初二含参不等式专题
第4讲 含参不等式--尖子班
第4讲 含参的不等式知识点1 含参的一元一次不等式含参的一元一次不等式(1)含未知数项的系数不含参数,如x >a ,(其中a 为常数);(2)含未知数项的系数含参数,如mx >n ,(其中m 为参数、n 为常数).【典例】1.已知不等式2(m ﹣x )+1>3x ﹣2的解集是x <32,则m 的值为 . 【答案】94.【解析】解:去括号,得2m ﹣2x+1>3x ﹣2, 移项,得3x+2x <2m+1+2, 合并同类项,得,5x <2m+3, 系数化为1,得,x <2m+35,∵不等式2(m ﹣x )+1>3x ﹣2的解集是x <32, ∴2m+35=32,解得m=94.2.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是____________.【答案】a<﹣1.【解析】解:∵当a+1=0,即a=-1时,0>0不成立,∴当a+1=0时,不等式(a+1)x>a+1无解集,∴a+1≠0,∵不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴未知数x的系数(a+1)为负,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.3.关于x的两个不等式①3x+a2<1与②1﹣3x>0.(1)若两个不等式的解集相同,求a的值.(2)若不等式①的解都是②的解,求a的取值范围.【答案】略.【解析】解:(1)由①得:x<2−a3,由②得:x<13,由两个不等式的解集相同,得到2−a3=13,解得:a=1;(2)由不等式①的解都是②的解,得到2−a3≤13,解得:a≥1.4.若关于x,y的方程组{3x+y=1−ax+3y=3的解满足x+y<2,则a的取值范围为.【答案】a>﹣4.【解析】解:{3x+y=1−a ①x+3y=3 ②,①+②得:4(x+y)=4﹣a,则x+y=14(4﹣a ), 则14(4﹣a )<2,解得:a >﹣4. 故答案是:a >﹣4.【方法总结】1. 已知一元一次不等式(系数不含参)及其解集,求参数的值的思路. 如已知不等式2(m ﹣x )+1>3x ﹣2的解集是x <32,求m 的值,①求不等式2(m ﹣x )+1>3x ﹣2的解集为x <2m+35,②令2m+35=32,从而不难求出m 的值,2. 求一元一次不等式ax >b(a ,b 是常数)解集的思路.需要借助分类讨论思想,①若a >0,则不等式ax >b 的解集为x >ba ;②若a <0,则不等式ax >b 的解集为x <ba ;③若a=0,b <0,则不等式ax >b 的解集为任意实数;若a=0,b ≥0,则不等式ax >b 无解集.3. 已知一元一次不等式①和②的解集相同,求参数的值的思路.如关于x 的两个不等式①3x+a 2<1与②1﹣3x >0,若两个不等式的解集相同,求a 的值.①分别求出不等式①和②的解集为x <2−a 3和x <13,②令2−a 3=13,从而不难求出a 的值.4. 已知一元一次不等式①的解都是②的解,求参数的取值范围的思路. 如关于x 的两个不等式①3x+a 2<1与②1﹣3x >0,若不等式①的解都是②的解,求a 的取值范围的思路.①分别求出不等式①和②的解集为x <2−a 3和x <13,②令2−a 3≤13,从而不难求出a 的取值范围.【随堂练习】1.如果关于x的不等(2m﹣n)x+m﹣5n>0的解集为x<,试求关于x的不等式mx>n的解集.【解答】解:移项得(2m﹣n)x>5n﹣m,∵关于x的不等(2m﹣n)x+m﹣5n>0的解集为x<,∴2m﹣n<0,且x<,∴=,整理得n=m,把n=m代入2m﹣n<0得,2m﹣m<0,解得m<0,∵mx>n,∴mx>m,∴x<.∴关于x的不等式mx>n的解集是x<.知识点2 含参的一元一次不等式组含参的一元一次不等式组常考题型1.给出不等式组解集的情况,求参数取值范围2.给出不等式组的解集,求参数的值3.给出方程(组)解的情况,转化为不等式(组),求参数的取值范围4.给出不等式组整数解的个数,确定参数的取值范围【典例】1. 若关于x 的一元一次不等式组{x −2m <0x +m >2有解,则m 的取值范围为 .【答案】m >23.【解析】解:{x −2m <0⋯①x +m >2⋯ ②,解①得:x <2m , 解②得:x >2﹣m ,∵关于x 的一元一次不等式组{x −2m <0x +m >2有解,∴2m >2﹣m ,解得:m >23. 故答案是:m >23.2.已知不等式{2x −a <1x −2b >3的解集为﹣1<x <1,求(a+1)(b ﹣1)的值为 .【答案】﹣6.【解析】解:由2x −a <1,解得x <a+12.由x −2b >3,解得x >3+2b .∵不等式{2x −a <1x −2b >3的解集为﹣1<x <1,∴a+12=1,3+2b=﹣1,解得a=1,b=﹣2,∴(a+1)(b ﹣1)=(1+1)×(﹣2﹣1)=﹣6, ∴(a+1)(b ﹣1)的值为﹣6. 故答案为﹣6.3.如果关于x 、y 的方程组{x +y =3x −2y =a −2的解都是正数,则a 的取值范围是 .【答案】﹣4<a <5. 【解析】解:{x +y =3 ①x −2y =a −2②,①﹣②得3y=5﹣a ,则y=5−a 3, 把y=5−a 3代入①得x=3﹣5−a 3=4+a 3.则方程组的解是{x =4+a3y =5−a 3,∵关于x 、y 的方程组{x +y =3x −2y =a −2的解都是正数,∴{4+a3>05−a 3>0, 解得﹣4<a <5. 故答案是:﹣4<a <5.4.不等式组{3x −5>15x −a ≤12有2个整数解,则实数a 的取值范围是 .【答案】8≤a <13.【解析】解:解不等式3x ﹣5>1,得:x >2, 解不等式5x ﹣a ≤12,得:x ≤a+125,∵不等式组有2个整数解,∴不等式组{3x −5>15x −a ≤12整数解为3和4,则4≤a+125<5,解得:8≤a <13, 故答案为:8≤a <13.【方法总结】1.给出不等式组解的情况,求参数取值范围,解题思路如下:①分别求出不等式组中每个不等式的解集,②确定参数的取值范围,记住:“大小小大有解;大大小小无解.”注意:端点值另外考虑.2.给出不等式组的解集,求参数的值,解题思路如下:①先求出含参不等式组中每个不等式的解集;②再利用已知解集和所求解集之间的对应关系,建立方程(组);③解方程(组),从而求出参数的值.3.给出方程(组)解的情况,转化为不等式(组),求参数的取值范围,解题思路如下:①先求含参数的方程组的解,方程组的解用含参的式子表示出来;②列出题目中解满足的不等关系,将含参数的式子代入,转化为关于参数的不等式(组),③解不等式(组),从而求出参数的取值范围.4.给出不等式组整数解的个数,确定参数的取值范围,解题思路如下:①先求出不含参数的不等式的解集;②再结合题意,在不含参数的不等式解集范围内找出连续的几个整数解;③参数的范围就在最后一个整数解差一个单位长度的范围内(借助数轴解决问题),注意:端点值特殊考虑.【随堂练习】1.已知关于x,y的方程组,其中﹣3≤a≤1.(1)当a=﹣2时,求x,y的值;(2)若x≤1,求y的取值范围.【解答】解:(1),①﹣②,得:4y=4﹣4a,解得:y=1﹣a,将y=1﹣a代入②,得:x﹣1+a=3a,解得:x=2a+1,则,∵a=﹣2,∴x=﹣4+1=﹣3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴﹣3≤a≤0,即1≤1﹣a≤4,则1≤y≤4.2.已知关于x、y的方程组(实数m是常数).(1)若x+y=1,求实数m的值;(2)若﹣1<x﹣y<5,求m的取值范围;(3)在(2)的条件下,化简:|m+2|﹣|2m﹣6|.【解答】解:(1)将方程组中的两个方程相加,得3(x+y)=6m+1,将x+y=1代入,得6m+1=3,解得m=;(2)将方程组中的两个方程相减,得x﹣y=2m﹣1,解不等式组﹣1<2m﹣1<5,得0<m<3;(3)当0≤m≤3时,|m+2|-|2m﹣6|=(m+2)+(2m﹣6)=3m-4.知识点3 一元一次不等式的应用一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【典例】1.某中学计划用2500元购买一批名著和辞典作为奖品,其中名著每套60元,辞典每本40元,现已购买名著24套,学校最多还能买多少本辞典?【答案】略.【解析】解:设学校能买x本辞典,∵名著每套60元,现已购买名著24套,辞典每本40元,学校能买x本辞典,∴购买24套名著费用=24×60(元),购买x本辞典费用=40x(元),∵购买24套名著费用与购买x本辞典费用和不超过2500元,,∴可列出关于x的一元一次不等式:40x+24×60≤2500,解得:x≤2612∵x为整数,∴x=26.答:学校最多能买26本辞典.【方法总结】一元一次不等式的应用解决此类问题关键在于掌握解列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.【随堂练习】1.为了开展全校学生阳光体育运动活动,增强学生身体素质,张老师所在的学校需要购买若干个足球和篮球.他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买.三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次65750第二次37780第三次78742(1)张老师是第三次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,张老师决定从该商场一次性购买足球和篮球50个,且总费用不能超过2200元,那么最多可以购买多少个篮球.【解答】解:(1)张老师是第三次购买足球和篮球时,遇到商场打折销售.理由:∵张老师在某商场购买足球和篮球共三次,只有一次购买时,足球和篮球同时打折,其余两次均按标价购买,且只有第三次购买数量明显增多,但是总的费用不高,∴按打折价购买足球和篮球是第三次购买;故答案为:三;(2)设足球的标价为x元,篮球的标价为y元.根据题意,得,解得:.答:足球的标价为50元,篮球的标价为90元;(3)设购买a个篮球,依题意有0.6×50(50﹣a)+0.6×90a≤2200,解得a≤29.故最多可以买29个篮球.2.甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.若顾客购物应付x元,请根据x的取值,讨论顾客到哪家商场购物花费少?【解答】解:(1)当x≤50时,在甲、乙两个商场购物都不享受优惠,因此到两个商场购物花费一样;(2)当50<x≤100时,在乙商场购物享受优惠,在甲商场购物不享受优惠,因此在乙商场购物花费少;(3)当累计购物超过100元时,即x>100元,甲商场消费为:100+(x﹣100)×0.9元,在乙商场消费为:50+(x﹣50)×0.95元.当100+(x﹣100)×0.9>50+(x﹣50)×0.95,解得:x<150,当100+(x﹣100)×0.9<50+(x﹣50)×0.95,解得:x>150,当100+(x﹣100)×0.9=50+(x﹣50)×0.95,解得:x=150.综上所述,当累计消费大于50元少于150元时,在乙商店花费少;当累计消费大于150元时,在甲商店花费少;当累计消费等于150元或不超过50元时,在甲乙商场花费一样.知识点4 一元一次不等式组的应用一元一次不等式组的应用对具有多种不等关系的实际应用问题,通常列一元一次不等式组,并求解.一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.【典例】1.把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人?【答案】略.【解析】解:设有x个学生,那么共有(3x+8)本书,∵如果前面的每个学生分5本,那么最后一人就分不到3本,∴可知最后一人分到书的数的数量大于等于0且小于3,即0≤书的总数-(x-1)×5<3,∴可列不等式组为{3x+8−5(x−1)≥03x+8−5(x−1)<3,解得5<x≤6.5,∵x为整数,∴x=6,∴共有6×3+8=26本,答:有26本书,6个学生.【方法总结】一元一次不等式组的应用解题思路①将题目中所给信息与数学思想联系起来,读懂题,列出不等式关系;②根据不等关系,列一元一次不等式组;③解一元一次不等式组;④从不等式组解集中找出符合题意的答案,并作答.【随堂练习】1.青县祥通汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B 型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元?(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,且A型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得,答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得18a+26(6﹣a)≥130,解得a≤3,∴2≤a≤3.a是正整数,∴a=2或a=3.共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车;2.义安中学工会“三八妇女节”共筹集会费1800元,工会决定拿出不少于270元,但不超过300元的资金为“优秀女职工”购买纪念品,其余的钱用于给50位女职工每人买一瓶洗发液或护发素,已知每瓶洗发液比每瓶护发素贵9元,用200元恰好可以买到2瓶洗发液和5瓶护发素.(1)求每瓶洗发液和每瓶护发素价格各是多少元?(2)有几种购买洗发液和护发素的方案?哪种方案用于为“优秀女职工”购买纪念品的资金更充足?【解答】解:(1)设每瓶洗发液和每瓶护发素价格分别为x元和y元,则,解得.答:每瓶洗发液和每瓶护发素的价格分别为35元和26元.(2)设购买洗发液t瓶,购买护发素(50﹣t)瓶,则1800﹣300≤35t+26(50﹣t)≤1800﹣270解得22≤t≤25,因为t为正整数,所以t=23,24,25,即有三种方案:第一种方案:购买洗发液23瓶,护发素27瓶,余下资金293元.第二种方案:购买洗发液24瓶,护发素26瓶,余下资金284元.第三种方案:购洗发液25瓶,护发素25瓶,余下资金275元.综合运用1.若不等式(k﹣4)x>﹣1的解集为x<−1k−4,则k的取值范围是.【答案】k<4.【解析】解:∵不等式(k﹣4)x>﹣1的解集为x<−1k−4,∴k﹣4<0,解得:k<4.故答案为k<4.2.关于x的两个不等式3x+a2<1与3﹣3x>0的解集相同,则a= .【答案】-1.【解析】解:由3x+a2<1得:x<2−a3,由3﹣3x >0得:x <1, 由两个不等式的解集相同,得到2−a 3=1,解得:a=-1. 故答案为:-1.3.已知关于x ,y 的方程组{3x +y =1+3a ①x +3y =1−a ②(1)由方程①﹣②,可方便地求得x ﹣y= ;(2)若方程组的解满足x+y >0,则a 的取值范围是 . 【答案】2a ; a >﹣1.【解析】解:(1){3x +y =1+3a ①x +3y =1−a ②,①﹣②得,2x ﹣2y=1+3a ﹣1+a , 即x ﹣y=2a ;(2)①+②得,4x+4y=1+3a+1﹣a , 即x+y=12a+12; ∵x+y >0,∴12a+12>0,解得a >﹣1; 故答案为2a ;a >﹣1.4.已知不等式组 {x +1<a3x +5>x −7无解,则a 的取值范围是 .【答案】a ≤﹣5【解析】解:解不等式x+1<a ,可得:x <a ﹣1;解不等式3x+5>x ﹣7,可得:x >﹣6, 因为不等式组 {x +1<a3x +5>x −7无解,所以a ﹣1≤﹣6, 解得:a ≤﹣5, 故答案为:a ≤﹣55.关于x 的不等式组{x −a >01−x >0的整数解共有3个,则a 的取值范围是 .【答案】﹣3≤a <﹣2.