1-4 同样利用最小均方误差准则,h(n)满足下面方程:xx xs R h r = 1-5 其中 [](0),h(1),,h(N 1)T h h =-(0)(1)(N 1)(0)xx xx xx xx xx N R φφφφ-+⎛⎫⎪= ⎪ ⎪-⎝⎭[](0)(N 1)T xs xs xs r φφ=- 当xx R 为满秩矩阵时,1xx xs h R r -= 1-6 由此可见,利用有限长的 h(n)实现维纳滤波器,只要已知xx R 和xs r ,就可以按上式解得满足因果性的 h 。

数字信号处理实习报告模板

数字信号处理实习报告模板

实习报告实习单位:__________实习时间:____年__月__日至____年__月__日实习生:_______指导老师:________一、实习背景及目的随着现代电子技术的快速发展,数字信号处理(Digital Signal Processing,简称DSP)已经在通信、音视频、图像处理、医疗保健、汽车电子等领域得到广泛应用。

为了更好地了解并掌握DSP技术,提高自己在电子信息技术领域的实际操作能力,我选择了数字信号处理实习项目。

本次实习的主要目的是:1. 学习并掌握DSP基本原理、算法和应用。

2. 熟悉DSP硬件设备及其编程环境。

3. 学会使用DSP开发工具进行程序设计和调试。

4. 结合实际项目,锻炼自己解决实际问题的能力。

二、实习内容及过程1. DSP基本原理学习在实习初期,我首先学习了DSP的基本原理,包括信号采样、量化、DSP算法、数字滤波器设计等。

通过学习,我对DSP技术有了更深入的了解,为后续的实际操作奠定了基础。

2. DSP硬件设备熟悉在掌握基本原理后,我开始接触DSP硬件设备。

实习单位提供了多种DSP开发板和实验设备,我通过阅读硬件手册、参考资料,了解了各种设备的硬件结构和接口规范。

在指导老师的帮助下,我学会了如何使用示波器、信号发生器等仪器进行硬件调试。

3. DSP编程实践接下来,我开始了DSP编程实践。

首先,我学会了使用DSP编程环境(如CCS、MATLAB等)进行程序设计。

在熟悉编程环境的基础上,我开始编写简单的DSP程序,如信号发生器、数字滤波器等。

在编程过程中,我遇到了许多问题,但在指导老师的帮助下,逐一解决了这些问题。

4. 实际项目锻炼实习期间,我参与了一个实际项目,负责设计一个基于DSP的音频处理系统。

在项目过程中,我学会了如何分析项目需求、设计系统架构、编写程序代码、调试和优化系统。

通过这个项目,我锻炼了自己解决实际问题的能力,并对DSP技术在实际应用中的重要性有了更深刻的认识。

数字信号处理实习报告模板

数字信号处理实习报告模板

一、实习基本信息1. 实习单位:(实习单位名称)2. 实习时间:(实习开始时间)至(实习结束时间)3. 实习导师:(导师姓名及职称)4. 实习学生:(学生姓名及学号)二、实习目的与意义1. 实习目的- 熟悉数字信号处理的基本概念、原理和方法。

