AISC美国钢结构规范中文I

合集下载

中文版美国钢结构建筑设计规范(ANSI-AISC-360-05_)

中文版美国钢结构建筑设计规范(ANSI-AISC-360-05_)

ANSI/AISC 360-05美国国家标准钢结构建筑设计规范2005年3月9日发布本规范取代下列规范:1999年12月27日颁布的《钢结构建筑设计规范:荷载和抗力系数设计法》(LRFD)、1989年6月1日颁布的《钢结构建筑设计规范:容许应力设计法和塑性设计法》、其中包括1989年6月1日颁布的附录1《单角钢杆件的容许应力法设计规范》、2000年11月10日颁布的《单角钢杆件的荷载和抗力系数设计法设计规范》、2000年11月10日颁布的《管截面杆件的荷载和抗力系数设计法设计规范》、以及代替上述规范的所有从前使用的相关版本。

本规范由美国钢结构协会委员会(AISC)及其理事会批准发布实施。

本规范由美国钢结构协会规范委员会(AISC)审定,由美国钢结构协会董事会出版发行。

美国钢结构学会One East Wacker Drive,Suite 700芝加哥,伊利诺斯州60601-1802版权©2005美国钢结构学会拥有版权保留所有权利。

没有出版人的书面允许,不得对本书或本书的任何部分以任何形式进行复制。

本规范中所涉及到的相关信息,基本上是根据公认的工程原理和原则进行编制的,并且只提供一般通用性的相关信息内容。

虽然已经提供了这些精确的信息,但是,这些信息,在未经许可的专业工程师、设计人员或建筑工程师对其精确性、适用性和应用范围进行专业审查和验证的情况下,不得任意使用或应用于特定的具体项目中。

本规范中所包含的相关材料,并非对美国钢结构协会的部分内容进行展示或担保,或者,对其中所涉及的相关人员进行展示或担保,并且这些相关信息在适用于任何一般性的或特定的项目时,不得侵害任何相关专利权益。

任何人在侵权使用这些相关信息时,必须承担由此引起的所有相关责任。

必须注意到:在使用其它机构制订的规范和标准时,以及参照相关标准制订的其它规范和标准时,可以随时对本规范的相关内容进行修订或修改并且随后印刷发行。

本协会对未参照这些标准信息材料,以及未按照标准规定在初次出版发行时不承担由此引起的任何责任。

2005版美国钢结构设计规范_部分简介_中文

2005版美国钢结构设计规范_部分简介_中文

2005版美国钢结构设计规范摘要美国钢结构协会成立于1921年,在1923年发行了第一版美国钢结构建筑设计规范.这本规范基于容许应力设计原则,长达十页,后来又发行了其他版本,一直到1989年的第九版本,但自从第八版本(1978)以后就没什么实质性的变化了。

极限状态设计,在美国又被称为荷载和抗力分项系数设计(LRFD),在第一版本的LRFD规范中被正式介绍,它基于超过15年的大量研究和改进,又被修改过两次,现在使用的是第三版本(1999)。

两本规范的同时存在对美国的设计人员和工业发展都带来了麻烦,AISC因此同意制定一部唯一并且标准统一的钢结构设计规范。

这部规范直到2005年8月13日才被审核通过,介绍了很多重要的概念,包括名义强度准则的使用与适当措施结合以提高可靠性的方法。

在许多其他方面的改进中,框架体系稳定性和支护设计有重大的进步,包括采用塑性准则的新设计方法。

关键词规范可靠性名义强度稳定性标准塑性连接设计组合设计论文纲要1介绍2基本设计理念2.1容许应力设计2.2荷载与阻力因素设计2.2.1强度不足和超载3 2005年AISC说明书3.1 背景3.2 格式规范3.3 基本设计要求4 新规范内容布置4.1内容概述4.2总则4.3设计要求B1 总则B3.6连接点B3.6.1简单连接B3.6.2弯矩连接4.4稳定性设计分析4.4.1稳定性设计要求4.4.2需求强度计算4.5 构件抗拉设计4.6 构件抗压设计4.7 构件抗弯设计4.8 构件抗剪设计4.9 构件组合受力设计和抗扭设计4.10 组合构件设计4.11 连接设计4.12高速钢和箱形构件连接设计5 注释6 摘要参考文献1.介绍1923版美国钢结构设计规范制定的目的是解决那个时候设计人员所面临的一系列问题。

虽然美国材料试验协会(ASTM)制定的钢材和其他材料性能标准是可用的,但仍然没有全国统一的建筑设计规范。

因此,个别州或城市有自己的要求,并且有时候设计特定的建筑甚至有多种规则可以使用,比如,那时候建造的一些桥梁必须遵守由桥梁当局制定的详细的规定,而当局又常常和杰出的设计者或制造商勾结。

美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(4)

美国ANSI/AISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(4)

美国ANSI/A ISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(4)李志明(中冶集团建筑研究总院 北京 100088)摘 要 2002年1月31日,美国钢结构协会(AISC)和AISC规范委员会正式批准发布《钢结构建筑抗震设计规定》。

本文为《钢结构建筑抗震设计规定》介绍(3)之续篇,对“规定”中“钢结构建筑”部分的第13~16章节,包括特殊中心支撑抗弯框架(SCBF)、普通中心支撑抗弯框架(OCBF)和偏心支撑抗弯框架(EBF)方面的有关内容进行了介绍并作了必要的说明。

关键词 特殊中心支撑抗弯框架(SCBF) 普通中心支撑抗弯框架(OCBF) 偏心支撑抗弯框架(EBF)INTR OD UCTION T O“SEISMIC PR OVISIONS FOR STRUCTURALSTEE L BUI LDING S”(ANSI/AISC SSPEC-2002)(4)Li Zhiming(Central Research Institute of Building and Construction,MCC Group Beijing 100088)ABSTRACT “Seismic Provision for Structural Steel Buildings”(ANSI/AISC SSPEC-2002)was approved by AISC committe on s pecifications and issue by the AISC Broad of Directors dated January31,20021This paper introduces mainly the key contents of sections13to16in Part1,includin g Special Concentrically Braced Frames(SCBF),Ordinary Concentrically Braced Frames(OCBF)and Eccentrically Braced Frames(EBF)of the Provisions,where the relevant contents are explained1The other sections will be introduced later1KE Y WOR DS special concentrically braced frames(SCBF) ordinary concentrically braced frames(OCBF) eccentrically braced frames(EBF)13 特殊中心支撑抗弯框架(SCBF)1311 适用范围特殊中心支撑抗弯框架(SCBF)应能承受在设计地震动(Design Earthquake)作用下所产生的显著的弹塑性变形。

美国钢铁协会标准AISI1(中英文对照)

美国钢铁协会标准AISI1(中英文对照)