【解析】解:由不等式①得x >a , 由不等式②得x <1,所以不等式组的解集是a <x <1,∵关于x 的不等式组{x −a >01−x >0的整数解共有3个,∴3个整数解为0,﹣1,﹣2, ∴a 的取值范围是﹣3≤a <﹣2.6.已知不等式组{x +2>m +nx −1<m −1的解集为﹣1<x <2,则(m+n )2018=_________.【答案】1.【解析】解:解不等式x+2>m+n ,得:x >m+n ﹣2, 解不等式x ﹣1<m ﹣1,得:x <m ,∴不等式组{x +2>m +nx −1<m −1的解集为m+n ﹣2<x <m ,∵不等式组的解集为:﹣1<x <2, ∴m+n ﹣2=﹣1,m=2, 解得:m=2,n=﹣1,则(m+n )2018=(2﹣1)2018=1, 故答案为:1.7.已知关于x ,y 的二元一次方程组{4x +y =k +2x +4y =3的解满足0<x+y <1,则k 的取值范围是 . 【答案】﹣5<k <0.【解析】解:将两方程相加可得5x+5y=k+5, ∴x+y=k+55,∵0<x+y <1,∴{k+55>0k+55<1,解得﹣5<k <0,∴k 的取值范围是﹣5<k <0, 故答案为:﹣5<k <0.8.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价_________元出售该商品. 【答案】6.【解析】解:设降价x 元出售该商品,,则降价出售获得的利润是(22.5﹣x ﹣15)元,根据利润率不低于10%,列出不等式得,22.5﹣x﹣15≥15×10%,解得x≤6,故该店最多降价6元出售该商品.故答案为:6.9.某种毛巾的原零售价为每条6元,凡一次性购买两条以上(含两条),商家推出两种优惠方案:(1)两条按原价,其余按七折优惠;(2)全部按八折优惠.若在购买相同数量的毛巾的情况下,要使方案(1)比方案(2)合算,则最少要购买毛巾___________条.【答案】7.【解析】解:设购买毛巾x条,∵根据题意可得不等关系:2条毛巾的价格+(x﹣2)条毛巾的价格×0.7<x条毛巾打8折的价格,∴可列出不等式为:6×2+6×0.7(x﹣2)<6×0.8x,解得x>6,∵x为最小整数,∴x=7,故答案为:7.<1与②2(x﹣2)>3x﹣6.10.关于x的两个不等式:①a+2x3(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解与不等式②的正整数解之和小于4,求a的取值范围.【答案】略.,【解析】解:(1)由①得:x<3−a2由②得:x<2,由两个不等式的解集相同,得到3−a=2,2解得:a=﹣1.故a的值为﹣1;(2)由不等式①的解与不等式②的正整数解之和小于4,得到3−a+1<4,2解得a>﹣3.故a的取值范围是a>﹣3.11.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.【答案】略.【解析】解:设用A型货厢x节,则用B型货厢(50﹣x)节,∵甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,∴x节A型货厢可装甲种货物35x吨,乙种货物15x吨;(50-x)节B型货厢可装甲种货物25(50-x)吨,乙种货物35(50-x)吨;∴x节A型货厢和(50﹣x)节B型货厢共装甲种货物为[35x+25(50-x)]吨,x节A型货厢和(50﹣x)节B型货厢共装乙种货物为[15x+35(50-x)]吨,∴{35x+25(50−x)≥153015x+35(50−x)≥1150解得28≤x≤30,∵x为整数,∴x只能取28,29,30,∴当x=28时,则50-x=22,当x=29时,则50-x=21,当x=30时,则50-x=20,共有三种调运方案:第一种调运方案:用A型货厢28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,B型货厢20节.12.某工厂生产A、B两种产品共50件,其生产成本与利润如下表:若该工厂计划投入资金不超过40万元,且希望获利超过16万元,问工厂有哪几种生产方案?哪种生产方案获利润最大?最大利润是多少?【答案】略.【解析】解:设生产A产品x件,则生产B产品(50﹣x)件,∴该工厂生产A种产品和B种产品一共投入资金为[0.6x+0.9(50-x)]元,∵该厂生产A种产品和B种产品投入资金不超过40万元,且希望获利超过16万元,∴可列不等式组为:{0.6x+0.9(50−x)≤40 0.2x+0.4(50−x)>16,解得:50≤x<20,3∵x取整数,∴x可取17、18、19,共三种方案:①A 17件,B 33件;②A 18件,B 32件;③A 19件,B 31件;第一种方案获利:0.2×17+0.4×33=16.6万元;第二种方案获利:0.2×18+0.4×32=16.4万元;第三种方案获利:0.2×19+0.4×31=16.2万元;故可得方案一获利最大,最大利润为16.6万元.答:工厂有3种生产方案,第一种方案获利润最大,最大利润是16.6万元.21。
初二不等式含参数练习题
初二不等式含参数练习题练习1:求解不等式:2x + 3 < 4x - 5,其中 x 是实数。
解:2x + 3 < 4x - 5将x的系数移到一边得到:3 + 5 < 4x - 2x8 < 2x将不等式两边同时除以2并改变不等号方向:4 < x所以解集为 x > 4.练习2:求解不等式:(a - 1)(a + 2) > 0,其中 a 是实数。
解:不等式的解需要考虑两个因式 (a - 1) 和 (a + 2) 的正负关系。
当两个因式都为正(大于零)或都为负(小于零)时,乘积大于零。
当一个因式为正,一个因式为负时,乘积小于零。
首先我们考虑 (a - 1) > 0 时,即 a - 1 > 0,解为 a > 1.然后我们考虑 (a + 2) > 0 时,即 a + 2 > 0,解为 a > -2.所以解集为 a > 1 或 a < -2.练习3:求解不等式:2x^2 + 7x - 4 > 0,其中 x 是实数。
解:首先我们可以通过求解二次方程2x^2 + 7x - 4 = 0的解来确定不等式的解集的分割点。
解二次方程2x^2 + 7x - 4 = 0:根据求根公式,有:x = (-b ± √(b^2 - 4ac)) / (2a)将方程系数代入公式得到:x = (-7 ± √(7^2 - 4*2*(-4))) / (2*2)化简得到:x = (-7 ± √(49 + 32)) / 4x = (-7 ± √81) / 4计算得到两个解 x = 1/2 和 x = -4.接下来,我们可以根据二次函数的凹凸性和零点的位置来确定不等式的解集。
首先考虑一个比较大的正数,例如x = 10,将x代入2x^2 + 7x - 4 > 0得到:2(10)^2 + 7(10) - 4 > 0200 + 70 - 4 > 0266 > 0可见当x取一个较大的正数时,不等式成立。
《含参数的不等式解集问题》专题(含解析)
《含参数的不等式解集问题》专题一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2018春•宿豫区期末)已知不等式组无解,则a的取值范围是()A.a≤1 B.a≥1 C.a<1 D.>12.(2020春•江都区期末)已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11 B.x<11 C.x>7 D.x<7 3.(2020春•吴江区期末)已知关于x的不等式(a﹣1)x>1,可化为x,试化简|1﹣a|﹣|a﹣2|,正确的结果是()A.﹣2a﹣1 B.﹣1 C.﹣2a+3 D.14.(2020春•龙华区校级期末)关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1 B.0≤a<1 C.﹣1<a≤0 D.﹣1≤a<0 5.(2020•寿光市二模)若不等式组有三个整数解,则a的取值范围是()A.2≤a<3 B.2<a≤3 C.2<a<3 D.a<3 6.(2020春•济源期末)已知关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,则m 的取值范围在数轴上可表示为()A.B.C.D.7.(2020春•蓬溪县期末)关于x的不等式组无解,则a的取值范围是()A.a≤5 B.a≥5 C.a<5 D.a>58.(2020春•东西湖区期末)若关于x的不等式mx﹣n>0的解集是x,则关于x的不等式(m+n)x<n﹣m的解集是()A.x B.x C.x D.x9.(2020春•南岗区校级月考)如果一元一次不等式(m+2)x>m+2的解集为x<1,则m 必须满足的条件是()A.m<﹣2 B.m≤﹣2 C.m>﹣2 D.m≥﹣2 10.(2020秋•武汉月考)对于三个数字a,b,c,用min{a,b,c}表示这三个数中最小数,例如min{﹣2,﹣1,0}=﹣2,min{﹣2,﹣1,x}.如果min{﹣3,8﹣2x,3x﹣5}=﹣3,则x的取值范围是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019春•沭阳县期末)已知不等式组只有一个整数解,则a的取值范围为.12.(2020春•丛台区校级期末)对任意有理数a,b,c,d,规定ad﹣bc,若10,则x的取值范围为.13.(2020春•仁寿县期末)若关于x的不等式组有四个整数解,则m的取值范围是.14.(2020春•番禺区校级月考)若关于x的不等式组的解集为x>a,则a取值范围是.15.(2020春•渝中区校级期末)若关于x,y的方程组的解都是正数,则m的取值范围是.16.(2020春•金水区校级月考)若不等式组有两个整数解,则a的取值范围是.17.(2020秋•高新区校级月考)已知关于x的不等式x m<0有5个自然数解,则m的取值范围是.18.(2020春•高邮市期末)若不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是.三.解答题(共7小题)19.(2016•大庆)关于x的两个不等式①1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.20.(2015春•乐平市期末)已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x,求m的取值范围;(2)若它的解集是x,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.21.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.22.(2020春•麦积区期末)(1)解不等式x+12,并把解集在数轴上表示出来;(2)关于x的不等式组恰有两个整数解,试确定a的取值范围.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:;当k=3时,不等式组的解集是:(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.24.(2017•江阴市自主招生)已知关于x的不等式的解集是x,求m 的值.25.(2017•呼和浩特)已知关于x的不等式x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2018春•宿豫区期末)已知不等式组无解,则a的取值范围是()A.a≤1 B.a≥1 C.a<1 D.>1【分析】根据不等式的解集的定义即可求出答案.【解析】由不等式组无解可知,两不等式在数轴上没有公共部分,即a≤1故选:A.【点评】本题考查不等式的解集,解题的关键是熟练运用不等式的解集的定义,本题属于基础题型.2.(2020春•江都区期末)已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是()A.x>11 B.x<11 C.x>7 D.x<7【分析】将x=4代入方程,求出b=﹣4k>0,求出k<0,把b=﹣4k代入不等式,再求出不等式的解集即可.【解析】∵x=4是关于x的方程kx+b=0(k≠0,b>0)的解,∴4k+b=0,即b=﹣4k>0,∴k<0,∵k(x﹣3)+2b>0,∴kx﹣3k﹣8k>0,∴kx>11k,∴x<11,故选:B.【点评】本题考查了解一元一次不等式和一元一次方程的解,能求出b=﹣4k和k<0是解此题的关键.3.(2020春•吴江区期末)已知关于x的不等式(a﹣1)x>1,可化为x,试化简|1﹣a|﹣|a﹣2|,正确的结果是()A.﹣2a﹣1 B.﹣1 C.﹣2a+3 D.1【分析】由不等式的基本性质3可得a﹣1<0,即a<1,再利用绝对值的性质化简可得.【解析】∵(a﹣1)x>1可化为x,∴a﹣1<0,解得a<1,则原式=1﹣a﹣(2﹣a)=1﹣a﹣2+a=﹣1,故选:B.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.(2020春•龙华区校级期末)关于x的不等式:a<x<2有两个整数解,则a的取值范围是()A.0<a≤1 B.0≤a<1 C.﹣1<a≤0 D.﹣1≤a<0【分析】根据题意可知:两个整数解是0,1,可以确定a取值范围.【解析】∵a<x<2有两个整数解,∴这两个整数解为0,1,∴a的取值范围是﹣1≤a<0,故选:D.【点评】此题考查了一元一次不等式组的整数解.解题时特别要注意取值范围中等号的确定.5.(2020•寿光市二模)若不等式组有三个整数解,则a的取值范围是()A.2≤a<3 B.2<a≤3 C.2<a<3 D.a<3【分析】首先解不等式,根据解的情况确定a的取值范围.特别是要注意不等号中等号的取舍.【解析】,解不等式x+a≥0得:x≥﹣a,解不等式1﹣2x>x﹣2得:x<1,∴﹣a≤x<1.∵此不等式组有3个整数解,∴这3个整数解为﹣2,﹣1,0,∴﹣3<﹣a≤﹣2,∴2≤a<3.故选:A.【点评】此题考查了一元一次不等式组的解法.解题中要注意分析不等式组的解集的确定.6.(2020春•济源期末)已知关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,则m 的取值范围在数轴上可表示为()A.B.C.D.【分析】根据已知不等式的解集确定出m的范围即可.【解析】不等式3(x+1)﹣2mx>2m变形为:(3﹣2m)x>﹣(3﹣2m),∵关于x的不等式3(x+1)﹣2mx>2m的解集是x<﹣1,∴3﹣2m<0,解得:m,在数轴上表示:故选:C.【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法,以及在数轴上表示不等式的解集的方法是解本题的关键.7.(2020春•蓬溪县期末)关于x的不等式组无解,则a的取值范围是()A.a≤5 B.a≥5 C.a<5 D.a>5【分析】关于x的不等式组无解,根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,求出a的取值范围是多少即可.【解析】关于x的不等式组无解,则a的取值范围是a≥5.故选:B.【点评】此题主要考查了不等式的解集,要熟练掌握,解答此题的关键是要明确:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(2020春•东西湖区期末)若关于x的不等式mx﹣n>0的解集是x,则关于x的不等式(m+n)x<n﹣m的解集是()A.x B.x C.x D.x【分析】先根据第一个不等式的解集求出m<0、n<0,m=3n,再代入第二个不等式,求出不等式的解集即可.【解析】∵mx﹣n>0,∴mx>n,∵关于x的不等式mx﹣n>0的解集是x,∴m<0,,∴m=3n,n<0,∴n﹣m=﹣2n,m+n=4n,∴关于x的不等式(m+n)x<n﹣m的解集是x,故选:C.【点评】本题考查了解一元一次不等式,能求出m、n的值是解此题的关键.9.(2020春•南岗区校级月考)如果一元一次不等式(m+2)x>m+2的解集为x<1,则m 必须满足的条件是()A.m<﹣2 B.m≤﹣2 C.m>﹣2 D.m≥﹣2【分析】根据解集中不等号的方向发生了改变,得出m+2<0,求出即可.