- 掌握数字信号处理软件的使用,如MATLAB等。

- 培养动手能力和实际操作能力。

- 了解数字信号处理在工程中的应用。

2. 实习意义- 提高学生对数字信号处理理论知识的理解和应用能力。

- 增强学生的实践操作能力和创新意识。

- 培养学生的团队合作精神和沟通能力。

三、实习内容与过程1. 实习内容- 数字信号处理基本理论的学习。

- 数字信号处理软件MATLAB的使用。

- 数字信号处理实验项目的完成。

2. 实习过程- 第一阶段:理论学习阶段。

主要学习数字信号处理的基本概念、原理和方法,了解数字信号处理软件MATLAB的使用方法。

- 第二阶段:实验准备阶段。

根据实习指导书的要求,选择合适的实验项目,准备实验所需的数据和工具。

- 第三阶段:实验实施阶段。

按照实验步骤进行实验,记录实验数据,分析实验结果,撰写实验报告。

- 第四阶段:总结与反思阶段。

对实验过程和结果进行总结,反思实验中的不足,提出改进措施。

四、实习成果1. 理论知识掌握情况- 熟悉数字信号处理的基本概念、原理和方法。

- 掌握数字信号处理软件MATLAB的使用。

2. 实验项目完成情况- 完成指定实验项目,如滤波器设计、频谱分析等。

- 实验数据准确,分析结果合理。

3. 实习报告撰写情况- 实习报告结构完整,内容丰富,语言表达清晰。

- 实习报告反映了实习过程中的收获和体会。

五、实习心得与体会1. 实习收获- 对数字信号处理理论有了更深入的理解。

- 提高了实际操作能力和解决问题的能力。

- 培养了团队合作精神和沟通能力。

2. 实习体会- 理论与实践相结合是提高学习效果的关键。

- 养成良好的学习习惯和严谨的工作态度。

- 坚持创新意识,勇于尝试新方法。

数字信号的实验报告总结

数字信号的实验报告总结

一、实验背景数字信号处理是现代通信、电子技术、计算机科学等领域的重要基础。

随着科技的不断发展,数字信号处理技术已经广泛应用于各个领域。

为了更好地理解和掌握数字信号处理技术,我们进行了数字信号实验,通过实验加深对数字信号处理理论知识的理解和实际应用。

二、实验目的1. 理解数字信号与模拟信号的区别,掌握数字信号的基本特性。

2. 掌握数字信号的采样、量化、编码等基本过程。

3. 熟悉数字信号处理的基本方法,如滤波、变换等。

4. 提高动手实践能力,培养创新意识。

三、实验内容1. 数字信号的产生与观察首先,我们通过实验软件生成了一些基本的数字信号,如正弦波、方波、三角波等。

然后,观察这些信号在时域和频域上的特性,并与模拟信号进行对比。

2. 数字信号的采样与量化根据奈奎斯特采样定理,我们选取合适的采样频率对模拟信号进行采样。

在实验中,我们设置了不同的采样频率,观察信号在时域和频域上的变化,验证采样定理的正确性。

同时,我们还对采样信号进行了量化,观察量化误差对信号的影响。

3. 数字信号的编码与解码为了便于信号的传输和存储,我们对数字信号进行了编码。

在实验中,我们采用了两种编码方式:脉冲编码调制(PCM)和非归一化脉冲编码调制(A律PCM)。

然后,我们对编码后的信号进行解码,观察解码后的信号是否与原始信号一致。

4. 数字信号的滤波与变换数字滤波是数字信号处理中的重要环节。

在实验中,我们分别实现了低通滤波、高通滤波、带通滤波和带阻滤波。

通过对滤波前后信号的观察,我们了解了滤波器的作用和性能。

此外,我们还进行了离散傅里叶变换(DFT)和快速傅里叶变换(FFT)实验,掌握了信号在频域上的特性。

5. 实际应用案例分析为了更好地理解数字信号处理在实际中的应用,我们选取了两个实际案例进行分析。

第一个案例是数字音频处理,通过实验软件对音频信号进行滤波、压缩等处理。

第二个案例是数字图像处理,通过实验软件对图像进行边缘检测、图像增强等处理。

数字信号处理实验报告(全)

数字信号处理实验报告(全)