美国钢铁协会标准,AISI标准About AISIFor over a century, North American steel producers have left their day-to-day rivalries behind to work as partners and members of the American Iron and Steel Institute in furthering its mission to promote steel as the material of choice and to enhance the competitiveness of the North American steel industry and its member companies.AISI's overall mission centers around common goals and a clear vision for the future:To provide high-quality, value-added products to a wide array of customers;lead the world in innovation and technology in the production of steel;produce steel in a safe and environmentally friendly manner; and increase the market for North American Steel in both traditional and innovative applications.近一个世纪以来,北美钢铁商已经将在他们背后工作的对手作为美国钢铁协会的伙伴和成员了。

在将来,其目的是促使钢铁成为材料首选,并增强北美钢铁业和其成员公司的竞争力。

美国ANSI_AISCSSPEC_2002_钢结构建筑抗震设计规定_介绍_2_

美国ANSI_AISCSSPEC_2002_钢结构建筑抗震设计规定_介绍_2_
Li Zhiming
(Central Research Institute of Building and Construction ,MCC Group Beijing 100088)
8 构 件 811 适用范围
812 局部屈曲
地震荷载抗力体系中的所有构件应符合 “L RFD 规范” 第二章 ( Chapter B) 表 B5. 1 中 λ p 限值的规定 , 并满足本节表
国际科技交流
美国 AN SI/ A ISC SSP EC - 2002 《钢结构建筑抗震设计规定》 介绍 ( 2)
李志明
( 中冶集团建筑研究总院 北京 100088)
INTROD UCTION TO“SEISMIC PROVISIONS FOR STRUCTURAL STEEL BUILD INGS” ( ANSI/ AISC SSPEC - 2002 ) ( 2 )
R y Fy 是柱材料的屈取强度期望值 , A f 是相连柱中较小者的
桩中拉力应通过剪力键 、 插入桩帽部分的焊接钢筋或栓 钉等方法传至桩帽 。从桩帽底部算起 ,在至少 1 倍截面高的 桩长范围内不能有附着物和焊缝及焊点 。
9 特殊抗弯框架( SMF) 911 适用范围
特殊抗弯框架 ( SMF) 应能承受在设计地震动 ( Design
当不考虑放大地震荷载 , 柱的 Pu/ (ΦPn ) ( 式中 , Pu 为
) 值大于 柱承载力 ; Pn 为柱轴向强度标准值 ;Φ 为抗力系数 。 ) ) 014 时 ,其承载力应符合本节第 1 和第 2 条的规定 。
1) 在不考虑任何外加弯矩作用的情况下 ,可按有关现行 建筑规范中包括放大地震荷载的荷载组合来确定柱的轴向
913 梁柱连接的节点域 ( 梁腹板与柱腹板平行)

美国钢结构建筑设计规范(ANSI-AISC-360-05)

美国钢结构建筑设计规范(ANSI-AISC-360-05)

关于钢结构建筑设计规范的条文说明(本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。

)序言本设计规范旨在提供完善的标准设计之用。

本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。

本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。

术语表本条文说明使用的下列术语不包含在设计规范的词汇表中。

在本条文说明文本中首次出现的术语使用了斜体。

准线图。

用于决定某些柱体计算长度系数K的列线图解。

双轴弯曲。

某一构件在两垂直轴同时弯曲。

脆性断裂。

在没有或是只有轻微柔性变形的情况下突然断裂。

柱体弧线。

表达砥柱强度和直径长度比之间关系的弧线。

临界负荷。

根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。

循环负荷。

重复地使用可以让结构体变得脆弱的额外负荷。

位移残损索引。

用于测量由内部位移引起的潜性损坏的参变量。

有效惯性矩。

构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力和外加应力共同作用下),仍然保持其弹性。

同理,基于局部歪曲构件的有效宽度的惯性矩。

同理,用于设计部分组合构件的惯性矩。

有效劲度。

通过构件横截面有效惯性矩计算而得的构件劲度。

疲劳界限。

不计载荷循环次数,不发生疲劳断裂的压力范围。

一阶逆性分析。

基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。

柔性连接。

连接中,允许构件末端简支梁的一部分发生旋转,而非全部。

挠曲。

受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。

非弹性作用。

移除促生作用力后,材料变形仍然不消退的现象。

非弹性强度。

当材料充分达到屈服应力时,结构体或是构件所具有的强度。

美国国家标准建筑钢结构规范中Ⅰ形截面厚实腹板高厚比限值的介绍

美国国家标准建筑钢结构规范中Ⅰ形截面厚实腹板高厚比限值的介绍

2D cp / tw ≤λpw (Dcp , =
0154
E /Fy M p - 0109
2
≤λrw
D cp Dc
(5)
RhM y
式中 :λpw (Dcp) 为对应于 2D cp / tw 的 厚实 腹板 的高 厚比 限
值 ;λrw为非厚实腹 板的高厚 比限值 ;λrw = 517 E /Fy ; Dc 为
受压腹 板的弹 性高 度 ; Rh 为混合 系数 ,对 于轧制 、材 料均 匀
的组合截面构件 、腹板的强 度高 于翼缘强度的组合截面构件
[收稿日期 ]2007 - 12 - 03 [作者简介 ]李军强 ( 19 81 ~) ,男 ,硕士研究生 。
172 四川建筑 第 2 8 卷 5 期 2 00 8 11 0
λpw (D c) ≤λrw 可见 ,式 (6)对双轴 和单 轴对 称 Ⅰ形截面都是适合的 。
5 结 论
A ISC 360 - 05为 了便 于工 程人员使用方便 ,根据截面 类 型的不同 ,将板 件 的宽 厚比 列 成表 格 。但 是通 过 上文 的 分 析 ,应该看到当腹板和翼缘 的高 (宽 )厚比分 别超过 式 ( 3) 和 式 ( 1)所规定限值的 75%时 , A ISC 360 - 05的规定 ,即式 ( 2) 仍然是不够准确的 ,应该用式 ( 6) 对其 做出 判断 。因 此 ,在 用 到规范表格的时候 ,要清楚 其使 用条件 。
[ 7 ] W hite, D1W 1 ( 2006) 1Un ified F lexu ral R es - istance Equations fo r S tability Design of Ste - el I - Section M embers Overview, Jou r2 na l of Struc tura l Enginee ring, in review.