【解析】∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:A.【点评】本题考查了解一元一次不等式和一元一次不等式的解集的应用,关键是能根据题意得出m+2<0.10.(2020秋•武汉月考)对于三个数字a,b,c,用min{a,b,c}表示这三个数中最小数,例如min{﹣2,﹣1,0}=﹣2,min{﹣2,﹣1,x}.如果min{﹣3,8﹣2x,3x﹣5}=﹣3,则x的取值范围是()A.B.C.D.【分析】根据题中的新定义列出不等式组,求出x的范围即可.【解析】根据题意得:,解得:x,故选:A.【点评】此题考查了解一元一次不等式组,弄清题意是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019春•沭阳县期末)已知不等式组只有一个整数解,则a的取值范围为2<a≤3.【分析】先根据不等式组有解,确定不等式组的解集为1<x<a,再根据不等式组只有一个整数解,可知整数解为2,从而可求得a的取值范围.【解析】不等式组有解,则不等式的解集一定是1<x<a,若这个不等式组只有一个整数解即2,则a的取值范围是2<a≤3.故答案为:2<a≤3【点评】此题考查不等式的解集问题,正确解出不等式组的解集,正确确定a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了..12.(2020春•丛台区校级期末)对任意有理数a,b,c,d,规定ad﹣bc,若10,则x的取值范围为x>﹣3.【分析】根据新定义可知﹣4x﹣2<10,求不等式的解即可.【解析】根据规定运算,不等式10化为﹣4x﹣2<10,解得x>﹣3.故答案为x>﹣3.【点评】本题考查了利用一种新型定义转化为解一元一次不等式的问题,理解题意是解题的关键.13.(2020春•仁寿县期末)若关于x的不等式组有四个整数解,则m的取值范围是﹣3≤m<﹣2.【分析】解不等式组的两个不等式,根据其整数解的个数得出1≤4+m<2,解之可得.【解析】解不等式2x+5>0,得:x,解不等式x≤2,得:x≤4+m,∵不等式组有4个整数解,∴1≤4+m<2,解得:﹣3≤m<﹣2,故答案为:﹣3≤m<﹣2.【点评】本题主要考查不等式组的整数解问题,根据不等式组的整数解的个数得出关于m的不等式组是解题的关键.14.(2020春•番禺区校级月考)若关于x的不等式组的解集为x>a,则a取值范围是a≥2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大并结合不等式组的解集可得a的范围.【解析】解不等式2(x﹣1)>2,得:x>2,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>a,∴a≥2,故答案为:a≥2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2020春•渝中区校级期末)若关于x,y的方程组的解都是正数,则m 的取值范围是6<m<15.【分析】解方程组得出,根据题意列出不等式组,解之可得.【解析】解方程组得,根据题意,得:,解不等式①,得:m<15,解不等式②,得:m>6,∴6<m<15,故答案为:6<m<15.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(2020春•金水区校级月考)若不等式组有两个整数解,则a的取值范围是0<a≤1.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出关于a的不等式组即可.【解析】,解不等式①得:x≥a,解不等式②得:x<3,∴不等式组的解集为a≤x<3,∵不等式组有两个整数解,∴0<a≤1,故答案为:0<a≤1.【点评】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式组的整数解和已知得出关于a的不等式组.17.(2020秋•高新区校级月考)已知关于x的不等式x m<0有5个自然数解,则m的取值范围是8<m≤10.【分析】首先解不等式求得不等式的解集,然后根据不等式有5个自然数解即可得到一个关于m的不等式,求得m的值.【解析】解不等式x m<0得:x m,不等式有5个自然数解,一定是0,1,2,3,4,根据题意得:4m≤5,解得:8<m≤10.故答案是:8<m≤10.【点评】本题考查了不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.18.(2020春•高邮市期末)若不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是m.【分析】求出不等式1≤2﹣x的解,再求出不等式3(x﹣1)+5>5x+2(m+x)的解集,得出关于m的不等式,求出m即可.【解析】解不等式1≤2﹣x得:x,解关于x的不等式3(x﹣1)+5>5x+2(m+x),得x,∵不等式1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,∴,解得:m,故答案为m.【点评】本题主要对解一元一次不等式组,不等式的性质等知识点的理解和掌握,能根据已知得到关于m的不等式是解此题的关键.三.解答题(共7小题)19.(2016•大庆)关于x的两个不等式①1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解析】(1)由①得:x,由②得:x,由两个不等式的解集相同,得到,解得:a=1;(2)由不等式①的解都是②的解,得到,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.20.(2015春•乐平市期末)已知一元一次不等式mx﹣3>2x+m.(1)若它的解集是x,求m的取值范围;(2)若它的解集是x,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.【分析】(1)根据不等式的解集,利用不等式的性质确定出m的范围即可;(2)由解集确定出m的范围,求出m的值即可作出判断.【解析】(1)不等式mx﹣3>2x+m,移项合并得:(m﹣2)x>m+3,由解集为x,得到m﹣2<0,即m<2;(2)由解集为x,得到m﹣2>0,即m>2,且,解得:m=﹣18<0,不合题意,则这样的m值不存在.【点评】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.21.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.【分析】首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.【解析】将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a.不等式组解集是a≤1,a的取值范围是a≤1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(2020春•麦积区期末)(1)解不等式x+12,并把解集在数轴上表示出来;(2)关于x的不等式组恰有两个整数解,试确定a的取值范围.【分析】(1)依次去分母、移项、合并同类项、系数化为1可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解析】(1)∵x+12,∴2x+2≥x+4,2x﹣x≥4﹣2,x≥2,将不等式的解集表示在数轴上如下:(2)解不等式0,得x,解不等式x(x+1)+a,得x<2a.因为该不等式组恰有两个整数解,所以1<2a≤2,所以a≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:﹣1<x<1;当k=3时,不等式组的解集是:无解(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.【分析】(1)把k=﹣2和k=3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k为任意有理数时,要分1﹣k<﹣1,1﹣k>1,﹣1<1﹣k<1三种情况分别求出不等式组的解集.【解析】(1)把k=﹣2代入,得,解得﹣1<x<1;把k=3代入,得,无解.故答案是:﹣1<x<1;无解;(2)若k为任意实数,不等式组的解集分以下三种情况:当1﹣k≤﹣1即k≥2时,原不等式组可化为,故原不等式组的解集为无解;当1﹣k≥1即k≤0时,原不等式组可化为,故原不等式组的解集为﹣1<x<1;当﹣1<1﹣k<1即0<k<2时,原不等式组可化为,故原不等式组的解集为﹣1<x<1﹣k.【点评】本题考查的是不等式的解集,特别注意在解(2)时要分三种情况求不等式组的解集.24.(2017•江阴市自主招生)已知关于x的不等式的解集是x,求m 的值.【分析】不等式组整理后表示出解集,根据已知解集确定出m的值即可.【解析】原不等式可化为:4m+2x≤12mx﹣3,即(12m﹣2)x≥4m+3,又因原不等式的解集为x,则12m﹣2>0,m,比较得:,即24m+18=12m﹣2,解得:m(舍去).故m无值.【点评】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.25.(2017•呼和浩特)已知关于x的不等式x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解析】(1)当m=1时,不等式为1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.。
专题8.5 不等式中含参问题【十大题型】(举一反三)(华东师大版)(解析版)
专题8.5不等式中含参问题【十大题型】【华东师大版】【题型1根据一元一次不等式的解(集)求参数】 (1)【题型2根据一元一次不等式组的解集求参数】 (3)【题型3根据一元一次不等式有最值解求参数】 (5)【题型4根据一元一次不等式(组)的整数解的个数求参数】 (8)【题型5根据一元一次不等式组有解或无解求参数】 (10)【题型6根据一元一次不等式组的整数解的和求参数】 (12)【题型7根据一元一次不等式组无整数解求参数】 (14)【题型8一元一次方程与不等式(组)综合求参数】 (16)【题型9二元一次方程组与不等式(组)综合求参数】 (19)【题型10新定义问题与不等式综合求参数】 (22)【题型1根据一元一次不等式的解(集)求参数】【例1】(2023春·江苏·七年级统考期末)已知关于的不等式B+>0的解集为<12,则不等式−3+ <0的解集是.【答案】<5.【分析】不等式B+>0的解集是<12,判断出a<0且−=12则可以得到>0,得到=−2再解出不等式−3+<0的解集即可.【详解】解:∵不等式B+>0的解集是<12根据不等式的性质可知,当>0时,不等式的解集为>−不符合题意∴可以判断出<0,即不等式的解集为<−∴−=12,即>0且=−2−3+<0即−3<−,则<3−=3+2=5∴不等式的解集为<5故答案为:<5.【点睛】本题考查了不等式的解集,熟悉不等式的性质是解题的关键.【变式1-1】(2023春·四川南充·七年级统考期末)已知关于x的不等式ax+b>0的解集为<13,则不等式bx+a<0的解集是.【答案】<3【分析】根据已知不等式的解集确定出a与b的关系,用b表示出a,代入所求不等式求出解集即可.【详解】解:∵关于x的不等式ax+b>0的解集为x<13,∴−=13且a<0,整理得:a=−3b,b>0,代入所求不等式得:bx−3b<0,解得:x<3.故答案为:x<3.【点睛】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.【变式1-2】(2023春·江苏镇江·七年级统考期末)若实数3是不等式3+2<−3的一个解,则可取的最大整数是()A.−1B.2C.−3D.3【答案】C【分析】解不等式可得<−6−9,结合题意“实数3是不等式3+2<−3的一个解”,可得−6−9>3,解该不等式即可获得答案.【详解】解:由不等式3+2<−3,得<−6−9,∵实数3是不等式3+2<−3的一个解,∴−6−9>3,解得<−2,∴可取的最大整数为−3.故本题选:C.【点睛】本题主要考查了一元一次不等式的应用以及解一元一次不等式,结合题意得到不等式−6−9>3是解题关键.【变式1-3】(2023春·全国·七年级期末)已知关于x的一元一次不等式K22+2<2r33与2﹣x<0的解集相同,则m=.【答案】23【分析】首先计算出两个不等式的解集,再根据题意可得-6m+6=2,再解即可.【详解】解:∵2﹣x<0∴x>2−22+2<2+333−2+12<22+33x-6m+12<4x+6,解得:x>-6m+6,∵关于x的一元一次不等式K22+2<2r33与2﹣x<0的解集相同∴-6m+6=2,解得:=23故答案为:23【点睛】此题主要考查了不等式的解集,关键是正确确定两个不等式的解集.【题型2根据一元一次不等式组的解集求参数】【例2】(2023春·广西贺州·七年级校考期中)已知不等式组+2>+−1<−1的解集为−1<<2,则+ 2023=.【答案】1【分析】先求出两个不等式的解集,再根据不等式组的解集列出关于、的方程,然后求出、的值,最后代入代数式进行计算即可得解.【详解】解:+2>+s−1<−1②,解不等式①得,>+−2,解不等式②得,<,所以不等式组的解集是+−2<<,∵不等式组的解集为−1<<2,∴+−2=−1=2,解得=2=−1,∴+2023=(2−1)2023=1.故答案为:1.【点睛】本题主要考查了一元一次不等式组解集的求法、解二元一次方程以及代数式求值,根据不等式组的解集列出关于、的方程是解题的关键.【变式2-1】(2023春·河南南阳·七年级统考期末)已知是使不等式组<+1>2−1无解的最小整数,请你解关于,的方程组8−3=−−7−3=3+7.【答案】=−1=−2【分析】先根据不等式组无解得出2−1≥+1,解之得≥2,再结合是使不等式组无解的最小整数知=2,从而还原方程组,利用加减消元法求解即可.【详解】解:由题意得2−1≥+1,解得≥2,所以最小整数=2,代入原方程组,得8−3=−2 ①−7−3=13 ②由①−②,得15=−15,解得=−1.把=−1代入①,得=−2.所以原方程组的解为=−1=−2.【点睛】本题主要考查一元一次不等式组的整数解,解题的关键是根据不等式组无解得出的值,并熟练掌握解一元一次不等式组和二元一次方程组的能力.【变式2-2】(2023春·浙江宁波·七年级浙江省余姚市实验学校校考期末)试求出所有的实数对a、b,使得关于x的不等式组B+3>2+43B−4<−5+1的解集为2<<5.【答案】 =52=−43【分析】先解不等式组,再由不等式组B+3>2+43B−4<−5+1的解集为2<<5,转化成关于a,b的方程组来解即可.【详解】解:不等式组B+3>2+4①3B−4<−5+1②由①得−2>1,由②得,3+5<5,∵不等式组B+3>2+43B−4<−5+1的解集为2<<5∴−2≠0,3+5≠0∴当>2,>−53时,有>1K2,<53r5,当<2,<−5时,有<1K2,>53r5,2 3r5=55 3r5=2,∴解得 =52=−43或 =115=−56(<2,<−53,不符合舍去)∴实数对a、b为 =52=−43.【点睛】此题考查不等式组和二元一次方程组的解法,解题关键在于要灵活运用运算法则.【变式2-3】(2023春·河南南阳·七年级统考期末)已知不等式组2+1≥−1−+2≥2(−1),要使它的解集中的任意x的值都能使不等式3≥+3成立,则m的取值范围是.【答案】≤−9【分析】解不等式组得到解集,结合3≥+3成立列式求解即可得到答案;【详解】解:分别解不等式得,≥−2,≤43,∴−2≤≤43,∴−6≤3≤4,∵3≥+3,∴+3≤−6,解得:≤−9,故答案为:≤−9;【点睛】本题考查解不等式组及根据解集求参数,解题的关键是正确的求出不等式组的解集.【题型3根据一元一次不等式有最值解求参数】【例3】(2023春·江苏·七年级阶段练习)若不等式2<1−3的解集中所含的最大整数为4,则a的范围为.【答案】-3≤a<-73.【分析】先求出不等式的解集,根据解集中所含的最大整数为4,求出a的取值范围即可.