实验一、离散时间系统及离散卷积1、单位脉冲响应源程序:function pr1() %定义函数pr1a=[1,-1,0.9]; %定义差分方程y(n)-y(n-1)+0.9y(n-2)=x(n) b=1;x=impseq(0,-20,120); %调用impseq函数n=[-40:140]; %定义n从-20 到120h=filter(b,a,x); %调用函数给纵座标赋值figure(1) %绘图figure 1 (冲激响应) stem(n,h); %在图中绘出冲激title('冲激响应'); %定义标题为:'冲激响应'xlabel('n'); %绘图横座标为nylabel('h(n)'); %绘图纵座标为h(n)figure(2) %绘图figure 2[z,p,g]=tf2zp(b,a); %绘出零极点图zplane(z,p)function [x,n]=impseq(n0,n1,n2) %声明impseq函数n=[n1:n2];x=[(n-n0)==0];结果:Figure 1:Figure 2:2、离散系统的幅频、相频的分析源程序:function pr2()b=[0.0181,0.0543,0.0543,0.0181];a=[1.000,-1.76,1.1829,-0.2781];m=0:length(b)-1; %m从0 到3l=0:length(a)-1; %l从0 到3K=5000;k=1:K;w=pi*k/K; %角频率wH=(b*exp(-j*m'*w))./(a*exp(-j*l'*w));%对系统函数的定义magH=abs(H); %magH为幅度angH=angle(H); %angH为相位figure(1)subplot(2,1,1); %在同一窗口的上半部分绘图plot(w/pi,magH); %绘制w(pi)-magH的图形grid;axis([0,1,0,1]); %限制横纵座标从0到1xlabel('w(pi)'); %x座标为 w(pi)ylabel('|H|'); %y座标为 angle(H)title('幅度,相位响应'); %图的标题为:'幅度,相位响应' subplot(2,1,2); %在同一窗口的下半部分绘图plot(w/pi,angH); %绘制w(pi)-angH的图形grid; %为座标添加名称xlabel('w(pi)'); %x座标为 w(pi)ylabel('angle(H)'); %y座标为 angle(H)结果:3、卷积计算源程序:function pr3()n=-5:50; %声明n从-5到50u1=stepseq(0,-5,50); %调用stepseq函数声用明u1=u(n)u2=stepseq(10,-5,50); %调用stepseq函数声用明u2=u(n-10) %输入x(n)和冲激响应h(n)x=u1-u2; %x(n)=u(n)-u(n-10)h=((0.9).^n).*u1; %h(n)=0.9^n*u(n)figure(1)subplot(3,1,1); %绘制第一个子图stem(n,x); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('输入序列'); %规定标题为:'输入序列'xlabel('n'); %横轴为nylabel('x(n)'); %纵轴为x(n)subplot(3,1,2); %绘制第二个子图stem(n,h); %绘制图中的冲激axis([-5,50,0,2]); %限定横纵座标的范围title('冲激响应序列'); %规定标题为:'冲激响应序列'xlabel('n'); %横轴为nylabel('h(n)'); %纵轴为h(n)%输出响应[y,ny]=conv_m(x,n,h,n); %调用conv_m函数subplot(3,1,3); %绘制第三个子图stem(ny,y);axis([-5,50,0,8]);title('输出响应'); %规定标题为:'输出响应'xlabel('n');ylabel('y(n)'); %纵轴为y(n)%stepseq.m子程序%实现当n>=n0时x(n)的值为1function [x,n]=stepseq(n0,n1,n2)n=n1:n2;x=[(n-n0)>=0];%con_m的子程序%实现卷积的计算function [y,ny]=conv_m(x,nx,h,nh)nyb=nx(1)+nh(1);nye=nx(length(x))+nh(length(h));ny=[nyb:nye];y=conv(x,h);结果:实验二、离散傅立叶变换与快速傅立叶变换1、离散傅立叶变换(DFT)源程序:function pr4()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16)subplot(2,1,1); %绘制第一个子图x(n)stem(n,x); %绘制冲激title('x(n)'); %标题为x(n)xlabel('n'); %横座标为nX=dft(x,N); %调用dft函数计算x(n)的傅里叶变换magX=abs(X); %取变换的幅值subplot(2,1,2); %绘制第二个子图DFT|X|stem(n,X);title('DFT|X|');xlabel('f(pi)'); %横座标为f(pi)%dft的子程序%实现离散傅里叶变换function [Xk]=dft(xn,N)n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;结果:F=50,N=64,T=0.000625时的波形F=50,N=32,T=0.000625时的波形:2、快速傅立叶变换(FFT)源程序:%function pr5()F=50;N=64;T=0.000625;n=1:N;x=cos(2*pi*F*n*T); %x(n)=cos(pi*n/16) subplot(2,1,1);plot(n,x);title('x(n)');xlabel('n'); %在第一个子窗中绘图x(n)X=fft(x);magX=abs(X);subplot(2,1,2);plot(n,X);title('DTFT|X|');xlabel('f(pi)'); %在第二个子图中绘图x(n)的快速傅%里叶变换结果:3、卷积的快速算法源程序:function pr6()n=0:14;x=1.^n;h=(4/5).