AISC2005规范介绍

AISC2005规范介绍

美国2005钢结构规范介绍二焊缝连接钢结构中所使用的焊缝除AISC2005给出规定的内容外应符合美国焊接学会AWSAmerican Welding society《结构焊接规范》D1.1节Structural welding Codesteel的规定。

焊缝分为对接焊缝或称坡口焊缝groove welds、角焊缝fillet welds塞焊缝plug welds和槽焊缝solt welds。

1 焊缝连接承载力计算的基本方法焊缝的承载力设计值φnR为基材的承载力和焊缝材料承载力的较小者依据拉坏、剪坏或屈服极限状态计算。

对于基材nRBMBMFA 对于焊缝金属nRwwFA 这里BMF为基材强度标准值wF为焊缝金属强度标准值BMA为基材横截面积wA为焊缝有效面积φ为抗力系数随焊缝类型和受力情况不同而异。

1.1对接焊缝对全熔透CJPcomplete-joint-penetration对接焊缝其承载力决定于基材金属而无需对焊缝计算。

对于局部熔透PJPpartial-joint-penetration对接焊缝AISC2005规范中列有有效焊喉厚度的计算表格对焊缝金属强度标准值亦列有表格。

因局部熔透对接焊缝实际工程中应用不广这里不做介绍。

1.2角焊缝对于角焊缝抗力系数φ取0.75wF 按照焊缝金属抗拉强度的0.6倍取用角焊缝的有效面积为有效长度乘以有效焊喉有效焊喉为焊根至表面的最短距离若有试验能够证明熔透超过焊缝根部有效焊喉允许增加。

若角焊缝在孔或槽内有效长度为中心线长度该中心线沿焊喉中心。

对于搭接角焊缝其有效面积不应超过搭接表面平面内孔或槽的横截面积。

焊缝的有效长度或者说计算长度我国GB50017规范规定为几何长度减去两端的焊接缺陷起弧、落弧各fh而美国AISC规范认为此缺陷只对焊缝很短时才有影响故不考虑此缺陷有效长度取为几何长度。

尽管有试验表明焊缝垂直于荷载时我国习惯称作端焊缝侧焊缝的承载力较平行于荷载我国习惯称作侧焊缝时高大约1/3我国规范也一直规定在承受静态荷载时端焊缝强度的提高系数为1.22但美国规范ASD89、LRFD99和现在的AISC2005均取二者强度相等不考虑前者强度的提高。

美国钢结构建筑设计规范(ANSI-AISC-360-05)

美国钢结构建筑设计规范(ANSI-AISC-360-05)

关于钢结构建筑设计规范的条文说明(本条文说明不是《钢结构建筑设计规范》(ANSI/AISC 360-05)的一部分,而只是为该规范使用人员提供相关信息。

)序言本设计规范旨在提供完善的标准设计之用。

本条文说明是为该规范使用人员提供规范条文的编制背景、文献出处等信息帮助,以进一步加深使用人员对规范条文的基础来源、公式推导和使用限制的了解。

本设计规范和条文说明旨在供具有杰出工程能力的专业设计员使用。

术语表本条文说明使用的下列术语不包含在设计规范的词汇表中。

在本条文说明文本中首次出现的术语使用了斜体。

准线图。

用于决定某些柱体计算长度系数K的列线图解。

双轴弯曲。

某一构件在两垂直轴同时弯曲。

脆性断裂。

在没有或是只有轻微柔性变形的情况下突然断裂。

柱体弧线。

表达砥柱强度和直径长度比之间关系的弧线。

临界负荷。

根据理论稳定性分析,一根笔直的构件在压力下可能弯曲,也可能保持笔直状态时的负荷;或者一根梁在压力下可能弯曲,平截面发生扭曲或者其平截面状态时的负荷。

循环负荷。

重复地使用可以让结构体变得脆弱的额外负荷。

位移残损索引。

用于测量由内部位移引起的潜性损坏的参变量。

有效惯性矩。

构件横截面的惯性矩在该横截面发生部分逆性化的情况下(通常是在内应力和外加应力共同作用下),仍然保持其弹性。

同理,基于局部歪曲构件的有效宽度的惯性矩。

同理,用于设计部分组合构件的惯性矩。

有效劲度。

通过构件横截面有效惯性矩计算而得的构件劲度。

疲劳界限。

不计载荷循环次数,不发生疲劳断裂的压力范围。

一阶逆性分析。

基于刚逆性行为假设的结构分析,而未变形结构体的平衡条件便是基于此分析而归纳出来的——换言之,平衡是在结构体和压力等于或是低于屈服应力条件下实现的。

柔性连接。

连接中,允许构件末端简支梁的一部分发生旋转,而非全部。

挠曲。

受压构件同时发生弯曲和扭转而没有横截面变形的弯曲状态。

非弹性作用。

移除促生作用力后,材料变形仍然不消退的现象。

非弹性强度。

当材料充分达到屈服应力时,结构体或是构件所具有的强度。

美国钢结构学会钢结构规范全文AISC-LRFD中文译稿

美国钢结构学会钢结构规范全文AISC-LRFD中文译稿

…一 焊 缝 之 间 的 板 宽
对于连接构件的有效面积,见 10.5.2。
2.4 稳定性
通常的稳定性应包括结构的整体稳定及每个构 件的稳定。荷载对于结构及其单个构件的挠曲形状 的重要效应应给予考虑。
2.5 局部屈曲
2 . 5 . 1 钢构件截面的分类 钢构件截面可分为紧凑,非紧凑及细长截面。 对于一个可称为紧凑的截面,其翼缘必须连续地与 腹板相连. 且其受压件的宽厚比不应超过表格2.5.1 的允许宽厚比 如果一个或更多受压板件的宽厚比超过七, 但 不 超 过 ; 该截面是非紧凑的。如果任一截面 的宽厚比超过表格2.5.1中 的 ;该 截 面 叫 细 长 受
对于某一部分沿对角线或之字线方向有一系列 孔洞横贯排列吋,该部分的净宽度应是从总宽度里 减掉所有孔洞的直径或如10.3.2中给出的槽的尺寸 之和,对于一排中每个线距,再 加 上 数 值 5-74?。 其 中 5 为任何两个连续孔洞纵向中对中间距(栓 距I 名为在紧固件规线之间横向中对中间距(线 距I
宽厚比
办/,
允许宽厚比 又“ 紧 凑 )
6 5 / ^ 7 10
工字型组合或焊接梁的翼缘
设 力口 组 装 的 受 压 构 件 的 外 伸 翼 缘 劲 连续接触的成对角钢的外伸肢 肋 受轴压的工字型构件及槽钢的翼缘 的 梁或受压构件的外伸角钢和板 构 单角钢支柱的肢; 件 带有膈板的双角钢支柱的肢;
未 设 加 劲 肋 的 构 件 ,即 仅 沿 一 边 支 承
⑷ 对 于 塑 性 设 计 , 使 用 1,300/厂 ;
1^1厂 - 翼 缘 中 的 残 余 压 应 力
^10^
(对 于 轧 制 类 型 )
:1匕51^ (对 于 焊 接 类 型 )
但 不 小 于 0.35^;乂 〈 0.76