【详解】2x<1-3a,x<1−32,∵解集中所含的最大整数为4,∴4<1−32≤5,解得:-3≤a<-73,故答案为-3≤a<-73.【点睛】本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式的整数解的应用,解此题的关键是能求出关于a的不等式组,难度适中.【变式3-1】(2023春·安徽六安·七年级校联考期中)关于x的不等式3−+2>0的最小整数解为2,则实数m的取值范围是()A.5≤<8B.5<<8C.5≤≤8D.5<≤8【答案】A【分析】解出不等式,然后根据不等式的最小整数解为2,即可列出关于m的不等式,从而求出m的取值范围.【详解】解:解不等式3−+2>0,得>K23,∵不等式的最小整数解为2,∴1≤K23<2,解得5≤<8,故A正确.故选:A.【点睛】此题主要考查的是含参数的一元一次不等式,掌握根据不等式的最小整数解求参数的取值范围是解决此题的关键.【变式3-2】(2023春·全国·七年级专题练习)若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a 的值为【答案】103<a≤4【分析】先将a看作常数解不等式,根据最小整数解为5,得4<3K22≤5,解出即可.【详解】解不等式2x-3a+2≥0得x≥3K22,∵不等式的最小整数解为5,∴4<3K22≤5,∴103<a≤4,故答案为103<a≤4.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.【变式3-3】(2023春·湖北武汉·七年级校考期末)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=.【答案】−103【分析】求出不等式的解集,根据已知得出3+6<≤3+7,求出−3.5≤<−3,设=3+6,则= 13−2,得出不等式组−3.5≤13−2<−3,求出即可.【详解】解:解不等式−<0得:<,∵关于的不等式−<0的最大整数解为3+6,∴3+6<≤3+7,解得:−3.5≤<−3,∵3+6为整数,设=3+6,则=13−2,即−3.5≤13−2<−3,解得:−4.5≤<−3,∵为整数,∴=−4,即=13×(−4)−2=−103,故答案为:−103.【点睛】本题考查了一元一次不等式的整数解,解此题的关键是得出关于的不等式组.【题型4根据一元一次不等式(组)的整数解的个数求参数】【例4】(2023春·辽宁沈阳·七年级统考期中)已知关于的不等式组K2≥2−4≤3−2的最小整数解是2,则实数的取值范围是()A.−3≤<−2B.−3<≤−2C.−3<<−2D.−3≤≤−2【答案】B【分析】分别求出每一个不等式的解集,根据口诀:同大取大及不等式组的最小整数解求解即可.【详解】解:解不等式K2≥2,得:x≥4+m,解不等式x−4≤3(x−2),得:x≥1,∵不等式组的最小整数解是2,∴1<4+m≤2,解得−3<m≤−2,故选:B.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【变式4-1】(2023春·江西赣州·七年级统考期末)若关于x的不等式x﹣a>0恰好有两个负整数解,则a 的范围为.【答案】﹣3≤a<﹣2.【分析】首先解不等式,然后根据条件即可确定a的值.【详解】解:∵x−a>0,∴x>a,∵不等式x−a>0恰有两个负整数解,则其负整数解为-1、-2且-3不是负整数解∴a的取值范围为:−3≤a<−2故答案为:−3≤a<−2.【点睛】本题主要考查含参的一元一次不等式的解法,含参的不等式指的是不等式未知数的系数或常数项用字母表示的不等式,利用分类讨论及数形结合思想,可结合数轴,解决含参不等式.【变式4-2】(2023春·云南曲靖·七年级统考期末)若关于的不等式2−≥0的负整数解为−1,−2,−3,则的取值范围是.【答案】−8<≤−6【分析】首先解不等式求得解集,然后根据不等式只有负整数解为-1,-2,-3,得到关于m的不等式,求得m的范围.【详解】解:∵2x-m≥0,∴2x≥m,∴x≥2.则-4<2≤-3,解得:-8<m≤-6.故答案为:-8<m≤-6.【点睛】此题考查了根据不等式解集的情况求参数的取值范围,根据x的取值范围正确确定2的范围是解题的关键.【变式4-3】(2023春·四川宜宾·七年级统考期末)若关于x的一元一次不等式组+1≥03−<0,有3个非负整数解,则m的取值范围是()A.6<≤9B.6≤<9C.2<≤3D.2≤<3【答案】A【分析】表示出不等式组的解集,根据解集中有3个非负整数解,确定出m的范围即可.【详解】解:不等式组整理,得:≥−1<3,解得:−1≤<3,∵不等式组有3个非负整数解,即非负整数解为0,1,2,∴2<3≤3,解得:6<≤9.故选:A.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.【题型5根据一元一次不等式组有解或无解求参数】【例5】(2023春·吉林松原·七年级校联考期中)若不等式组1<≤2>无解,则的取值范围是()A.≥2B.<1C.≤2D.1≤<2【答案】A【分析】由已知不等式组无解,确定出k的范围即可.【详解】解:∵不等式组1<≤2>无解,∴k的范围为k≥2,故选:A.【点睛】此题考查了不等式组的解集,熟练掌握确定每个不等式的解集是解本题的关键.【变式5-1】(2023春·重庆渝中·七年级重庆市求精中学校校考期中)不等式组2(+1)<3−6<4无解,则的取值范围是.【答案】≤2【分析】根据不等式组无解的条件确定出m的范围即可.【详解】不等式组整理得:>8<4,由不等式组无解,得到4≤8,解得:≤2,则的取值范围是≤2.故答案为:≤2.【点睛】本题考查了不等式的解集,弄清不等式组无解的条件是解本题的关键.【变式5-2】(2023春·广西梧州·七年级统考期末)关于的不等式组−>32+8>4有解且每一个的值均不在−2≤≤6的范围中,则的取值范围是()A.<1B.≤1C.1≤≤5D.≥5【答案】A【分析】求出不等式组−>32+8>4的解集,根据不等式组解集所处条件范围,列出关于a的不等式,解不等式可得答案.【详解】解:−>3①2+8>4t,解不等式①得:<−3,解不等式②得:>2−4,∴原不等式组的解集为:2−4<<−3,∵不等式组有解且每一个的值均不在−2≤≤6的范围中,∴2−4≥6或−3≤−2,解得:≥5或≤1,∵不等式组有解集,∴−3>2−4,解得:<1,综上,的取值范围是<1.故选:A.【点睛】本题主要考查了不等式组的解集,解一元一次不等式,掌握不等式的性质,逆向应用是本题的特点.【变式5-3】(2023春·安徽滁州·七年级校考期中)若关于>0>−1无解,且方程2−+1=−32−的解是非负数,则满足条件的整数的值有()个.A.1B.2C.3D.4【答案】C【分析】先分别求出不等式组中每一个不等式的解集,继而根据不等式组无解确定出a的范围,再解一元一次方程求出用含a的式子表示的x的值,进而根据方程解为非负数得到关于a的不等式,解不等式求出a的取值范围,进而即可确定出符合所有条件的整数a的值.>0①>−1②,由①得:x>a,由②得:x<1,由于不等式组无解,所以a≥1;解方程2−+1=−32−得x=7−22,由方程2−+1=−32−的解是非负数,则有7−22≥0,解得:a≤72,所以a的取值范围为1≤a≤72,所以满足条件的整数a为1、2、3,共3个,故选C.【点睛】本题考查了一元一次方程的解、不等式组无解问题,熟练掌握相关解法是解题的关键.【题型6根据一元一次不等式组的整数解的和求参数】【例6】(2023春·全国·七年级专题练习)已知关于x的不等式组{3x+<0>−5的所有整数解的和为-9,则m 的取值范围()A.3≤m<6B.4≤m<8C.3≤m<6或-6≤m<-3D.3≤m<6或-8≤m<-4【答案】C【分析】先求解不等式组,再根据条件判断出含参代数式的范围,从而求得参数的范围即可.【详解】解原不等式得:{<−3>−5,即−5≤<−3,由所有整数解的和为-9,可知原不等式包含的整数为-4,-3,-2或-4,-3,-2,-1,0,1,当整数为-4,-3,-2时,则−2<−3≤−1,解得:3≤<6,当整数为-4,-3,-2,-1,0,1时,则1<−3≤2,解得:−6≤<−3,故选:C.【点睛】本题考查含参不等式组求解问题,熟练掌握对含参代数式范围的确定是解题关键.【变式6-1】(2023春·湖南长沙·七年级统考期末)若关于的不等式组3−2<5+4≤−1的所有整数解的和为0,则的值不可能是()A.3B.3.2C.3.7D.4【答案】D【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后根据整数解的和为0,确定整数解,即可求得的取值范围.【详解】解:3−2<5+4①≤−1②,解①得>−3,解②得≤−1,∵所有整数解的和为0,∴整数解是−2,−1,0,1,2,∴2≤−1<3,解得:3≤<4,∴的值不可能是4,故选:D.【点睛】本题考查了一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.【变式6-2】(2023春·安徽亳州·七年级校考阶段练习)已知不等式组r1310 +5r43>+1+的正整数解为=1和2,求的取值范围.【答案】1<≤32【分析】先求解一元一次不等式组,再根据题意建立关于参数的不等式即可求解.【详解】解:r13+12>0①+5r43>43+1+t解①得:>−52解②得:<2∵不等式组的正整数解为=1和2∴2<2≤3∴1<≤32【点睛】本题考查根据一元一次不等式组的解集情况确定参数的取值范围.注意计算的准确性.【变式6-3】(2023春·四川绵阳·七年级统考期末)若关于x≤−1−15s2>−12的最大整数解与最小整数解的和为−2,则满足条件的整数m的和为.【答案】27【分析】依据题意,解出不等式组的解集,然后再由最大整数解与最小整数解的和为−2,进而计算可以得解.≤−1−15s2>−12t,∴由①得,≤52;由②得,>2−12.∴原不等式组的解集为2−12<≤52.∴这个不等式组的最大整数解为2.又最大整数解与最小整数解的和为−2,∴这个不等式组的最小整数解为−4.∴−5≤2−12<−4.∴12<≤14.∴满足题意的整数有13,14.∴满足题意的整数的和为27.故答案为:27.【点睛】本题主要考查了一元一次不等式组的整数解,解题时要熟练掌握并理解是关键.【题型7根据一元一次不等式组无整数解求参数】【例7】(2023春·安徽安庆·七年级校考期中)已知关于的不等式组5−2>1>无整数解,则的取值范围是()A.≥1B.>1C.1<≤2D.>2【答案】A【分析】先求出不等式①的解集,根据不等式组无整数解即可得到答案.【详解】5−2>1①>t,解不等式①得x<2,∵不等式②知x>a,不等式组5−2>1>无整数解,∴≥1.故选:.【点睛】此题考查解一元一次不等式组,根据不等式组的解的情况求未知数的取值范围.【变式7-1】(2023春·上海·六年级校考阶段练习)关于的不等式组2−5<0−>0无整数解,则的取值范围为.【答案】≥2【分析】先分别求出两个不等式的解集为<52和>,再分两种情况:①≥52和②<52进行讨论即可得.【详解】解:由2−5<0−>0得:<52>,①当≥52时,原不等式组无解,符合题意;②如图,当<52时,要使原不等式组无整数解,则≥2,所以此时2≤<52;综上,≥2,故答案为:≥2.【点睛】本题考查了一元一次不等式组的解,熟练掌握不等式组的解法,正确分两种情况讨论是解题关键.【变式7-2】(2023春·安徽安庆·七年级统考期末)若不等式组2>3−33−<−6无正整数解,则a的取值范围为()A.a≤15B.a<9C.a<15D.a≤9【答案】D【分析】解一元一次不等式组【详解】2x>3x-3,3x-a>﹣6即x<3,x>(a−6)3因为不等式组无正整数解,所以不等式解集为x<1则(a−6)3≤1a-6≤3a≤9【点睛】掌握解一元一次不等式组的步骤:(1)求出这个不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分,即求出了这个不等式组的解集.【变式7-3】(2023春·七年级单元测试)关于x的不等式组2+1><−3有解但是无整数解,则m的取值范围为.【答案】-7≤m<-5【详解】解:2+1>s<−3②.∵解不等式①得:x>K12.又∵关于x的不等式组2+1><−3有解但是无整数解,∴﹣4≤K12<﹣3,解得:﹣7≤m<﹣5.故答案为﹣7≤m<﹣5.点睛:本题考查了解一元一次不等式组,不等式组的整数解的应用,能求出关于m的不等式组﹣4≤K12<﹣3是解答此题的关键.【题型8一元一次方程与不等式(组)综合求参数】【例8】(2023春·全国·七年级期末)若关于的方程−2=3−2的解为非负数,且关于的不等式组−2−1≤32r3≥有解,则符合条件的整数值的和为()A.2B.3C.5D.6【答案】C【分析】根据关于的方程−2=3−2的解为非负整数,且关于的不等式组−2−1≤32r3≥有解,可以求得的取值范围,从而可以求得符合条件的整数的值的和,本题得以解决.【详解】解:由方程−2=3−2,得=3−,∵关于的方程−2=3−2的解为非负整数,∴3−≥0,得≤3,−2−1≤3①2r3≥②,由①,得≥−1,由②,得≤,∵关于的不等式组−2−1≤32r3≥有解,∴−1≤,得≥−1,由上可得,−1≤≤3,∴符合条件的整数的值为:−1,0,1,2,3,∴符合条件的整数的值的和为:−1+0−1+1+2+3=5.故选:C.【点睛】本题考查解一元一次方程、解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确解方程和不等式的方法.【变式8-1】(2023春·陕西安康·七年级统考期末)关于x的方程2−3=2+8的解是负数,求m的取值范围.【答案】<−112【分析】先解方程,用含m的代数式表示出x,根据解是负数得到关于m的不等式,解不等式即可.【详解】解:解方程2−3=2+8,得=+112,∵关于x的方程2−3=2+8的解是负数,∴=+112<0,∴<−112.【点睛】本题考查解一元一次方程和解一元一次不等式,解题的关键是用含m的代数式表示出x.【变式8-2】(2023春·甘肃兰州·七年级校考期中)若关于x的一元一次不等式组−2r34<22+7<4(+1)的解集为K32,且关于y的方程3−2=2K(5−3p2的解为非负整数,则符合条件的所有整数m的积为().A.2B.7C.11D.10【答案】D【分析】不等式组整理后,根据已知解集确定出m的范围,由方程有非负整数解,确定出m的值,求出之积即可.【详解】解:−2r34<2s2+7<4(+1)②,由①得:K310,由②得K32,由解集为K32,得到310≤32,即≤5,方程去分母得:6−4=2−5+3,即=2K13,由为非负整数,结合≤5且为整数,∴=5或=2,∴符合条件的所有整数m的积为2×5=10,故选D.【点睛】本题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.【变式8-3】(2023春·河南洛阳·七年级统考期中)已知关于x的方程:K22−1=43+.(1)若方程的解是=3.那么=?(2)若该方程的解是负数,并且m是负整数,请你试求该方程的解.【答案】(1)=−412(2)=−65【分析】(1)把=3代入方程得到一个关于m的方程,求得常数即可;(2)求出关于x的方程,进一步探讨得出答案即可.【详解】(1)把=3代入K22−1=43+,得:12−1=4+,解得:=−412.(2)K22−1=43+去分母得,3−6−6=8+6,解得:=−12−65,∵<0,∴−12−65<0,∴>−2.∵m是负整数,∴=−1,∴=−65.【点睛】此题考查了方程解的定义和解方程的步骤与方法,注意审清题意,正确理解方程的解.【题型9二元一次方程组与不等式(组)综合求参数】【例9】(2023春·重庆·七年级统考期末)若关于x的不等式组K24<K134−≤4−恰有2个整数解,且关于x,y的方程组B+=43−=0也有整数解,则所有符合条件的整数m的和为()A.−2B.−3C.−6D.−7【答案】D【分析】表示出不等式组的解集,根据解集中恰有2个整数解,确定出m的范围,再由方程组有整数解,确定出满足题意的整数m的值,求出之和即可.