^n;x(15:32)=0;h(15:32)=0;%到此 x(n)=1, n=0~14; x(n)=0,n=15~32% h(n)=(4/5)^n, n=0~14; h(n)=0,n=15~32subplot(3,1,1);stem(x);title('x(n)');axis([1,32,0,1.5]); %在第一个子窗绘图x(n)横轴从1到32,纵轴从0到1.5 subplot(3,1,2);stem(h);title('h(n)');axis([1,32,0,1.5]); %在第二个子窗绘图h(n)横轴从1到32,纵轴从0到1.5 X=fft(x); %X(n)为x(n)的快速傅里叶变换H=fft(h); %H(n)为h(n)的快速傅里叶变换Y=X.*H; %Y(n)=X(n)*H(n)%Y=conv(x,h);y=ifft(Y); %y(n)为Y(n)的傅里叶反变换subplot(3,1,3) %在第三个子窗绘图y(n)横轴从1到32,纵轴从0到6 stem(abs(y));title('y(n=x(n)*h(n))');axis([1,32,0,6]);结果:实验三、IIR数字滤波器设计源程序:function pr7()wp=0.2*pi;ws=0.3*pi;Rp=1;As=25;T=1;Fs=1/T;OmegaP=(2/T)*tan(wp/2); %OmegaP(w)=2*tan(0.1*pi) OmegaS=(2/T)*tan(ws/2); %OmegaS(w)=2*tan(0.15*pi)ep=sqrt(10^(Rp/10)-1);Ripple=sqrt(1/(1+ep.^2));Attn=1/10^(As/20);N=ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS) ));OmegaC=OmegaP/((10.^(Rp/10)-1).^(1/(2*N)));[cs,ds]=u_buttap(N,OmegaC);[b,a]=bilinear(cs,ds,Fs);[mag,db,pha,w]=freqz_m(b,a);subplot(3,1,1); %在第一个子窗绘制幅度响应的图形plot(w/pi,mag);title('幅度响应');xlabel('w(pi)');ylabel('H');axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[0,Attn,Ripple,1]);grid;subplot(3,1,2); %在第二个子窗以分贝为单位绘制幅度响应的图形plot(w/pi,db);title('幅度响应(dB)');xlabel('w(pi)');ylabel('H');axis([0,1,-40,5]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-50,-15,-1,0]);grid;subplot(3,1,3); %在第三个子窗绘制相位响应的图形plot(w/pi,pha);title('相位响应');xlabel('w(pi)');ylabel('pi unit');%axis([0,1,0,1.1]);set(gca,'XTickmode','manual','XTick',[0,0.2,0.35,1.1]);set(gca,'YTickmode','manual','YTick',[-1,0,1]);grid;function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC.^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:实验四、FIR数字滤波器的设计源程序:function pr8()wp=0.2*pi;ws=0.35*pi;tr_width=ws-wp;M=ceil(6.6*pi/tr_width)+1;n=0:M-1;wc=(ws+wp)/2;alpha=(M-1)/2;m=n-alpha+eps;hd=sin(wc*m)./(pi*m);w_ham=(hamming(M))';h=hd.*w_ham;[mag,db,pha,w]=freqz_m(h,[1]);delta_w=2*pi/1000;Rp=-(min(db(1:wp/delta_w+1)));As=-round(max(db(ws/delta_w+1:501)));subplot(2,2,1);stem(n,hd);title('理想冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('hd(n)');subplot(2,2,2);stem(n,h);title('实际冲激响应');axis([0,M-1,-0.1,0.3]);ylabel('h(n)');subplot(2,2,3);plot(w/pi,pha);title('滤波器相位响应');axis([0,1,-pi,pi]);ylabel('pha');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-pi,0,pi]); grid;subplot(2,2,4);plot(w/pi,db);title('滤波器幅度响应');axis([0,1,-100,10]);ylabel('H(db)');set(gca,'XTickmode','manual','XTick',[0,0.2,0.3,1.1]); set(gca,'YTickmode','manual','YTick',[-50,-15,0]);function [mag,db,pha,w]=freqz_m(b,a)[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);结果:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验报告班级:姓名:学号:实验一 信号、系统及系统响应一、实验目的(1) 熟悉连续信号经理想采样前后的频谱变化关系, 加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法, 利用序列的傅里叶变换对连续信号、 离散信号及系统响应进行频域分析。