1-AISC认证标准对质量手册和控制程序的要求

1-AISC认证标准对质量手册和控制程序的要求
► E5.2 指导和领导 Direction and Leadership
• 行政管理层负责保证质量管理体系的建立、实施和维护; • 周期性的管理评审; • 内审; • 如何完成公司的目标和如何评估当前你们公司已经达到的目标级别
5
质量手册 Quality Manual
► E5.1, E5.2 要求的记录
• 要求的记录: 质量记录清单
19
采购 Purchasing
► E10 Purchasing 采购
• 要求的文件:
a 描述如何保证采购的产品和服务的质量; b 描述如何确保分包商制造的质量;
• 解释:
a 采购所有材料和服务被要求有一个书面的程序; b 任何一个合同或采购单,都需要包括工作或产品的清楚描述; c 客户提供的材料必须被验证和管理,如果客户提供的材料验收不合格,如何 处理; d 客户或客户代表有权检验最终的产品是否符合项目的要求;
,特别的母材,焊材,或特别的焊接问题; • 潜在的分包问题; • 技术交底涉及各部门相互沟通的存档; • 方法:合同评审表,合同评审会议,开工会; • 记录:项目开工会备忘录,反馈回客户的信息记录,合同评审记录,特别
的备注
11
E7 详图 Detailing
► E7 详图 Detailing
• 7.1 详图程序; • 7.2 详图资源:
► E5.3 管理者代表 Management Responsibility
• 管理者代表必须被工厂指定 • 管理者代表必须在组织机构图中反映出来,并且必须是管理团队中的一员; • 管理者代表也将成为AISC和工厂之间认证主要联系人; • 管理者代表主要负责QMS和保证QMS被建立,实施,维护和人员被进行
15