【详解】解:不等式组整理得:>−2≤r45,解得:-2<x≤r45,∵不等式组恰有2个整数解,即-1,0,∴0≤r45<1,解得:-4≤m<1,即整数m=-4,-3,-2,-1,0,解方程组B+=43−=0得:=4r3=12r3,∵x,y为整数,∴m+3=±1或±2或±4,解得:m=-4或-2或-1,则m值的和为-4-2-1=-7.故选:D.【点睛】此题考查了一元一次不等式的整数解,以及二元一次方程组的解,熟练掌握各自的解法是解本题的关键.【变式9-1】(2023春·四川宜宾·七年级统考期末)若关于、的二元一次方程组+2=42+=3−(1)用含的代数式表示+.(2)若方程组的解满足−>−4,求的取值范围.(3)在(2)的条件下,若为正整数,求关于的方程B−1−2=5的解.【答案】(1)+=7−3(2)<3(3)=113或=115.【分析】(1)把两个方程相加,再利用等式基本性质,两边同时除以3即可;(2)解含有字母参数m的方程组,求出a,b,代入不等式进行解答即可;(3)根据已知条件,求出m,把m值代入方程,进行解答.【详解】(1)解:+2=4①2+=3−t,由①+②得:3+3=7−,∴+=7−3;(2)解:+2=4①2+=3−t,由②−①得:−=−1−,∵又−>−4,∴−1−>−4,解得:<3,∴的取值范围是<3;(3)解:由(2)得的取值范围是<3,为正整数,则为1或2,当=1时,关于的方程化为−1−2=5,解得:=113;当=2时,关于的方程化为2−1−2=5,解得:=115.【点睛】本题主要考查了二元一次方程组、一元一次不等式组及一元一次方程的解法,解题关键是熟练掌握解二元一次方程组、一元一次不等式组及一元一次方程.【变式9-2】(2023春·福建福州·七年级福建省福州屏东中学校考期末)已知关于x,y的方程组−3=4−+=3,其中−3≤≤1,若=−,则M的最小值为()A.−2B.−1C.2D.3【答案】B【分析】由①+②得x-y=2+t,将=−代入得t=M-2,再根据−3≤≤1可得−1≤≤3即可得出答案.【详解】解:−3=4−s+=3t①+②得2x-2y=4+2t即x-y=2+t,∵=−,∴M=2+t,∴t=M-2∵−3≤≤1,∴−3≤−2≤1即−1≤≤3∴M的最小值为-1故选:B.【点睛】本题考查含参二元一次方程组参数满足的条件求字母的最小值问题,用整体思想直接找到两个参数之间的关系是解题的关键.【变式9-3】(2023春·四川南充·七年级统考期末)关于,的方程组−=1+=6−7的解,都是非负数,如果2+=1,=+,那么的取值范围是.【答案】≤−13【分析】根据二元一次方程组的解法求出−=1+=6−7的解,再根据解的情况得到≥43,从而由2+= 1,=+得到=+=+1−2=1−,即可得到的取值范围.【详解】解:−=1①+=6−7②,①+②得:2=6−6,解得:=3−3,②−①得:2=6−8,解得:=3−4,∵关于,的方程组−=1+=6−7的解,都是非负数,∴3−3≥03−4≥0,解得:≥43,∴−≤−43,∵2+=1,即=1−2,∴=+=+1−2=1−,则的范围是≤1+−=−13,故答案为:≤−13.【点睛】本题考查解二元一次方程组、根据二元一次方程组解的情况求参数范围,熟练掌握二元一次方程组的解法、二元一次不等式组的解法、不等式的性质是解决问题的关键.【题型10新定义问题与不等式综合求参数】【例10】(2023春·江西景德镇·七年级统考期中)定义一种新运算max,规定:当>时,max s=;当=时,max s==;当<时,max s=.(1)max3,−1=______,max6,9=______;(2)若关于的方程,满足max3+2=r12,求的取值范围;(3)若关于的方程组max1,2+1=2+1,max s+3=2+s无解,求的取值范围.【答案】(1)3;9(2)≥9(3)<2【分析】(1)根据新定义求值即可;(2)根据新定义列不等式计算即可;(3)先根据新定义求出含参数的x的取值范围,再由无解求的取值范围.(1)∵3>-1,∴max3,−1=3∵9>6,∴max6,9=9(2)∵max3+2=r12∴r12≥3+2解得≥9(3)由max−1,2+1=2+1可得:2+1≥−1解得≥−2由max s+3=2+可得:2+≥+3解得:≤2−6∵关于的方程组B1,2+1=2+1,B+s+3=2+s无解,即≥−2≤2−6无解∴2−6<−2解得:<2【点睛】本题考查一元一次不等式应用,理解新定义,能将所求知识根据新定义转化为一元一次不等式求解是解题的关键.【变式10-1】(2023春·甘肃兰州·七年级校考期中)我们定义;如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”(1)不等式≥2≤2的“云不等式”:(填“是”或“不是”).(2)若关于的不等式+2≥0不是2−3<+1“云不等式”,求的取值范围.(3)若≠−1,关于的不等式+3>与不等式B−1≤−互为“云不等式”,求的取值范围.【答案】(1)是(2)<−32(3)<−1或−1<<4【分析】(1)根据云不等式的定义即可求解;(2)解不等式+2≥0可得≥−2,解不等式2−3<+1得<4,再根据云不等式的定义可得−2>3,解不等式即可求解;(3)分两种情况讨论,根据云不等式的定义得到含的不等式,解得即可.【详解】(1)解:∵不等式≥2和不等式≤2有公共整数解2,∴不等式≥2是≤2的“云不等式”,故答案为:是;(2)解:解不等式+2≥0可得≥−2,解不等式2−3<+1得<4,∵关于的不等式+2≥0不是2−3<+1的“云不等式”,∴−2>3,解得<−32.故的取值范围是<−32;(3)解:∵B−1≤−,∴B+≤+1,∴+1≤+1,①当+1>0时,即>−1时,+1≤+1的解集是≤1,∵+3>,∴>−3,由题可得−3<1,即<4,故−1<<4;②当+1<0时,即<−1时,+1≤+1的解集是≥1,此时始终符合题意,故<−1,综上所述:的取值范围为<−1或−1<<4.【点睛】本题主要考查了新定义运算,以及解一元一次不等式组,熟练掌握解一元一次不等式组解集的确定方法是解题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【变式10-2】(2023春·湖北武汉·七年级统考期末)定义运算:s=B+B,已知2,3=7,3,4=10.(1)直接写出:=______,=______;(2)若关于的不等式组+1,2−≥02s−<0无解,求的取值范围;(3)若B+3s2−B≥3+4的解集为≤13,求不等式B−s3−B≥+的解集.【答案】(1)2;1(2)≤−20(3)≤139【分析】(1)根据定义的新运算,列出二元一次方程组,解方程组可求出,的值;(2)根据(1)求出的,的值和新运算列出一元一次不等式组,解不等式组并根据不等式组解集的情况可求出的取值范围;(3)根据(1)求出的,的值和新运算列出一元一次不等式,根据解集为≤13可得出与的数量关系;再根据,的值和新运算列出一元一次不等式求解即可.【详解】(1)解:由题意得:2+3=73+4=10,解得:=2=1,故答案为:2;1;(2)把=2,=1代入s=B+B得s=2+,∴不等式组+1,2−≥02s−<0可转化为2+1+2−≥02×2+−<0,解得:≥−4<5,∵关于的不等式组+1,2−≥02s−<0无解,∴5≤−4,解得:≤−20,∴的取值范围是≤−20;(3)不等式B+3s2−B≥3+4转化为2B+3+2−B≥3+4,整理,得:2−≥−2,∵B+3s2−B≥3+4的解集为≤13,∴2−<0,解得:≤K22K,∴K22K=13,∴=5,∴2×5−<0,解得:<0,不等式B−s3−B≥+转化为2B−+3−B≥+,整理,得:2−≥3−2,。
专题2.5 不等式中含参问题【十大题型】(举一反三)(北师大版)(原卷版)
专题2.5 不等式中含参问题【十大题型】【北师大版】【题型1 根据一元一次不等式的解(集)求参数】 ................................................................................................... 1 【题型2 根据一元一次不等式组的解集求参数】 .................................................................................................. 1 【题型3 根据一元一次不等式有最值解求参数】 .................................................................................................. 2 【题型4 根据一元一次不等式(组)的整数解的个数求参数】 ............................................................................... 2 【题型5 根据一元一次不等式组有解或无解求参数】 .......................................................................................... 3 【题型6 根据一元一次不等式组的整数解的和求参数】 ...................................................................................... 3 【题型7 根据一元一次不等式组无整数解求参数】 .............................................................................................. 3 【题型8 一元一次方程与不等式(组)综合求参数】 ............................................................................................... 4 【题型9 二元一次方程组与不等式(组)综合求参数】 ........................................................................................... 4 【题型10 新定义问题与不等式综合求参数】 . (5)【题型1 根据一元一次不等式的解(集)求参数】【例1】(2023春·江苏·八年级统考期末)已知关于x 的不等式ax +b >0的解集为x <12,则不等式b (x −3)+a <0的解集是 .【变式1-1】(2023春·四川南充·八年级统考期末)已知关于x 的不等式ax +b >0的解集为x <13,则不等式bx +a <0的解集是 .【变式1-2】(2023春·江苏镇江·八年级统考期末)若实数3是不等式x3+2m <−3的一个解,则m 可取的最大整数是( ) A .−1B .2C .−3D .3【变式1-3】(2023春·全国·八年级期末)已知关于x 的一元一次不等式x−2m 2+2<2x+33与2﹣x <0的解集相同,则m = .【题型2 根据一元一次不等式组的解集求参数】【例2】(2023春·广西贺州·八年级校考期中)已知不等式组{x +2>m +n x −1<m −1 的解集为−1<x <2,则(m +n )2023= .【变式2-1】(2023春·河南南阳·八年级统考期末)已知m是使不等式组{x<m+1x>2m−1无解的最小整数,请你解关于x,y的方程组{8x−3y=−m−7x−3y=3m+7.【变式2-2】(2023春·浙江宁波·八年级浙江省余姚市实验学校校考期末)试求出所有的实数对a、b,使得关于x的不等式组{ax+3>2x+43bx−4<−5x+1的解集为2<x<5.【变式2-3】(2023春·河南南阳·八年级统考期末)已知不等式组{2x+1≥x−1−x+2≥2(x−1),要使它的解集中的任意x的值都能使不等式3x≥m+3成立,则m的取值范围是.【题型3 根据一元一次不等式有最值解求参数】【例3】(2023春·江苏·八年级阶段练习)若不等式2x<1−3a的解集中所含的最大整数为4,则a的范围为.【变式3-1】(2023春·安徽六安·八年级校联考期中)关于x的不等式3x−m+2>0的最小整数解为2,则实数m的取值范围是()A.5≤m<8B.5<m<8C.5≤m≤8D.5<m≤8【变式3-2】(2023春·全国·八年级专题练习)若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a 的值为【变式3-3】(2023春·湖北武汉·八年级校考期末)已知关于x的不等式x﹣a<0的最大整数解为3a+6,则a=.【题型4 根据一元一次不等式(组)的整数解的个数求参数】【例4】(2023春·辽宁沈阳·八年级统考期中)已知关于x的不等式组{x−m2≥2x−4≤3(x−2)的最小整数解是2,则实数m的取值范围是()A.−3≤m<−2B.−3<m≤−2C.−3<m<−2D.−3≤m≤−2【变式4-1】(2023春·江西赣州·八年级统考期末)若关于x的不等式x﹣a>0恰好有两个负整数解,则a的范围为.【变式4-2】(2023春·云南曲靖·八年级统考期末)若关于x的不等式2x−m≥0的负整数解为−1,−2,−3,则m的取值范围是.【变式4-3】(2023春·四川宜宾·八年级统考期末)若关于x的一元一次不等式组{x+1≥03x−m<0,有3个非负整数解,则m的取值范围是()A.6<m≤9B.6≤m<9C.2<m≤3D.2≤m<3【题型5 根据一元一次不等式组有解或无解求参数】【例5】(2023春·吉林松原·八年级校联考期中)若不等式组{1<x ≤2x >k无解,则k 的取值范围是( )A .k ≥2B .k <1C .k ≤2D .1≤k <2【变式5-1】(2023春·重庆渝中·八年级重庆市求精中学校校考期中)不等式组{2(x +1)<3x −6x <4m无解,则m 的取值范围是 .【变式5-2】(2023春·广西梧州·八年级统考期末)关于x 的不等式组{a −x >32x +8>4a有解且每一个x 的值均不在−2≤x ≤6的范围中,则a 的取值范围是( ) A .a <1B .a ≤1C .1≤a ≤5D .a ≥5【变式5-3】(2023春·安徽滁州·八年级校考期中)若关于x 的一元一次不等式组{x −a >01−x 2>x −1 无解,且方程2(x −a )+1=x −3(2−x )的解是非负数,则满足条件的整数a 的值有( )个. A .1B .2C .3D .4【题型6 根据一元一次不等式组的整数解的和求参数】【例6】(2023春·全国·八年级专题练习)已知关于x 的不等式组{3x +m <0x >−5的所有整数解的和为-9,则m的取值范围( ) A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-4【变式6-1】(2023春·湖南长沙·八年级统考期末)若关于x 的不等式组{3x −2<5x +4x ≤m −1的所有整数解的和为0,则m 的值不可能是( ) A .3B .3.2C .3.7D .4【变式6-2】(2023春·安徽亳州·八年级校考阶段练习)已知不等式组{x+13+12>0x +5a+43>43(x +1)+a的正整数解为x =1和2,求a 的取值范围.【变式6-3】(2023春·四川绵阳·八年级统考期末)若关于x 的不等式组{x−105≤−1−15x,x −2>−12m 的最大整数解与最小整数解的和为−2,则满足条件的整数m 的和为 . 【题型7 根据一元一次不等式组无整数解求参数】【例7】(2023春·安徽安庆·八年级校考期中)已知关于x 的不等式组{5−2x >1x >a无整数解,则a 的取值范围是( ) A .a ≥1B .a >1C .1<a ≤2D .a >2【变式7-1】(2023春·上海·六年级校考阶段练习)关于x 的不等式组{2x −5<0x −a >0无整数解,则a 的取值范围为 .【变式7-2】(2023春·安徽安庆·八年级统考期末)若不等式组{2x >3x −33x −a <−6无正整数解,则a 的取值范围为( ) A .a≤15B .a <9C .a <15D .a≤9【变式7-3】(2023春·八年级单元测试)关于x 的不等式组{2x +1>m x <−3有解但是无整数解,则m 的取值范围为 .