二、实验原理与方法 1. 时域采样定理:对一个连续信号xa(t)进行理想采样的过程如下: xa1(t)=xa(t)p(t)其中xa1(t)为xa(t)的理想采样,p(t)为周期冲击脉冲。

xa1(t)的傅里叶变换Xa1(j Ω)为:11()[()]m Xa j Xa j m s T+∞=-∞Ω=Ω-Ω∑表明Xa1(j Ω)为Xa(j Ω)的周期延拓,其延拓周期为采样角频率(s Ω=2π/T )。

离散信号和系统在时域均可用序列来表示。

2. LTI 系统的输入输出关系:y(n)=x(n)*h(n)=()()m x m h n m +∞=-∞-∑()()()j j j Y eX eH eωωω=三、实验内容1. 分析采样序列的特性。

1) 取模拟角频w=70.7*pi rad/s ,采样频率fs=1000Hz>2w ,发现无频谱混叠现象。

2) 改变采样频率, fs=300 Hz<2w,频谱产生失真。

3) 改变采样频率, fs=200Hz<2w,频谱混叠,产生严重失真2. 时域离散信号、系统和系统响应分析。

1) 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

2) 观察系统ha(n)对信号xc(n)的响应特性。

可发现:信号通过系统,相当于x(n)与系统函数h(n)卷积,时域卷积即对应频域函数相乘。

3. 卷积定理的验证。

四、 思考题1、在分析理想采样序列特性的实验中,采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量是否都相同?它们所对应的模拟频率是否相同?为什么?答:模拟频率Ω与采样频率无关,因此当采样频率不同时,相应理想采样序列的傅里叶变换频谱的模拟频率度量相同。

数字频率度量ω=ΩT ,因此当采样频率不同时,相应理想采样序列的傅里叶变换频谱的数字频率度量不同。

2、在卷积定理验证的实验中,如果选用不同的频率采样点数M 值,例如,选M=10和M=20,分别做序列的傅里叶变换,求得Y (kjw e )=X a (kjw e )H b (kjw e ), k=0,1,2…,M-1 所得结果有无差异?为什么?答:有差异。

因为有:,2k Mk πω=(k=0,1,2,…,M -1)当M 不同时,ωk取值不同。

不难看出M=20时的采样点数是M=10时的2倍。

为能观察谱的细节变化,一般应将M 取大一些。

实验二 用FFT 对信号作频谱分析一、 实验目的学习用FFT 对连续信号和时域离散信号进行频谱分析(也称频谱分析)的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。

二、 实验内容及图形 1. 对以下序列进行谱分析)()(41n R n x = ⎪⎩⎪⎨⎧<=<=-<=<=+=n 0748301)(2其它n nn n n x ⎪⎩⎪⎨⎧<=<=-<=<=-=nn n n n n x 其它0743304)(3 选择FFT 的变化区间N 为8和16的两种情况进行频谱分析。

对其幅频特性曲线进行对比、分析和讨论。

)(1n x 频谱特性曲线n=8 n=16)(2n x 频谱特性曲线n=8 n=16)(3n x 频谱特性曲线n=8 n=16结论:观察得,DFT 采样结果因采样点数不同而变化。

16点采样比8点采样更接近实际信号频谱,因此在频域采样中应尽可能增加采样点数。

2. 对以下周期序列进行谱分析)*4/cos()(4n pi n x = )*8/cos()*4/cos()(5n pi n pi n x +=选择FFT 的变化区间N 为8和16的两种情况进行频谱分析。

对其幅频特性曲线进行对比、分析和讨论。

)(4n x 频谱特性曲线n=8 n=16结论:观察得,DFT 采样结果因采样点数不同而变化。

3. 对模拟周期信号进行谱分析:)**20cos()**16cos()**8cos()(6t pi t pi t pi n x ++=选择FFT 的变化区间N=16、32、64的三种情况进行频谱分析。

对其幅频特性曲线进行对比、分析和讨论。

)(6n x 频谱特性曲线n=16 n=32 n=64三、 思考题1. 在N=8时,x 2(n)和x 3(n)的幅频特性会相同吗?为什么?N=16呢? 答: 在N=8时,x 2(n)和x 3(n)的幅频特性相同x 3(n)= x 2((n-4))8, 0≤n ≤7DFT(x 3(n))= e -j(2π/8)k4 X 2[k]=e-j πkX 2[k] 所以x 2(n)和x 3(n)的幅频特性相同。