美国 AISC 钢结构工程项目管理手册 01

美国 AISC 钢结构工程项目管理手册 01

Tim Mrozowski, A.I.A., Professor Building Construction Management Program Michigan State UniversityMatt Syal, Ph.D., CPC, Associate Professor Building Construction Management Program Michigan State UniversitySyed Aqeel Kakakhel, Research Assistant Building Construction Management Program Michigan State universityCopyright 1999byAmerican Institute of Steel Construction, Inc.All rights reserved. This book or any part thereofmust not be reproduced in any form without thewritten permission of the published.The information presented in this publication has been prepared in accordance with recognized engineering principles and is for general information only. While it is believed to be accurate, this information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability, and applicability by a licensed professional engineer, designer, or architect. The publication of the material contained herein is not intended as a representation or warranty on the part of the America Institute of Steel Construction or of any other person or entity named herein, that this information is suitable for any general or particular use or of freedom from infringement of any patent or patents. Anyone making use of this information assumes all liability arising from such use.Caution must be exercised when relying upon specifications and codes developed by other bodies and incorporated by reference herein since such material may be modified or amended from time to time subsequent to the printing of this edition. The Institute bears no responsibility for such material other than to refer to it and incorporate it by reference at the time of the initial publication of this edition.Printed in the United States of America.American Institute of Steel Construction, Inc.One East Wacker Drive, Suite 3100, Chicago, IL 60601-2001INDUSTRY TECHNICAL COMMITTEE MEMBERSWilliam Davidson, Project Manager, Turner Construction, Chicago, IL.Fred Haas, P.E., Project Manger, Dannys Construction Co., Inc, Gary, IN.Frank Hatfield, P.E., Professor of Civil and Environmental Engineering, Michigan State University, East Lansing, MI.Lawrence F. Kruth, P.E., Engineering and Safety Manager, Douglas Steel Fabricating Corp., Lansing, MI.Gary Larsen, Project Manager, Zalk Joseph Fabricators, Inc., Stoughton, WI.Gordon Moore, Vice President, Project Management, Kline Iron & Steel Company, Inc., Columbia, SC.Fromy Rosenberg, P.E., Assistant Director of Education, American Institute of Steel Construction, Chicago, IL.EDUCATIONAL ADVISORY COMMITTEE MEMBERSCharles Bissey, Professor, Department of Architectural Engineering and Construction Science, Kansas State University, Manhattan, KA.Mark Federle, Professor, Department of Civil and Construction Engineering, Iowa State University, Ames, IA.Donn Hancher, Professor, Department of Civil Engineering, University of Kentucky, Lexington, KY.Dave Hanna, Professor, Construction and Facilities Department, Ferris State University, Big Rapids, MI.Stephen Krone, Professor, Department of Technology Systems, Bowling Green State University, Bowling Green, OH.Jeff Russell, Professor, Civil and Environmental Engineering, Chair, Construction Engineering and Management, University of Wisconsin-Madison, WI.Mickey Spencer, Professor, Construction Program, University of Wisconsin-Stout, WI.INDEX1PROJECT MANAGEMENT MODULEIntroduction1.1Manual Overview 1 1.2Case Study Description 2 1.3Introduction 4Project Management1.4Stages of Procurement and Implementation of Structural Steel for Buildings 6 1.5Responsibilities of Industry Participants in Steel Construction11 1.6Contract Documents Overview15 1.7Specifications18 1.8Steel Fabrication and Erection Subcontracts21 1.9Structural Steel Workscopes23 1.10Overview of Scheduling24 1.11Site Organization, Logistics, and Equipment25 1.12Safety28 1.13Coordination and Reporting30 1.14Payment31 1.15Changes and Modifications32 1.16Quality Assurance33 1.17Project Closeout34 1.18Summary35Questions for Classroom Discussion36 2SCHEDULING AND ESTIMATING MODULE39 2.1Overview43Scheduling2.2Introduction to Scheduling43 2.3Project Delivery Participants and Coordination44 2.4Project Phases44 2.5Overview of Steel Construction Activities45 2.6Fabrication Related Activities45 2.7Erection Related Activities48 2.8Work Breakdown Structure50 2.9Activity Durations52 2.10Critical Path Method Network Diagrams53 2.11Bar Charts58 2.12Steel Schedule vs Overall Project Schedule62 2.13Items Impacting the Schedule62 2.14Areas Requiring Special Attention64 2.15Summary66Questions for Classroom Discussion67INDEX continuedEstimating2.16Introduction69 2.17Introduction to Estimation69 2.18Preliminary Conceptual Estimating70 2.19Bidding: The Subcontractor’s Role70 2.20Quantity Takeoff Methods72 2.21Costs Included in the Fabricator’s Estimate74 2.22Special Estimating Issues for Fabrication77 2.23Costs Included in the Erector’s Estimate82 2.24Special Estimating Issues Concerning Erection83 2.25Economy of Steel Construction and Methods for Reducing Costs84 2.26Published Sources of Estimating Information85 2.27Summary85Questions for Classroom Discussion86 Reference Sources88 AppendicesA.Case Study Documents89B.Sample Specifications96C.Fabricator Inventory 105D.AISC Services 106Project Management ModuleINTRODUCTION1.1 Manual OverviewThis educational manual was developed for the American Institute of Steel Construction (AISC) to present the principal project management activities and issues for procuring and implementing steel construction. The manual was developed for use in undergraduate university level construction management programs. It should also be useful in project management courses in construction engineering, civil engineering, architectural engineering, and architecture programs.The manual is intended as a supplemental text which may be incorporated into junior and senior level project management, estimating, and scheduling courses. The manual was developed in two educational modules: Module One addresses project management activities and Module Two examines scheduling and estimating issues that pertain to steel construction.Both educational modules have been designed to help students understand the unique roles and relationships of the general contractor, steel fabricator, erector, specialty contractors, suppliers, architect, structural engineer, and owner in the construction of a structural steel building frame. While the manual has been specifically developed to address steel construction, many of the issues presented are also applicable to the management of other construction subcontracts. Therefore, this manual may serve as a detailed case study of steel construction which will help students achieve a broader understanding of construction project management, estimating, and scheduling practices. It is hoped that faculty teaching this material, will find this steel case study useful as they present the principles of project management, estimating, and scheduling in their courses.Most construction management and construction related programs require students to take courses in construction science, technology, materials, and structural design. It is assumed that by the time students are enrolled in project management, estimating, and scheduling courses, they will have obtained sufficient understanding of the technical terminology and also have a general understanding of steel design and construction practices. This manual is not intended as a technical guide to steel, but focuses instead on the project management aspects of steel construction. Students may wish to consult other general texts on structural design and construction methods should they need additional technical information. AISC has developed numerous publications which address the technical and design aspects of steel. These publications may be obtained by contacting the AISC publication’s department. See Appendix D for a listing of AISC services.To help students gain a better understanding of the text, a steel construction project case study has been included. This building is a steel framed seven-story midrise medical office building. This project is described below under the case study description. Project documents from the case study are included in Appendix A.To assist faculty in using this manual as a supplemental text in their courses, several open-ended questions are provided at the end of the two modules. These questions are intended to be used for in-class discussion.The development of this manual was sponsored by a grant from the AISC Education Committee and was prepared by Mr. Tim Mrozowski, A.I.A., Dr. Matt Syal, CPC, and Mr. Syed Aqeel Kakakhel1of the Building Construction Management Program at Michigan State University. AISC appointed two advisory committees to provide input and oversee the development of the manual. The Industry Technical Committee included fabricators, erectors, contractors, and educators who provided input into industry practices. The Educational Advisory Committee consisted of construction management and engineering faculty who advised and reviewed the manual for both industry practice and educational use.1.2 Case Study DescriptionThis text uses a steel framed midrise office building as a case study. The building is a seven-story structure and is approximately 240 ft long by 150 ft wide. It contains approximately 256,900 sq ft of floor area and required 1,330 tons of structural steel, exclusive of the metal deck and metal stairs. The project was completed in 1998.The case study project has a 30 ft x 30 ft typical bay size. Floor framing consists of W24 x 68 primary beams and W16 x 26 secondary beams. First floor interior columns are W14 x 159 and are reduced in size for upper floors. Columns are spliced at every other level. The floors are constructed of metal decking and concrete. Composite action is achieved by utilizing shear studs. Connections for the project are a combination of simply framed and moment connections. Exterior walls consist of panalized brick with metal stud backup and glass.The project is located in an urban setting and is part of a large hospital complex. Site access was limited on the north, west, and east sides of the structure because of adjacent roads and buildings. Steel was delivered to the project on trucks, unloaded by crawler crane and erected immediately. Only limited minor steel components were stored on the site. A single 230 ton crawler crane was used to erect the steel and was repositioned as necessary during erection.The steel was erected in three sections, each having multiple erection sequences. The building was roughly divided into three sections with all structural steel erected from foundation to roof for a section. At the completion of one frame section, the erector began the next section. Metal deck was purchased by the fabricator and erected by a separate metal deck installer hired by the steel erector. Project documents are included in Appendix A and are referenced throughout the text.2Photos of Case Study Project31.3 IntroductionSteel has been an important component of buildings, bridges, and other structures for more than a century. Its use has allowed designers and contractors to construct both simple and complex structures in efficient, time saving, orderly, and economical ways. While procurement and construction management of structural steel have many similarities to the procurement of other building materials, steel construction has some unique characteristics. For example, structural steel is largely fabricated off-site. On-site erection and assembly are done rapidly. Coordination of all parties is important in achieving the potential schedule advantages of steel construction. Steel construction also requires that the fabricated components fit properly at the site. Close dimensional tolerances require dimensional accuracy, review, and approval by several parties. The purposes of this manual are 1) to give students interested in construction management an understanding of the roles of the various participants, 2) to provide an understanding of the various steps in the process and, 3) to provide an understanding of project management activities including scheduling and estimating of steel construction.Steel is used in many different components of buildings such as doors, equipment, reinforcement for concrete, and structural steel. This manual focuses on the management and use of structural steel framing systems for buildings. Structural steel is typically acquired, fabricated and erected by the steel contractor. The steel contractor may be a single contractor, but more typically is a lead company such as a fabricator who subcontracts portions of the steel construction to lower tier subcontractors, such as steel erectors or metal deck installers.While the steel contractor is responsible for fabrication and erection of the structural steel frame, the steel contractor may also be required to furnish and install other miscellaneous metal items which are attached to the frame, but not classified as structural steel by AISC. The AISC Code of Standard Practice defines the elements included in the broad categories of “Structural Steel” plus “Other Steel and Metal Items” and is reprinted below in Figure 1-1.Definition of Structural Steel (AISC 1994)“Structural Steel,” as used to define the scope of work in the contract documents, consists of the steel elements of the structural steel frame essential to support the design loads. Unless otherwise specified in the contract documents, these elements consist of material as shown on the structural steel plans and described as:Anchor bolts for structural steelBase or bearing platesBeams, girders, purlins and girtsBearings of steel for girders, trusses or bridgesBracingColumns, postsConnecting materials for framing structural steel to structural steelCrane rails, splices, stops, bolts and clampsDoor frames constituting part of the structural steel frameExpansion joints connected to structural steel frameFasteners for connecting structural steel items:Shop rivets4Definition of Structural Steel (AISC)cont’dPermanent shop boltsShop bolts for shipmentField rivets for permanent connectionsField bolts for permanent connectionsPermanent pinsFloor Plates (checkered or plain) attached to structural steel frameGrillage beams and girdersHangers essential to the structural steel frameLeveling plates, wedges, shims & leveling screwsLintels, if attached to the structural steel frameMarquee or canopy framingMachinery foundations of rolled steel sections and/or plate attached to the structural frame Monorail elements of standard structural shapes when attached to the structural frame Roof frames of standard structural shapesShear connectors–if specified shop attachedStruts, tie rods and sag rods forming part of the structural frameTrussesOther Steel or Metal ItemsThe classification “Structural Steel,” does not include steel, iron or other metal items not generally described in Paragraph 2.1, even when such items are shown on the structural steel plans or are attached to the structural frame. These items include but are not limited to: Cables for permanent bracing or suspension systemsChutes and hoppersCold-formed steel productsConcrete or masonry reinforcing steelDoor and corner guardsEmbedded steel parts in precast or poured concreteFlagpole support