【题型8 一元一次方程与不等式(组)综合求参数】【例8】(2023春·全国·八年级期末)若关于x 的方程k −2x =3(k −2)的解为非负数,且关于x 的不等式组{x −2(x −1)≤32k+x 3≥x有解,则符合条件的整数k 值的和为( )A .2B .3C .5D .6【变式8-1】(2023春·陕西安康·八年级统考期末)关于x 的方程2x −3=2m +8的解是负数,求m 的取值范围.【变式8-2】(2023春·甘肃兰州·八年级校考期中)若关于x 的一元一次不等式组{−2x+3m4<2x2x +7<4(x +1)的解集为x>32,且关于y 的方程3y −2=2m−(5−3y)2的解为非负整数,则符合条件的所有整数m 的积为( ). A .2B .7C .11D .10【变式8-3】(2023春·河南洛阳·八年级统考期中)已知关于x 的方程:x−22−1=4x 3+m .(1)若方程的解是x =3.那么m =?(2)若该方程的解是负数,并且m 是负整数,请你试求该方程的解. 【题型9 二元一次方程组与不等式(组)综合求参数】【例9】(2023春·重庆·八年级统考期末)若关于x 的不等式组{x−24<x−134x −m ≤4−x恰有2个整数解,且关于x ,y 的方程组{mx +y =43x −y =0也有整数解,则所有符合条件的整数m 的和为( )A .−2B .−3C .−6D .−7【变式9-1】(2023春·四川宜宾·八年级统考期末)若关于a 、b 的二元一次方程组{a +2b =42a +b =3−m(1)用含m 的代数式表示a +b .(2)若方程组的解满足a −b >−4,求m 的取值范围. (3)在(2)的条件下,若m 为正整数,求关于x 的方程mx −1−x 2=5的解.【变式9-2】(2023春·福建福州·八年级福建省福州屏东中学校考期末)已知关于x ,y 的方程组{x −3y =4−t x +y =3t,其中−3≤t ≤1,若M =x −y ,则M 的最小值为( ) A .−2B .−1C .2D .3【变式9-3】(2023春·四川南充·八年级统考期末)关于x ,y 的方程组{x −y =1x +y =6a −7的解x ,y 都是非负数,如果2a +b =1,m =a +b ,那么m 的取值范围是 . 【题型10 新定义问题与不等式综合求参数】【例10】(2023春·江西景德镇·八年级统考期中)定义一种新运算max ,规定:当a >b 时,max (a,b )=a ;当a =b 时,max (a,b )=a =b ;当a <b 时,max (a,b )=b . (1)max (3,−1)=______,max (6,9)=______; (2)若关于x 的方程,满足max (x+12,x 3+2)=x+12,求x 的取值范围;(3)若关于x 的方程组{max (x −1,2x +1)=2x +1,max (x 2+a,x +3)=x2+a,无解,求a 的取值范围. 【变式10-1】(2023春·甘肃兰州·八年级校考期中)我们定义;如果两个一元一次不等式有公共解,那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式” (1)不等式x ≥2 x ≤2的“云不等式”:(填“是”或“不是”).(2)若关于x 的不等式x +2m ≥0不是2x −3<x +1“云不等式”,求m 的取值范围.(3)若a ≠−1,关于x 的不等式x +3>a 与不等式ax −1≤a −x 互为“云不等式”,求a 的取值范围. 【变式10-2】(2023春·湖北武汉·八年级统考期末)定义运算:f (x,y )=ax +by ,已知f (2,3)=7,f (3,4)=10. (1)直接写出:a =______,b =______;(2)若关于x 的不等式组{f (x +1,2−x )≥0f (2x,x −t )<0无解,求t 的取值范围;(3)若f (mx +3n,2m −nx )≥3m +4n 的解集为x ≤13,求不等式f (mx −m,3n −nx )≥m +n 的解集. 【变式10-3】(2023春·四川泸州·八年级统考期末)对于实数x ,y ,定义新运算:当x <y 时,x ⊕y =ax +by ;当x ≥y 时,x ⊕y =ay −bx ,其中a ,b 是常数,且ab ≠0,等式右边是通常的加法和乘法运算.。
(完整版)八年级下册含参不等式
八年级(下)含参不等式专项练习1.不等式的非负整数解有_________2.若不等式(a +1)x >a +1的解集是x <1,则a 必满足_________3.若不等式组⎩⎨⎧>-<-3212b x a x 的解集为-1<x <1,那么)1)(1(-+b a 的值等于 。
4.若m >5,试用m 表示出不等式(5-m)x >1-m 的解集______.5.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-≥-02,43x a x 的解集是x >2,求a 的值.4. 关于x 的不等式组⎩⎨⎧<+>+ba x ab x 22的解集为33<<-x ,求a 、b 的值。
5.关于x 的不等式组⎩⎨⎧->-≥-123,0x a x 的整数解共有5个,则a 的取值范围是___________6.若关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧+<+->+a x x x x 322,3215只有4个整数解,求a 的取值范围.7.已知a 是自然数,关于x 的不等式组⎩⎨⎧>-<-02,43x a x 有3个正整数解,求满足题意的a 值。
8.已知关于x 的不等式组4(1)23,617x x x a x -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.9.若不等式组无解,求m 的取值范围;若有解,求m 的取值范围。
6x 2x 34-≥-⎩⎨⎧->+<121m x m x10.已知方程组⎩⎨⎧-=++=+②①m y x m y x 12,312的解满足x +y <0,求m 的取值范围.11.关于x 、y 的二元一次方程组,当m 为何值时,x >0,y ≤0?*12. 求不等式()31x a x ->的解集。
方案专题13.(2013•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?14、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品共50件,已知生产一件A 种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B 种产品用甲种原料4千克,乙种原料10千克,可获利1200元。
2023浙教版八上数学期末专题复习 含参一元一次不等式专练
含参一元一次不等式专练一、选择题1.已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( ) A .4a >B .4a ≠C .4a <D .4a2.已知不等式组2<x ﹣1<4的解都是关于x 的一次不等式3x ≤2a ﹣1的解,则a 的取值范围是( ) A .a ≤5B .a <5C .a ≥8D .a >83.不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( )A .a <3B .a =3C .a >3D .a ≥34.不等式组53351x x x a -<+⎧⎨<+⎩的解集为4x <,则a 满足的条件是( )A .a 3<B .3a =C .3a ≤D .3a ≥5.若不等式组有解,则a 的取值范围是( ) A .a≤﹣2B .a≥﹣2C .a <﹣2D .a >﹣26.已知关于x 的不等式21x m x -<-的正整数解是1,2,3,则m 的取值范围是( ) A .34m <B .34m <C .811m <D .811m <7.整数a 使得关于x 的不等式组6202()3x x a x ->⎧⎨+≥+⎩至少有4个整数解,且关于y 的方程1﹣3(y ﹣2)=a有非负整数解,则满足条件的整数a 的个数是( ) A .6个B .5个C .3个D .2个8.已知关于x 、y 的二元一次方程组32121399x y a x y a +=--⎧⎪⎨-=+⎪⎩的解满足x y ≥,且关于s 的不等式组731a s s -⎧>⎪⎨⎪≤⎩恰好有4个整数解,那么所有符合条件的整数a 的个数为( ) A .4个B .3个C .2个D .1个9.关于x 的不等式组3420x ax -<⎧⎨->⎩有3个正整数解,且关于x 方程2x ﹣a =2有整数解,则满足条件的所有整数a 的值之和为( ) A .25B .26C .27D .3910.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个11.如果关于x的方程ax﹣3(x+1)=1﹣x有整数解,且关于y的不等式组31252130ya y+⎧≤⎪⎨⎪+-≤⎩有解,那么符合条件的所有整数a的个数为()A.3B.4C.5D.612.有两个正数a,b,且a<b,把大于等于a且小于等于b的所有数记作[a,b].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m在[5,15]内,整数n在[﹣30,﹣20]内,那么的一切值中属于整数的个数为()A.6个B.5个C.4个D.3个二、填空题13.若不等式组x bx a-<⎧⎨+>⎩的解集为23x-<<.则关于x、y的方程组521ax yx by+=⎧⎨-=⎩的解为_____________.14.已知关于x、y的二元一次方程组253x y ax y a+=⎧⎨-=+⎩的解满足x>y,且关于x的不等式组213147212xx a-⎧≥⎪⎨⎪+⎩<无解,那么所有符合条件的整数a的和为_____.15.若不等式组240xx m->⎧⎨<⎩无解,则m的取值范围是______.16.一个三角形的三边长均为整数.已知其中两边长为3和5,第三边长x是不等式组212357213x xx x⎧-+⎪⎨⎪->+⎩的正整数解.则第三边的长为:______.17.已知不等式组32,152,33x a xx x+<⎧⎪⎨-<+⎪⎩有解但没有整数解,则a的取值范围为_____.18.关于x的不等式组1(25)131(3)2x xx x a⎧+>+⎪⎪⎨⎪+≤+⎪⎩的所有整数解的和为﹣5,则a的取值范围是_____.nm19.关于x 的不等式组23112x a x x -+<⎧⎪⎨-+⎪⎩恰有3个整数解,则a 的取值范围是_______.20.定义:把的值叫做不等式组的“长度”若关于的一元一次不等式组解集的“长度”为3,则该不等式组的整数解之和为______.21.对非负实数“四舍五入”到个位的值记为,即当为非负整数时,若,则.如,.若,则实数的取值范围是__________.22.对于实数x ,y 规定“x △y =ax ﹣by (a ,b 为常数)”.已知2△3=4,5△(﹣3)=3(1)a +b =___.(2)已知m 是实数,若2△(﹣m )≥0,则m 的最大值是 ___. 三、解答题23.关于x 、y 的方程组731x y a x y a +=+⎧⎨-=+⎩的解满足0x <,0y >.求a 的取值范围.24.对,定义一种新运算(中,均为非零常数).例如:;已知,.(1)求,的值;(2)若关于的不等式组恰好只有个整数解,求的取值范围.25.阅读下面的材料:对于实数,我们定义符号的意义为:当时,;当时,,如:.根据上面的材料回答下列问题:(1)______;(2)当时,求x 的取值范围.b a -a x b ≤≤x 0230x a x a +≥⎧⎨-+≤⎩x ()x n 0.50.5n x n -≤<+()x n =()1.341=()4.865=()0.516x -=x x y (,)()(3)F x y ax by x y =++a b (1,1)44F a b =+(3,1)0F =(0,1)9F =-a b F (31,)(6,12)27F t t kF t t +≥⎧⎨-<⎩1k ,a b min{,}a b a b <min{,}a b a =a b min{,}a b b =min{4,2}2,min{5,5}5-=-=min{1,3}-=2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭26.如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.例如方程的解为,不等式组的解集为,因为2<3<5,所以,称方程为不等式组的关联方程.(1)若不等式组的一个关联方程的解是整数,则这个关联方程可以是__________________(写一个即可)。
《含参不等式专题》课件
几何法
总结词
通过几何意义和图形,将含参不等式问题转化为几何问题。
详细描述
几何法是一种直观的解含参不等式的方法,它通过几何意义和图形,将含参不等式问题转化为几何问题。这种方 法需要了解平面几何、解析几何等基础知识,能够根据不等式的几何意义画出图形,通过观察图形找到不等式的 解。
参数分离法
总结词
将含参不等式中的参数分离出来,转化为容易解决的不等式。
意事项
解题技巧
因式分解法
配方法
对于形如$ax^2 + bx + c > 0$的不等式,如果$a > 0$ ,则可以将不等式化为$(x
+ frac{b}{2a})^2 + frac{4ac - b^2}{4a} > 0$ 的形式,然后进行因式分解
。
对于形如$ax^2 + bx + c > 0$的不等式,如果$a < 0$, 则可以通过配方将其化为$(x + frac{b}{2a})^2 - frac{b^2 - 4ac}{4a^2} < 0$的形式,
在制定计划和决策时,含参不 等式可以用来解决资源分配、 成本预算等问题。
含参不等式在优化资源配置、 提高效率等方面发挥着重要作 用。
在其他学科中的应用
01
含参不等式在其他学科 中也有着重要的应用, 例如物理学、化学、生 物学等。
02
在物理学中,含参不等 式可以用来描述物理现 象和规律,如力学、热 学等。
03
在化学中,含参不等式 可以用来描述化学反应 和平衡状态。
04
在生物学中,含参不等 式可以用来描述生物种 群的增长和变化规律。
04
含参不等式的变式与拓展
资料:08 不等式(组)含参问题及应用(提高班)
第九讲初二秋季提高班--不等式(组)含参问题一、【求解集——含参不等式】1. 若a <-2,则关于x 的不等式2 x >9-ax 的解集是_________.2.当2(k -3)<310k -时,求关于x 的不等式4)5(-x k >x -k 的解集. 3.a 、b为任意实数,解关于x的不等式a (x+b2)>b(x+a 2)4.若关于x 的不等式a x 1+b x+10(﹣)()>的解是23x <,则关于x 的不等式a x 1b x 10++()(﹣)>的解是 _________ .5.已知m ,n 为常数,若mx+n >0的解集为13x <,则nx ﹣m <0的解集是( )A 、x >3B 、x <3C 、x >﹣3D 、x <﹣3二、【求参数——由不等式/组的解集】1.已知关于x 的不等式(3a -2)x +2<3的解集是x >-41,则a =______. 2.不等式x x >-12与的解集相同,则a=______. 3.若a <b ,则不等式组⎩⎨⎧><bx a x ………………………………………………………( )(A )解集是x <a (B )解集是x >b (C )解集是b <x <a (D )无解4. 如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为.65ax x ->三、求参数范围1. 已知方程组:{y ﹣2x =m 2y +3x =m +1的解x ,y 满足2x+y≥0,则m 的取值范围是( ) A .4m 3≥﹣ B. 4m 3≥ C.m 1≥ D.4m 13≤≤﹣ 2.若方程组⎩⎨⎧=++=+3414y x k y x 的解满足条件10<+<y x ,则k 的取值范围是( )A .14<<-kB .C .90<<kD .4->k 3.关于x,y 的方程组32132x y x y m +=⎧⎨-=⎩的解都不大于1,问m 的范围。