N=16时不相同。

N=16时,x 2(n)和x 3(n)均需补零,不再满足循环位移。

2. 如果周期信号的周期预先不知道,如何用FFT 进行谱分析? 答: 如果周期信号的周期预先不知道,可先截取M 点的进行FFT ,即~()()()M M x n x n R n =∙()[()]M M X k D FT x n = 01k M ≤≤-再将截取长度扩大1倍,截取~22()()()M M x n x n R n =∙22()[()]M M X k DFT x n = 021k M ≤≤-比较()M X k 和2()M X k ,如果二者的主谱差别满足分析误差要求,则以()M X k 或2()M Xk 可近似表示 ~()x n 的频谱,否则,继续截取长度加倍,直至前后两次分析所得主谱频率差别满足误差要求。

实验三用双线形变换法设计IIR数字滤波器一、实验目的1. 熟悉用双线性变换法设计IIR数字滤波器的原理和方法;2. 掌握数字滤波器的计算机仿真方法;3. 通过观察率波器输入输出信号的是与波形及其频谱,建立数字滤波的概念。

二、实验内容及图形1、用所设计的滤波器对实际心电图信号采样序列(在本实验后面给出)进行仿真滤波处理,并分别打印出滤波前后的心电图信号波形图,观察总结滤波作用与效果。

2、用所设计的滤波器对正弦信号采样序列(在本实验后面给出)进行仿真滤波处理,并分别打印出滤波前后的正弦信号波形图,观察总结滤波作用与效果。

四、思考题用双线性变换法设计数字滤波器过程中,变换公式11112--+-=zz T s 中T 的取值,对设计结果有无影响? 为什么? 答:无影响,因为数字滤波器的传输函数H (e jw )以2π为周期,最高频率在πω=处,因此,s ω<π,按照线性关系T s s /ω=Ω,那么一定满足T s /π<Ω,因此T 可以任选。

在数字滤波器的设计过程中,设计问题起始于数字滤波器上的传输函数)(jwkeX 的技术要求,当这些技术要求通过变换公式11112--+-=z zT s 得到模拟滤波器的传输函数H C (s)的技术要求并设计出模拟滤波,然后模拟滤波器的传输函数H C (s)再通过公式变换得到数字滤波器的传输函数)(jwkeX ,这样取值T 对设计的影响就被抵消,因此T 的取值对设计结果没有影响。

实验四:用窗函数法设计FIR 数字滤波器一、实验目的1. 掌握用窗函数设计FIR 数字滤波器的原理和方法;2. 熟悉线性相位FIR 数字滤波器特性;3. 了解各种窗函数对滤波特性的影响 二、实验内容及图形用不同的窗函数设计低通滤波器,观察滤波器的幅频、相频特性。

实验中,去窗函数长度为32,逼近理想低通滤波器截止频率0.5pi 。

矩形窗Hamming窗Hanning窗Blackman窗四、思考题:1. 如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器? 写出设计步骤。

答:①根据技术要求,确定带通滤波器的单位取样响应h d(n).如果给出通带阻带衰减和边界频率的要求,可选定理想滤波器作为逼近函数,从而用理想滤波器的特性作傅里叶逆变换,求出h d(n)。

()d h n sin (())()c n n ωαπα-=-②根据对过渡带及阻带衰减的要求选择窗函数的形式,并估计窗口长度N 。

按照过渡带及阻带衰减情况,选择窗函数形式。

原则是在保证阻带衰减情况满足要求的情况下,尽量选择主瓣窄的窗函数。

③计算滤波器的单位取样响应h(n)h(n)=h d (n)ω(n)④验证技术指标是否满足要求。

设计出的滤波器频率响应用下式计算:nj N n j en h e H ωω--=∑=)()(1如果不满足要求,根据具体情况重复②③④,直到满足要求为止。

(2) 如果要求用窗函数法设计带通滤波器,且给定上、下边带截止频率为ω1和ω2,求理想带通的单位脉冲响应h d (n)。

答:如果要求用窗函数法设计带通滤波器,且给定上、下边带截止频率为ω1和ω2,则理想带通的单位脉冲响应h d (n)2为:211()2j j nd h n eed ωωαωωωπ-=⎰21()12j n ed ωωαωωπ-=⎰21()()2()j n j n eej n ωαωαπα---=-。

相关文档
最新文档