steelFloor plates (checkered or plain) not attached to the structural steel frameGrating and metal deckItems required for the assembly or erection of materials supplied by trades other than structural steel fabricators or erectorsLadders and safety cagesLintels over wall recessesMiscellaneous metalNon-steel bearingsOpen-web, long-span joists and joist girdersOrnamental metal framingShear connectors if specified to be field installedStacks, tanks and pressure vesselsStairs, catwalks, handrail and toeplatesTrench or pit covers.Figure 1-1 Definition of structural steel and other metal items. AISC Code of Standard Practice (AISC 1994)5There are many potential benefits in the use of structural steel for the owner. Some of these include: 1.Steel construction can substantially reduce construction time for the frame because of off-sitefabrication and the ability to construct in all seasons. This savings reduces on-sitemanagement and overhead costs, and improves cash flow.2.Structural steel can be designed with large spans and bay sizes, thereby providing moreflexibility in space arrangement and rearrangement for the owner.3.Steel can be easily modified and reinforced if the owner chooses to expand the facility, or ifarchitectural changes are made.4.Relative to other structural systems, steel is lightweight and can reduce foundation costs.5.Steel is a durable, long-lasting material and is recyclable.Careful project management and design of structural steel construction can help to ensure that these benefits are achieved. Section 1.4 below outlines the principal steps in the project delivery process for structural steel.PROJECT MANAGEMENT1.4 Stages of Procurement and Implementation of Structural Steel for Buildings Initial Decision. The procurement and implementation of structural steel for buildings begins with the owner’s decision to use steel as the primary structural system for the building. This decision is generally made early in the design process in conjunction with the architect and structural engineer for the project. In projects which use the services of a construction manager, or in design-build projects, the construction entity may play a strong role in recommending the structural system. The construction manager or design-build firm advises the owner on material availability, costs, suitability, and scheduling aspects of the structural frame types. In many cases, the construction manager or design-build firm consults with steel fabricators for preliminary pricing, scheduling, and layout information that is used in deciding which structural system to utilize. Refer to figure 1.2 at the end of this section for an illustration of the development and management steps for structural steel construction.Schematic Design. Once the decision is made to use a structural steel frame, the architect and structural engineer proceed with schematic design layouts for the building. The architect and structural engineer work closely to coordinate the functional spaces of the building with the structural components. The architect develops the overall building concept and also determines locations and sizes of spaces. The structural engineer develops the structural concept in consideration of the architectural layout and examines many factors such as structural loads, material strength, economy of beam span, lateral stability, and repetitiveness to determine column and beam spacings.Contract Documents. Upon completion of the schematic design studies, the architect and structural engineer proceed with design development and contract documents for the project. The structural engineer is primarily responsible for engineering of the structural steel frame and development of the detailed structural contract documents. The structural documents include: foundation plans and details, structural floor framing plans, roof framing plans, column schedules, structural details,6structural notes, and design loads, as well as the structural specifications. The specifications are typically bound into the architect’s project manual, which includes the specifications for all materials and processes for the entire project.Bidding. After completion of the contract documents, the owner and architect prepare the bidding documents. Bidding documents are used together with contract documents to obtain bids from contractors for the construction of the building. The owner and architect solicit bids from qualified contractors, using these documents. Bids for structural steel may be in the form of subcontract prices, which are included in the general contractor’s lump sum proposal, or the owner may divide the project into separate prime contracts with the steel contractor bidding directly to the owner. When the owner employs a construction manager or design-build firm, the construction entity usually takes the lead role in preparing the bidding documents and managing the bidding process for the owner.During the bidding process, the general contractor defines the subcontract workscopes and solicits subcontract prices from steel fabricators, erectors, and specialty contractors. The general contractor may wish to subcontract the complete structural steel package to a single steel subcontractor, or may choose to divide the steel portion of the project into multiple subcontracts. In the case of a single subcontract, the general contractor will identify a qualified steel fabricator or erector to obtain a bid for the complete structural steel package. Refer to Section 1.9 for a discussion of subcontract workscopes.The steel contractor (fabricator or erector) will solicit lower tier subcontract prices for the various portions of the steel package. Typically the fabricator, (who is not also an erector) would seek lower tier subcontract prices for steel erection, metal deck supply and installation, and shear studs, as well as other specialized aspects of the steel portion of the project. The steel contractor may also be charged by the general contractor with furnishing the miscellaneous fabricated steel items used throughout the project. Examples of these items are loose lintels, plates, and bolts installed by the mason, or steel pipe railings and metal stairs. If these items are to be included in the steel contractor’s subcontract, the general contractor should specifically include these in the subcontract workscope.The bidding steel contractor needs to obtain the bidding documents, construction drawings, and specifications in order to determine the requirements for the project. The steel contractor reviews the contract documents and contractual conditions to determine the scope of the work. The steel contractor always needs to be provided with the complete contract documents.The bidding steel estimator conducts a quantity takeoff to determine the quantities of the various shapes and sizes of steel elements to be used for the project. Special conditions, connections, finishes, and fabrication requirements are noted. The steel fabricator will frequently consult with steel mills and/or steel service centers on pricing, availability and time of delivery of steel shapes to be used in the project. Steel joist and metal deck suppliers will also be consulted. The steel contractor will have a systematic approach for taking off and recording the quantities. The material takeoffs are frequently computerized with specialized industry spreadsheets. Refer to Module Two for a discussion of steel estimating.The bidding steel contractor is often required to provide input into the preliminary project schedule by the general contractor. The steel contractor evaluates ordering and delivery times from the mill, fabrication durations, erection sequence, and erection duration. Other elements considered are shop7drawing and approval times, shop capacity, delivery times for purchased items such as metal deck and steel joists, and project conditions. As necessary, the steel contractor consults with lower tier subcontractors in preparing recommendations. The steel contractor makes recommendations to the general contractor regarding the schedule for steel construction. The general contractor incorporates these recommendations into the overall project schedule.The steel contractor compiles pricing and scheduling information for the specified workscope and submits this information to the bidding general contractor. The general contractor evaluates competitive pricing from various steel subcontractors based on price, quality, and schedule, incorporating the selected steel subcontractor pricing into the lump sum bid.Contract Award and Subcontracts. If the general contractor is awarded the contract by the owner, the detailed subcontract for steel construction will be prepared. The steel subcontract will specify the detailed terms of the building’s steel portion. Workscopes, pricing, and scheduling requirements must be well-defined and based on the original workscope, along with any negotiated changes in the building or project conditions.Ordering Steel. Under normal conditions, upon execution of the steel subcontract, the steel fabricator immediately places an order with the steel mill for production and furnishing of the structural steel shapes. On expedited projects, the steel fabricator may purchase shapes directly from a steel service center, (which warehouses common steel shapes), or may fabricate from shapes stocked in the fabricator’s inventory.Erection Drawings and Shop Drawings. When ordering steel, the fabricator simultaneously begins to prepare anchor rod setting plans, shop drawings, and erection drawings for approval by the structural engineer. The shop drawings may be prepared in-house or the steel fabricator may subcontract their preparation to a steel detailing firm. The shop drawings are used to illustrate how the steel fabricator intends to comply with the contract documents, as well as the dimensional and detailed aspects of the fabrication. The erection drawings indicate the detailed configuration of the steel frame and locate each member of steel with piece marks.Shop drawings are typically submitted to the general contractor who reviews and then transmits them to the architect and structural engineer for review of compliance with the original design concept. While shop and erection drawings are generally required by the contract documents and serve the architect, structural engineer and owner, they are also essential documents used by the steel fabricator for fabrication and erection of steel. Development and approval of shop drawings are detailed and tedious processes for all parties involved with the project, but are also extremely important and beneficial in making certain that the building is properly fabricated and fits together smoothly during the erection process. Generally, the contractor, architect and engineer will “redline” or mark required changes to the original shop drawings and return them to the fabricator. The length of time for approval of shop and erection drawings is normally specified in the contract, and typically is two weeks. After any necessary modifications are made by the fabricator’s detailer, shop drawings are resubmitted for final approval by the fabricator. To streamline the shop drawing process, the steel fabricator frequently issues the steel shop drawings in stages. Anchor rods and setting plans, along with a preliminary set of nonstandard AISC connections usually come first, followed by column and beam submittals. The general contractor or construction manager will typically require a drawing submittal schedule. The contractor, architect, and structural engineer are8usually able to approve these partial elements of the steel frame. This process of partial submission allows the fabricator to begin fabrication of early structural elements and main members, which can expedite delivery of the finished steel members.Simultaneously during the shop drawing process, the steel fabricator manages and coordinates the shop drawing process for the purchased or subcontracted items, such as steel joists, metal deck, shear studs, and metal fabrications. It is important that the shop drawing process is coordinated by all parties and the drawing submittal schedule and “approval turn around” are well defined so that the project is not delayed.Fabrication and Delivery. Following approval of the initial batch of shop drawings and delivery of the mill steel, the fabricator will begin to fabricate and finish the steel elements. The time and sequence of fabrication will be a function of the fabricator’s shop practice and capacity, other fabrication projects, and the erection sequence for the building. Fabrication involves handling of the stock members, cutting them to size, punching and drilling for connections, and preparing the connections, as well as shop painting or finishes when required. Though each project is unique, the fabricator will frequently have fabricated adequate portions of the steel for the building before erection begins. During fabrication or at the drill line, each piece is marked and identified for its precise location in the structural frame and stored or readied for delivery to the project site. Under normal conditions, steel items should be delivered to the site in the sequential order in which the steel will be installed by the erector.Erection. Steel erection begins when the steel has been fabricated and the foundation is completed to a point where it is ready to receive steel. Steel erection is conducted by the steel erector. Some fabricators may have their own erection crews or subsidiary companies; others will subcontract this work to a separate erection company. The erection company works closely with the general contractor and the fabricator to erect the steel in accordance with the established sequence of erection and delivery.The order of erection is typically shown on the erection drawings or on a separate sequence diagram. The erector typically prepares an erection plan which specifies the erection practices and safety measures which will be employed for the approval of the general contractor. The erection contractor usually furnishes equipment and cranes for erecting the frame; in some instances, the general contractor may furnish a crane and receive a credit from the erection company for its use. Erection of steel is generally fast paced and requires careful planning. Steel is fabricated to close tolerances. Precise layout and accuracy are important in making certain that the frame fits together properly. The steel erector may subcontract installation of a metal deck and shear studs to separate lower tier subcontractors, as these specialty firms may be more efficient at installing these items. Safety is an extremely important aspect of steel construction. Safety issues are discussed in Section 1.12.During the erection process the frame will be plumbed; temporary bracing and guy cables may be installed to maintain structural stability during erection. Erection will continue until all of the structural steel members have been installed and the structural frame is essentially complete. Metal fabrications and miscellaneous steel items, if included in the steel subcontract, are installed as necessary, based on the overall project schedule and applicable safety standards. With the completion of the frame, the steel subcontract is ready for contract closeout.9。