专题02 含参不等式与方程(解析版)
二、含参不等式与方程知识点拨含参不等式题型一、给出不等式解的情况,求参数取值范围:总结:给出不等式组解集的情况,只能确定参数的取值范围。
记住:“大小小大有解;大大小小无解。
”注:端点值格外考虑。
二、给出不等式解集,求参数的值总结:给出不等式组确切的解集,可以求出参数的值。
方法:先解出含参的不等式组中每个不等式的解集,再利用已知解集与所求解集之间的对应关系,建立方程。
三、给出方程(组)解的情况,转化成不等式(组)总结:先解含参数的方程组,解用含参数的式子表示出来。
列出题中解满足的不等关系,将含参数的式子代入,转化成关于参数的不等式(组)。
四、给出方程组解的个数,确定参数的范围总结:先解出不含参数的不等式的解集,按题意在解集范围内找出连续的几个整数解,参数的范围就在与最后一个整数解差一个单位长度的范围内(借助数轴解决问题),端点值特殊考虑。
例题演练一.选择题(共20小题)1.如果关于x的不等式组有且只有两个奇数解,且关于y的分式方程﹣=1的解为非负整数,则符合条件的所有整数a的和为( )A.8B.16C.18D.20【解答】解:不等式组整理得:,解得:<x≤6,由不等式组有且只有两个奇数解,得到1≤<3,解得:2≤a<10,即整数a=2,3,4,5,6,7,8,9,分式方程去分母得:3y+a﹣10=y﹣2,解得:y=,由分式方程解为非负整数,得到a=2,6,8,之和为16,故选:B.2.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为( )A.1B.2C.3D.4【解答】解:,不等式组化简为,由不等式组有且只有四个整数解,得到2≤<3,解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣32+8,解得:x=,由分式方程的解为非负数以及分式有意义的条件,x﹣4≠0,x≠4,a≠7,a﹣8<0,解得:a<8,因为a=7是增根,故a=6.故选:A.3.若关于x的不等式组有且只有五个整数解,且关于y的分式方程=1的解为非负整数,则符合条件的所有整数a的和为( )A.10B.12C.14D.18【解答】解:由①得x≤6,由②得x>.∵方程组有且只有五个整数解,∴<x≤6,即x可取6、5、4、3、2.∵x要取到2,且取不到,∴1≤<2,∴4≤a<10.∵分式方程﹣=1的解为y=4﹣,4﹣是非负整数,∴a≤8,且a是2的整数倍.又∵y≠2,∴a≠4.∴a的取值为6、8.故选:C.4.如果关于x的分式方程+=2有非负整数解,关于y的不等式组有且只有4个整数解,则所有符合条件的a的和是( )A.﹣3B.﹣2C.1D.2【解答】解:解不等式组,得,∵不等式组有且只有4个整数解,∴1<≤2,∴﹣3<a≤1.解式方程+=2,得x=3﹣a,∵x=3﹣a为非负整数,﹣3<a≤1,∴a=﹣2或﹣1或0或1,∵a=1时,x=2,原分式方程无解,故将a=1舍去,∴所有满足条件的a的值之和是﹣2﹣1+0=﹣3,故选:A.5.若m使关于x的分式方程1﹣=的解为非负数,且使关于y的不等式组有且只有三个整数解,则所有满足条件的整数m的和为( )A.3B.2C.1D.﹣3【解答】解:去分母得:1﹣x+m=x+1,解得:x=,由解为非负整数解,得到≥0,且≠1,即m≥0且m≠2,,由①得,y<4,由②得,y4,∴,由不等式组只有3个整数解,∴解得:﹣2≤m<2,∴0≤m<2,则符合题意m有1,0,1+0=1故选:C.6.若数a使关于x的不等式组有且仅有4个整数解,且使关于y的分式方程+=1有正整数解,则满足条件的a的个数是( )A.0个B.1个C.2个D.3个【解答】解:解不等式组,得,∵不等式组有且仅有4个整数解,∴﹣1<≤0,∴﹣8<a≤﹣3.解分式方程+=1,得y=,∵y=≠2为整数,∴a≠﹣6,∴所有满足条件的只有﹣4,故选:B.7.若整数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣3有正整数解,则满足条件的a的值之积为( )A.28B.﹣4C.4D.﹣2【解答】解:不等式组整理得:,由不等式组无解,得到3a﹣2≤a+2,解得:a≤2,分式方程去分母得:ax+5=﹣3x+15,即(a+3)x=10,由分式方程有正整数解,得到x=,即a+3=1,2,5,10,解得:a=﹣2,﹣1,2,7,∵x≠5,即≠5∴a≠﹣1综上,满足条件a的为﹣2,2,之积为,﹣4,故选:B.8.如果关于x的方程=1有正整数解,且关于y的不等式组至少有两个偶数解,则满足条件的整数a有( )个.A.0B.1C.2D.3【解答】解:解方程=1得,x=,∵方程有正整数解,∴整数a=1,3,6,解不等式组得,∵关于y的不等式组至少有两个偶数解,∴a﹣1≤2,∴a≤3,∴满足条件的整数a有两个.故选:C.9.如果关于x的分式方程+=3的解为整数,且关于x的不等式组有且仅有1个正整数解,则符合条件的所有整数a的和是( )A.15B.12C.7D.6【解答】解:分式方程+=3,去分母得:ax﹣5﹣10=3x﹣9,整理得:x=,由分式方程的解为整数,得到a﹣3=±1或a﹣3=﹣2或a﹣3=±3或a﹣3=±6,解得:a=4或2或1或6或0或9或﹣3,不等式组整理得:,解得:﹣2<x≤,由不等式组有且仅有1个正整数解,得到正整数解为1,则有1≤<2,解得:1≤a<6,综上,整数a=1,2,4,这几个整数的和为7.故选:C.10.若实数a使关于x的不等式组至少有3个整数解,且使关于y的分式方程+=1有正整数解,则符合条件的所有整数a的和为( )A.﹣7B.﹣12C.﹣21D.﹣23【解答】解:,解不等式①得:x≥﹣7,解不等式②得:x<a+6,∴﹣7≤x<a+6,∵至少有3个整数解,∴a+6>﹣5,∴a>﹣11;分式方程两边都乘以y﹣3得:4y﹣(y﹣a)=y﹣3,解得:y=﹣,∵y﹣3≠0,∴﹣≠3,∴a≠﹣9,∵分式方程有正整数解,∴﹣>0,∴a<﹣3,∴﹣11<a<﹣3且a≠﹣9,∵a是整数,﹣是正整数,∴a=﹣7,﹣5,∴所有a的和为﹣12.故选:B.11.如果关于x的分式方程有整数解,且关于x的不等式组的解集为x>4,那么符合条件的所有整数a的值之和是( )A.7B.8C.4D.5【解答】解:由分式方程可得1﹣ax+2(x﹣2)=﹣1解得x=∵关于x的分式方程有整数解,且a为整数∴,即a≠1于是a=0、3、4又∵关于x的不等式组整理得而不等式组的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+3+4=7故选:A.12.若关于x的不等式组至少有3个整数解,且关于y的分式方程=1的解是非负数,则符合条件的所有整数a的个数是( )A.3个B.4个C.5个D.6个【解答】解:解不等式组,得,∵不等式组至少有3个整数解,∴a≥2,解分式方程=1,得y=6﹣a,∵y=6﹣a为非负数,a≥2,∴a=2、3、4、5、6,∵a=4时,y=2,原分式方程无解,故将a=4舍去,∴符合条件的所有整数a的个数为4,故选:B.13.若关于x的分式方程=1有正整数解,且关于y的一元一次不等式组的解集为y≤a,则所有满足条件的整数a的和为( )A.8B.7C.3D.2【解答】解:分式方程去分母,得:x﹣a=x﹣2+5﹣2x,解得:x=,由不等式组,解不等式①,得:y<5,解不等式②,得:y≤a,∵不等式组的解集为y≤a,∴a<5,又∵分式方程有正整数解,且x≠2,∴符合题意的整数a的值可以取3;﹣1,它们的和为3+(﹣1)=2,故选:D.14.若关于x的不等式组至少有4个整数解,且关于y的分式方程3﹣=有整数解,则符合条件的所有整数a的和为( )A.4B.9C.11D.12【解答】解:不等式组整理得:,解得:﹣2≤x<a﹣1,由不等式组至少有4个整数解,得到a﹣1>1,即a>2,分式方程去分母得:3(y﹣1)﹣ay=﹣5,去括号得:3y﹣3﹣ay=﹣5,即(3﹣a)y=﹣2,解得:y=,由分式方程有整数解,得到a﹣3=±1,a﹣3=﹣2,解得:a=2(不符合题意,舍去),a=4,a=1(不符合题意,舍去),故符合条件的所有整数a的和为4.故选:A.15.若实数a使关于x的不等式组有且只有4个整数解,且使关于x的方程=﹣2的解为正数,则符合条件的所有整数a的和为( )A.7B.10C.12D.1【解答】解:解不等式组得,,∵不等式组只有4个整数解,∴0,∴0<a≤6,解分式方程得:,∵分式方程的解为正数,∴,且≠1,解得:a<5且a≠3,综上可得,a的取值范围为0<a<5,且a≠3,则符合条件的所有整数a的和为:1+2+4=7.故选:A.16.若关于x的不等式组有且仅有4个整数解,且使得关于y的方式方程有整数解,则满足条件整数a的和为( )A.﹣4B.﹣3C.﹣2D.9【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>﹣,∵该不等式组有且仅有4个整数解,∴﹣1≤﹣<0,解得:﹣4<a≤1,分式方程去分母,得:y﹣(1﹣y)=﹣a,解得:y=,∵分式方程有整数解,且y≠1,∴满足条件的整数a可以取﹣3,1,其和为﹣3+1=﹣2,故选:C.17.若关于x的不等式组无解,且关于y的分式方程=1﹣的解为非负整数,则符合条件的所有整数a的和为( )A.6B.16C.18D.20【解答】解:,解①得,x≥3,解②得,x<a﹣7,∵不等式组无解,∴a﹣7≤3,∴a≤10,=1﹣,去分母,得﹣3y=y﹣2﹣a﹣y,∴y=,∵分式方程=1﹣的解为非负整数,∴y≥0且y﹣2≠0,∴且a≠4,∵a为整数,为非负整数,∴a=﹣2,1,7,10,∴整数a的和为﹣2+1+7+10=16.故选:B.18.如果关于x的分式方程有整数解,且关于x的不等式组的解集为x,那么符合条件的所有整数a的和为( )A.4B.6C.2D.1【解答】解:分式方程去分母得:ax﹣2x+4=﹣x,整理得:x=,由分式方程有整数解,得到1﹣a=1或﹣1或﹣2或4或﹣4,解得:a=0,2,3,﹣3,5,不等式组整理得:,由不等式组的解集为x>,得到a﹣1≤,即a≤,则a的值为0,2,3,﹣3,之和为2,故选:C.19.若整数a使得关于x的不等式组的解集为x<﹣2,且关于y的分式方程=+3的解为负数,则所有符合条件的整数a的和为( )A.0B.﹣3C.﹣5D.﹣8【解答】解:,解不等式①得x<﹣2,解不等式②得,∵不等式组的解集为x<﹣2,∴,解得a≥﹣5,解关于y的分式方程=+3得y=,∵关于y的分式方程=+3的解为负数,∴<0,∴a<5,∵y+1≠0,∴y≠﹣1,即≠﹣1,解得a≠3,∴﹣5≤a<5且a≠3,∵a为整数,∴a=﹣5或±4或﹣3或±2或±1或0,∴﹣5+4﹣4﹣3+2﹣2+1﹣1+0=﹣8,故所有符合条件的整数a的和为﹣8.故选:D.20.若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程=1有正整数解,则所有满足条件的整数a的值之积是( )A.28B.﹣14C.7D.﹣56【解答】解:,解不等式①,得:x≤a,解不等式②,得:x≤7,∵该不等式组的解集为x≤a,∴a≤7,分式方程去分母,得:y﹣a+3y﹣4=y﹣2,,解得:y=,∵分式方程有正整数解,且y≠2,∴满足条件的整数a可以取7,1,其积为7×1=7,,故选:C.。
含参不等式专题
市场供需平衡
在分析市场供需平衡时,需要建 立含参不等式模型,以确定不同
价格和产量下的供需关系。
投资风险评估
在投资决策中,风险评估是关键 的一环。通过建立含参不等式模 型,可以评估不同投资方案的风
险水平,为决策提供依据。
04 含参不等式的扩展
高次含参不等式
总结词
高次含参不等式是指含有未知数的高次幂的不等式,这类不等式在数学中具有广泛的应 用。
详细描述
参数分离法是将含参不等式中的参数分离出来,单独处理的一种方法。通过将参数与未知数分离,可以将复杂的 不等式转化为简单的不等式,从而简化求解过程。这种方法需要观察不等式的特点,正确地将参数分离出来。
图像法
总结词
通过图像表示不等式的解集,直观地展示不等式的解。
详细描述
图像法是通过图像表示不等式的解集的一种方法。通过绘制不等式的图像,可以直观地展示不等式的 解集和参数对解集的影响。这种方法适用于一些简单的不等式和特定类型的不等式。在绘制图像时, 需要注意不等式的定义域和值域,以及参数的取值范围。
THANKS FOR WATCHING
感谢您的观看
总结词
通过代数手段,将含参不等式转化为不含参的不等式,再求解。
详细描述
代数法是一种常用的解含参不等式的方法,它通过代数手段,如合并同类项、因 式分解、配方等,将含参不等式转化为不含参的不等式,再利用不等式的性质和 求解方法求解。这种方法需要熟练掌握代数运算和不等式性质。
参数分离法
总结词
将含参不等式中的参数分离出来,单独处理,简化不等式的形式。
未来发展方向
深入研究参数范围的影响
01
未来可以进一步深入研究参数范围对不等式证明的影响,探索
不等式含参问题
含参不等式专题一.利用基本性质对比求解.已知关于x 的不等式()132>--x a 的解集为24-<a x ,则a 的取值范围是 ;二.已知解集求参数的值 1.关于x 的不等式22521-≥-x x 与不等式3x 的解集相同,则=a2.若关于x 的不等式1232->-a a x 与5<a x的解相同,则=a3.若关于x 的不等式132≤--a x x 的解集在数轴上表示如图所示,则=a三.利用解的范围构造不等式求解 1.关于x 的不等式32521+≥-x x 的解都是012≤+-a x 的解,则a 的取值范围是2.关于x 的不等式1232+≤-a a x 的解都是1215312≥+--x x 的解,则a 的取值范围是4.借助数轴求解例4.不等式a x ≤3只有2个正整数解,则a 的最小值为变式:已知不等式02≥+a x 的负整数解恰好有1-、2-、3-,则a 的取值范围是 三、方程(组)与不等式的联手解答 1.方程联手不等式例1.若关于x 的方程44232+-=-x m m x 的解不小于3187m--,求m 的最小值。
变式1:已知025253=+-++b a a ,求关于x 的不等式()()241213--<+-x b x ax 的最小非负整数解; 变式2:若不等式()()716825+-<+-x x 的最小整数解是关于x 的方程32=-ax x 的解,求aa 144-的值。
2.方程组联手不等式例1.已知方程组⎩⎨⎧-=++=-8423332m y x m y x 的解满足15<+y x ,则m 的取值范围是变式:已知方程组⎩⎨⎧=+=-a y x y x 624的解满足3<-y x ,则a 的取值范围是四、含有两个参数不等式解集的解法例1.已知关于x 的不等式()n m x n m 52>--的解集为413<x ,求关于x 的不等式()n m x n m +>-的解集。
八年级数学下册专题第15讲含参不等式重点、考点知识、方法总结及练习
【解析】解:(1)
x
3y
2②
①-②得,
y
1 2
1 2
k
,
①×3 得, 3x 3y 12 6k ④,
②Байду номын сангаас④得,
x
7 2
3 2
k
,
∵ x y>0 ,
∴
7 2
3 2
k
(
1 2
1 2
k
)>0
,
解得 k<3 .
3x y 1 3a①
(2)
x
3
y
1
a②
,
①+②得 4x 4 y 2 2a ,
∴
2.已知丌等式组的整数解的和,求参数的取值范围.
【典例】
1.若关于
x
的丌等式组
2x<3(x
3x 4
2
>x
3) a
1
有四个整数解,求
a
的取值范围.
【答案】略
【解析】解:
2x<3( 3x 2 4
x 3) 1① >x a②
由丌等式①,得 2x﹣3x<﹣9+1,
解得 x>8,
由丌等式②,得 3x+2>4x+4a,
【方法小结】
一元一次丌等式组的整数解问题的一般解题思路: 第一,先解含参丌等式组,求出它的解集(解集中含参数); 第二,借助数轴,根据已知的整数解的个数或整数解之间的关系,初步判断出解集中含参的 那一部分在哪两个相邻的整数之间,写出此时的范围; 第三,判断边界值,分别令含参部分等于两个边界值,写出此时的解集,判断是否符合给定 的已知条件,进而求解出参数的取值范围.