AISC 标准常识及认证过程要求

AISC 标准常识及认证过程要求

AISC简述A I S C 是一家总部设在美国芝加哥的非营利性质的技术协会和贸易组织机构,其最初建立于1921年,为钢结构在建筑和其他领域的应用服务。

中文名美国钢结构设计协会外文名AISC-American Institute of Steel Construction inc . (美国钢结构设计协会)最初时间1921隶属美国钢结构设计协会应用标准AISC标准AISC的宗旨: 是成为在钢结构相关领域,如规范和编码、研发、教育、技术支持、质量认证、标准化、市场开发上的首选。

AISC为钢结构工业提供及时可靠的技术信息和服务已经成为一项传统,其认证标准称为AISC标准。

AISC(American Instituet of Steel Construction),即为美国钢结构协会的简称是承制美国钢结构产品必备的质量体系认证。

此证是针对制造工厂而不是针对产品。

证书包括钢结构从合同签订到最终产品交货的所有职能。

一、钢结构制造证书分为:1、据制造者分类为:建筑钢结构标准(STD):Standard for Steel Buiding Structures一般钢桥梁(SBR):Simple Steel Bridge Structures复杂钢桥梁(CBR):Major Steel Bridge桥梁与高速公路金属部件制造的标准(B-CMP)2、根据油漆分类面漆、中漆、底漆3、根据安装工分类:钢构安装承包商的认证(CSE)先进并且合格的钢铁安装承包商(CBR)二、常用标准AISC 341 结构钢建筑的防震规定ANSI/AISC341 结构钢建筑物的规范三、AISC的认证各单位职责:AISC 根据相关标准对钢材企业和金属材料建筑及安装行业进行质量认证,活的AISI认证的企业,除了经过严格的初次评估,还要经历以后严格的年度审查总经理(或管理者代表):1.公司的质量方针;2.公司每年质量目标制定与贯彻情况;3.质量合格率统计是如何得来及如何改进?市场部:1.合同是通过什么方式签订?如何评审?2.哪些人参加评审?评审内容及记录。

美国ANSI_AISCSSPEC_2002_钢结构建筑抗震设计规定_介绍_3_

美国ANSI_AISCSSPEC_2002_钢结构建筑抗震设计规定_介绍_3_

美国ANSI/A ISC SSPEC-2002《钢结构建筑抗震设计规定》介绍(3)李志明(中冶集团建筑研究总院 北京 100088)摘 要 根据美国钢结构协会2002年1月31日批准发布的《钢结构建筑抗震设计规定》,介绍了该规定“钢结构建筑”部分的第10、第11、第12章节,包括中等抗弯框架(IMF)、普通抗弯框架(OMF)、特殊桁架式抗弯框架(STMF)等方面的有关内容并作了必要的说明。

关键词 中等抗弯框架(IMF) 普通抗弯框架(OMF) 特殊桁架式抗弯框架(STMF) 特殊桁架区段INTR OD UCTION T O“SEISMIC PR OVISIONS FOR STRUCTURAL STEE L BUI LDING S”(ANSI/AISC SSPEC-2002)(3)Li Zhiming(Central Research Institute of Building and Construction,MCC Group Beijing 100088)ABSTRACT According to“Seismic Provisions for Structural Steel Buildings”(ANSI/AISC SSPEC-2002)issued by American Institute of Steel Construction(AISC)on January31,2002,this paper introduces sections10,11and12of “Structural Steel Buildings”in the provisions,including the relevant contents of intermediate moment frame(IMF), ordinary moment frame(OMF)and special truss moment frame(STMF)etc;necessary explanations are also introduced1The contents of other sections are to be continued1KE Y WOR DS intermediate moment frame(IMF) ordinary moment frame(OMF) special truss moment frame (STMF)10 中等抗弯框架(IMF)1011 适用范围中等抗弯框架(IMF)应能承受在设计地震动(Design Earthquake)作用下所产生的有限的弹塑性变形。

美标 钢结构变形

美标 钢结构变形

美标钢结构变形美国建筑和结构工程领域通常遵循美国国家标准(American National Standards)和建筑协会(American Institute of Steel Construction,简称AISC)等相关组织发布的标准。

关于钢结构的变形和变位,主要涉及到结构设计和施工阶段的一些要求。

以下是一些可能与美国钢结构变形相关的标准和规定:1.AISC 360-16 - "Specification for Structural Steel Buildings":由AISC发布的这个规范为结构工程师提供了有关设计、分析和构造结构的指南。

它包括有关变形和变位的规定,以确保结构在使用和极限状态下的性能符合预期。

2.AISC 341-16 - "Seismic Provisions for Structural SteelBuildings":如果涉及到地震设计,此规范提供了有关结构在地震作用下的变形和位移的要求。

3.IBC(International Building Code):美国国际建筑法规是一套在美国广泛采用的建筑法规。

其中包括对结构变形的规定,以确保建筑的安全性和稳定性。

4.ACI 318 - "Building Code Requirements for StructuralConcrete":尽管主要涉及混凝土结构,但对于混合结构(包括钢-混凝土结构)以及涉及变形的问题可能也包含一些相关规定。

5.ASCE 7 - "Minimum Design Loads and Associated Criteriafor Buildings and Other Structures":由美国土木工程协会(ASCE)发布的这个标准规定了各种荷载,包括风载、地震载等,对结构变形也有所涉及。

请注意,以上标准中的规定可能随时间而有所修改或更新。

美国ANSI-AISC SSPEC-2002《钢结构建筑抗震设计规定》1

美国ANSI-AISC SSPEC-2002《钢结构建筑抗震设计规定》1

表1
结构体系超强系数Oo 值
地震荷载抗力体系分类
OO
满足本《规定》第Ⅰ部分要求的抗弯框架体系
3
满足本《规定》第Ⅰ部分要求的偏心支撑框架(EBF)
2.5
满足本《规定》第Ⅰ部分要求的其他类型体系
2
在ASCE 7、2000IBC 、2000NEHRP和1997UBC 等规范中,对水平地震荷载QE 的放大系数Oo 均作了规定,从表2所列可见,各规范的定义是不相同的。在各规范 的早期版本中,认为通过荷载组合就可以澄清这些差别(如在1997版《钢结构建筑 抗 震 设 计 规 定 》 中 所 采 用 的 放 大 的 地 震 荷 载 的 附 加 荷 载 组 合 : 1.2D+1.0E +0.2S+OoQE (4-1式)0.9D-OoQE (4-2式))。但由于各种规范所使用的原始资 料和背景的差别,荷载组合(4-1式)及(4-2式)反而造成了更大的混淆。为此, 在本《规定》中取消了荷载组合(4-1式)及(4-2式),而代之以“放大地震荷载 (Amplified Seismic Load)”。明确了当在规范中使用放大地震荷载时,则要求使 用超强(overstrength )系数Oo。
7. 接头、连接和紧固件
钢结构建筑抗震规定介绍(一)
5
6/23/2003
冶 金工 业部 建筑 研究 总院
7.1 适用范围
作为地震荷载抗力体系组成部分的接头、连接和紧固件应符合LRFD 规范第十 章(Chapter J)的要求。
7.2 螺栓连接
7.2.1 所有螺栓应采用完全受拉高强螺栓。所有螺栓连接摩擦面应按A级接触 面或摩擦型连接要求制作。螺栓连接的设计剪切承载力允许按承压型连接的设计剪 切承载力 进行计算。A 级接触面 是未经涂装的干净轧制表面 ,或经喷砂 (丸) 处理 后涂复以A 型面层的表面。其最小抗滑移系数µ=0.33。

中美钢结构抗震设计规范比较讲座

中美钢结构抗震设计规范比较讲座

图2-1 ASCE/SEI 7-05地震区划图示例(部分)
设计时,可根据建筑物所在地,在地震区划图上查的 相应的地震反应谱加速度值。
GB 50011-2001抗震设防烈度(设计基本地震加速度值) 与ASCE/SEI 7-05短周期反应谱加速度SS及1s周期反应谱加 速度S1等地震动参数之间的对应关系见表2-2~表2-3,供参 考。
GB 50011-2001抗震设防的主要依据为GB 18306-2001 《中国地震动参数区划图》中的地震基本烈度(或与设计 基本地震加速度值对应的烈度值)。 所谓“设计基本地震加速度值”是指50年设计基准期 超越概率10%的地震加速度设计取值;已编制抗震设防区 划的城市,可按批准的抗震设防烈度或设计地震动参数进 行抗震设防。
注:由于GB 50011-2001的II类场地同时与ASCE/SEI 7-05 的C 类或D类场地相对应,故表2-2中IIC表示GB 50011-2001的II类场地 中相当于ASCE/SEI 7-05 C类场地的部分,表2-3中IID表示GB 50011-2001的II类场地中相当于ASCE/SEI 7-05 D类场地的部分。
中美钢结构抗震设计规范比较讲座
武汉大学 侯建国 2010.8.12
1 美国钢结构设计规范及抗震设计标准体系的 发展概况
1.1美国钢结构设计规范的发展概况
美国钢结构协会AISC1923年制定了第一本以容许应力设计 法(Allowable Stress Design,简称ASD)为设计准则的钢结构 设计规范。 容许应力设计法作为钢结构设计的基础延用了相当长的时 间,后历经多次修改,直至1961年,其基本格式及内容都已基
本定型。
1989年出版了最后一版ASD设计规范 AISC(1989); 2001年对ASD又进行了局部修订(AISC 33589s1)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档