第 15 讲含参不等式
含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题)
含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式()00652≠>+-a a ax ax分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且; 当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆ 所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
八年级数学——含参不等式的解
含参不等式的解1.已知4<m<5,则关丁x的不等式组{x−m<04−2x<0的整数解共有()A.1个B.2个C.3个D.4个2.已知关于x的不等式组{4x−a≥13−2x≥−5的整数解共有5个,则符合条件的整数a的值的和为()A.﹣9 B.﹣10 C.﹣14 D.﹣153.若不等式组{2x−3>1x≤a的整数解共有4个,则a的取值范围是() A.6≤a<7 B.6<a≤7C.6<a<7 D.6≤a≤74.已知关于x的不等式组{x−a≥05−2x>−3有且只有7个整数解,则a的取值范围是()A.﹣4≤a<﹣3 B.﹣4<a<﹣3 C.﹣4<a≤﹣3 D.﹣4≤a<﹣35.若关于x的不等式组{x−a>03−2x>0的整数解共有5个,则a的取值范围()A.﹣4<a<﹣3 B.a<﹣3 C.﹣4≤a<﹣3 D.﹣3<a<326.若关于x的不等式组{x−m<09−2x≤1的整数解共4个,则m的取值范围是() A.7<m<8 B.7<m≤8C.7≤m<8 D.7≤m≤87.若关于x的不等式组{2x−6+m<04x−m>0有解,则在其解集中,整数的个数不可能是()A.1 B.2 C.3 D.48.关于x 的不等式组{x −a ≤03+2x >−1的整数解共有4个,则a 的取值范围( )A .a =3B .2<a <3C .2≤a <3D .2<a ≤39.能使得不等式3(x ﹣1)<5x +2与7−32x ≥12x ﹣1都成立的正整数x 的个数有( )A .3个B .4个C .5个D .6个10.若关于x 的不等式组{6x +2>3x +5x −a ≤0有且仅有2个整数解,则a 的取值范围是( )A .3≤a ≤4B .3≤a <4C .3<a ≤4D .2≤a <4 11.若关于x 的一元一次不等式组{2x −3>5x −m <1有且只有两个整数解,则m 取值范围是( )A .5<m <6B .5≤m ≤6C .5≤m <6D .5<m ≤612.若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,则a 的取值范围是( )A .1≤a <32B .1<a ≤32C .1<a <32D .a ≤1或a >3213.关于x 的不等式组{2x −1>5x −m <0有三个整数解,则m 的取值范围是( )A .6<m ≤7B .6<m <7C .m ≤7D .m <714.不等式组{3(x +1)>x −1x+72≥2x −1的非负整数解的个数是( )A .3B .4C .5D .615.已知方程3−a a−4−a =14−a,且关于x 的不等式a <x ≤b 只有4个整数解,那么b 的取值范围是( ) A .2<b ≤3 B .3<b ≤4C .2≤b <3D .3≤b <416.不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .017.已知关于x 的不等式组{3(x −a)≥2(x −1)2x−13≤2−x2有5个整数解,则a 的取值范围是( ) A .﹣3<a ≤﹣2 B .−13<a ≤0C .﹣3<a ≤0﹣2D .−13≤a <018.不等式组{x +5>24−x ≥3的最小整数解是( )A .﹣3B .﹣2C .0D .119.不等式组{2x +1≥−14+2x >3x 的最大正整数解为( )A .1B .2C .3D .420.关于x 的不等式组{2x <3(x −3)+13x+24>x +a 有三个整数解,则a 的取值范围是( )A .−52≤a <−94B .−52<a <−94C .−52≤a ≤−94D .−52<a ≤−9421.已知整数k 使得关于x 、y 的二元一次方程组{kx −y =123x −y =3的解为正整数,且关于x 的不等式组{3x −k ≥012x −2<1有且仅有四个整数解,则所有满足条件的k 的和为( ) A .4 B .9C .10D .1222.已知x 的不等式2x ﹣a +1>0的最小整数解是3,则a 的取值范围是( ) A .a <7 B .a ≤7 C .5≤a <7 D .5<a ≤723.若实数2是不等式3x ﹣a ﹣4<0的一个解,则a 可取的最小整数是( )A .1B .2C .3D .424.已知不等式3x +a ≥0的负整数解恰好是﹣3,﹣2,﹣1,那么a 满足条件( ) A .a =6 B .a ≥6C .a ≤6D .9≤a <1225.关于x 的不等式组{2x <3(x −3)+13x+24>x +a 无解,则a 的取值范围是( )A .a >−32B .a ≥−32C .a <32D .a ≤3226.关于x 的不等式组{3x <7b +3a2x >6b +5a的解集为4<x <9,则a 、b 的值是( )A .{a =2b =3B .{a =−2b =3C .{a =2b =−3D .{a =−2b =−327.不等式组{x −2(x +1)>1x +m <2的解集为x <﹣3,则m 的取值范围是( )A .m ≤5B .m <5C .m >5D .m ≥﹣528.关于x 的不等式组{2(x −2)>4a −x <0的解集为x >4,那么a 的取值范围为( )A .a ≤4B .a <4C .a ≥4D .a >429.若关于x 的不等式组{2x −3≥0x ≤m无解,则m 的取值范围是( )A .m ≤32B .m >32C .m <32D .m ≥3230.关于x 的不等式组{x +a <2x −2a >−1无解,则a 的取值范围是( )A .a <1B .a >1C .a ≤1D .a ≥131.关于x 的不等式组{3x −1>4(x −1)x ≤m的解集为x <3,则m 的取值范围为( )A .m ≤3B .m <3C .m >3D .m ≥332.已知[x ]表示不超过x 的最大整数.例:[3.9]=3,[﹣1.8]=﹣2,若[1−x2]=﹣1,则x 的取值范围是( )A .3<x ≤5B .3≤x <5C .1≤x <3D .1<x ≤333.关于x 的不等式组{x −m <03x −1>2(x +1)无解,那么m 的取值范围为( )A .3≤m <4B .3<m ≤4C .m <3D .m ≤334.若不等式组{x −a >0x +b <0的解集为2<x <3,则关于x ,y 的方程组{ax −y =6x +by =−2的解为( )A .{x =2y =3B .{x =2y =4C .{x =4y =3D .{x =4y =235.已知1≤ax +b <3的解集为2≤x <3,则1≤a (1﹣x )+b <3的解集为( ) A .2≤x <3 B .2<x ≤3C .﹣2≤x <﹣1D .﹣2<x ≤﹣136.若不等式组{x −2>1−2x x +m ≤0有解,则m 的取值范围是( )A .m >﹣1B .m ≥﹣1C .m ≤﹣1D .m <﹣137.若关于x 的不等式组{2(x −1)>2,a −x <0的解集是x >a ,则a 的取值范围是( )A .a <2B .a ≤2C .a >2D .a ≥238.下列各数轴上表示的x 的取值范围可以是不等式组{x +2>a(2a −1)x −6<0的解集的是( )A .B .C .D .39.若关于x 的不等式组{x +a ≥02(x +1)≥3x +1,有解,则a 的取值范围为( )A .a ≤﹣1B .a <﹣1C .a ≥﹣1D .a >﹣140.若不等式组{x+13<x2−1x <4m无解,则m 的取值范围为( ) A .m ≤2 B .m <2C .m ≥2D .m >241.如果不等式组{x −5≥1+2x3m +2≤4x有解,那么m 的取值范围是( )A .m ≥−263B .m >−263C .m ≤−263D .m <−26342.关于x 的不等式组{3x −2>4(x −1)x <a 的解集为x <2,那么a 的取值范围为( )A .a =2B .a >2C .a <2D .a ≥243.已知不等式组{x +1<2a x −b >1的解集是2<x <3,则关于x 的方程ax +b =0的解为( )A .x =43B .x =−43C .x =12D .x =−1244.若关于x 的不等式组{x−43+1≥3x−463x+a2<x的解集为x ≤2,则a 的取值范围是( )A .a ≥﹣2B .a >﹣2C .a ≤﹣2D .a <﹣245.若数a 使关于x 的不等式组{x−12<1+x35x −2≥x +2a有且只有四个整数解,a 的取值范围是 .46.不等式组{x−13<x −3x <m +1有3个整数解,则m 的取值范围是 .47.关于x 的不等式组{2x −1≤1x +1>a恰好只有两个整数解,则a 的取值范围为 .48.适合条件2<|x |<5的整数x 共有 个.49.若关于x 的不等式组{2x+12+3>−1x <m的所有整数解的和是﹣7,则m 的取值范围是 .50.不等式组{x −1≤0−2x <3的负整数解是 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二(下)第一讲一元一次不等式(组)
易错点归纳
1、不等式的两边都乘以(或除以)同一个负数时,忽略不等号的方向要变向。
2、混淆不等式的解与解集。
3、解不等式在去分母时,易犯解方程类似的错误(注意不要漏乘和分子看成是一个括号);系数化成1时,注意:系数为负数要变号
4、不等式(组)解集的在数轴上表示时:①未标注实心点或空心点,②寻找不等式组解集的公共部分时,当公共部分为一点或没有公共部分时,易出错。
③要注意两定” 一是定边界点,若边界点含于解集,为实心点,不含于解集为空心点;二是定方向,相对于边界点而言,小于向左,大于向右”
考点聚焦
专题一、不等式的概念及性质
考点1、判断不等式
例1、判断下列各式哪些是不等式,哪些既不是等式又不是不等式
① x y :② 3x 7 :③ 3 2= 5 :④ x2 _ 0 :⑤ 2x -3y =1 ;®. 0.
变式:下列式子a -2 :: 0, -4 :: 0,3x 4y _0,x 2y 一1 =0,x2 3x —4y2,a 1 b -3 中,不等式有个.
考点2、不等式的性质变式与提高:
(1)若a b,则下列不等式不一定成立的是()
2 2
A、a m b m
B、a(m 1) b(m 1)
(2)设a,b,c的平均数为M,a,b的平均数为N,N与c的平均数为P,若a b c,
则M与P的大小关系是().
A . M = P B. M P C. M P D .不确定
专题二、不等式的解法及字母取值问题。
考点3、不等式的解法
x-2 3x-3
例3、解不等式,并在数轴上表示解集:2_ 3-巴1
4 8
考点4、利用不等式的解(集),分析字母取值范围
2
例4、(1 )已知关于x的不等式(1- a)x ::: 2的解集为x —,则a的取值范围是_________
1- a
例2、(1)已知a b,则-5a 7-5b 7 (2)已知6a—4::6b — 4,则b (3)下列不等式变形正确的是()
A、由a b,得a—2 ・b—2
B、由a b,得一2a • —2b
C、由a b,得a > b
2 2
D、由a b,得a b
⑷比较下列各题中两个式子的大小.•
①
a a
3与 4 ;②a b与a - b.
3 4
11 1 2
(2)已知不等式x 5 - 1 ax 2的解是x ,求a - 2a • 5的值
2 2 2
4x+a 2x+1
(3)关于x的不等式1的解都是不等式0的解,则a的取值范围是
3 3
变式与应用:
(1)当2(k-3):::® k 时,求关于x 的不等式-k(X 5) .x-k 的解集.
3 4
专题三、不等式组的解法及字母取值问题。
考点5、不等式组的解法
(2 )若果关于
x 的不等式(2m- n)x-m-5n .0的解集为
变式与应用: (1)不等式a(x -1) x 1-2a 的解集是x ::: -1,请确定a 的取值范围
mx a n(m 式0)的解集为 __________
10
x ::
7
,那么关于
x 的不等式
(2) (2013洲州)如图,在实数范围内规定新运算
3”,其规则是:aAb = 2a-b •已知不等
式x k -1的解集在数轴上,则 k = ____________
例6、( 1) (2013?新疆)解不等式组
X-3 X-2 乞 4 2x-1 5 x 「
.3
2
(3)已知不等式3x-a 兰0的正数解恰是1,2,3,则a 的取值范围是 ______________
(4)若不等式2x :: 4的解都能使关于x 的一次不等式x a 5成立, 则a 的取值
范围是 _______________________ (2)(成都)解不等式组
3x-1 :: 2(x 1),
x 3
并在数轴上表示出其解集和求出其整数解。
3一1,
2
例5、( 1)若不等式-3x 十n>0的解集是XC2,则不等式-3x + ncO 的解集是 _____________________
1 (2)已知a,b 为常数,若ax b 0的解集是x ,则bx-a <0的解集是 ____________________________ ;
3
ax + 2 2x
(4) (2013?凉山州)已知x=3是关于x 的不等式3x
的解,求a 的取值范围.
2
3
变式与应用:
2x8 乞 10-4 x —3
(1 )不等式组 x 1 6x 7
的非负整数解
1
2
3
2、已知不等式组X 2a b 的解集是2 ■ x ■ 4,求a,b
x> a — b
1 x a 2a +1
一
3、已知不等式组
,无解,则a 的取值范围 __________
xc a —2
卜+2>0
(2 )不等式组<x -4>0的整数解为 ________________
x -6 :: 0
4、若不等式组 x 1有解,则m 的取值范围为 _______________
m
(3)已知a=x+2,b =x —1,且an3Ab ,贝U x 的取值范围是 _________________
5、(2013?平凉)不等式2x ,a_3 X ,2的正整数解是0,1,2,求a 的取值范围。
f x - m :『0
6、若关于x 的不等式 的整数解共有4个,则m 的取值范围是()
[7-2x2 A. 6 :: m :: 7 B. 6 _ m :: 7 C. 6 _ m — 7 D. 6 :: m _ 7
考点6、利用不等式组的解(集),分析字母取值范围
方法与探索:
_L x a 1
1、已知不等式组
的解集是x 5,求a 的值
lx >3—a
应用:
x - k 2
1、若关于X 的不等式组
无解,当y - -5k-12时,y 的取值范围是 ________________
lx-3kc-2
3x +a c0,
2、若不等式组*
的解集为xv0,则a 的取值范围为( )
2x +7 >4x -1
「5x+3y= 23
(3)关于x,y 的二元一次方程组丿
y
的解是正整数,则整数 p 的值为 _____________
Z y= p
变式与应用: (1)
"x 十 y = 4a+ 5
(2)已知关于x, y 的方程组丿 『 的解满足不等式4x-5yc9,求a 的取值范围.
、x_ y = 8a_ 5
A 、a ■■■ 0
B 、a = 0
C 、 a - ~ 4
D 、a = 4
3、若不等式组 3x —7'2有实数解,则a 的取值范围是 _________________________
lx - 2a X 0
2 ^2的解集是0乞x ::: 1,那么a b 的值为
2x -b ::3
5、已知关于x 的不等式组 %一*-0 的整数解共有5个,则a 的取值范围是 ____________________
13-2XA —1
(X 亠2v = 2m-5
(2)当关于x 、y 的二元一次方程组
的解x 为正数,y 为负数,则求此时m 的
x-2y= 3-4m
取值范围?
x , y 的方程组丿X+Zyrp*1,
的解满足x >y ,求p 的取值范围. 4x +3y = p T
5、已知不等式组 b )
a
一
3 -
> <
X X
的整数解为-1,0,1,2,求a,b 的取值范围。
⑵已知方程组严+心+亦,①的解满足乂+ y <0,求m 的取值范围.
x+2y = 1 — m ②
4、(烟台)如果不等式组
例7、(1 )已知关于。