人教版八年级数学上册整式的乘法及因式分解-章节测试题

合集下载

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)一、单选题1.下列多项式:①244x x +;②2224x xy y -+;③2214a ab b -+;④224a b -+中,能用公式法分解因式的有( ).A .1个B .2个C .3个D .4个 2.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .23.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b 的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ).A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++4.若a+b=1,则22a b 2b -+的值为( )A .4B .3C .2D .1 5.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 6.如果(x -2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-67.下列各式子的运算,正确的是( )A .(3a +2b )(3a ﹣2b )=3a 2﹣2b 2B .222(2)44x y x xy y -+=-+C .221136222x y xy xy xy x y ⎛⎫⎛⎫-+÷-=-+ ⎪ ⎪⎝⎭⎝⎭ D .(a +2)(a ﹣3)=a 2﹣68.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣69.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .aB .2()a b +C . 2()a b -D .22a b -10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,411.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题12.分解因式:24xy x -=__________.13.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________.14.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为___.15.若多项式225a ka ++是完全平方式,则k 的值是______.16.已知2310a a -+=,求441a a +的值为____.17.若2260x x --=,则()()()22321212x x x x -++--的值为__________.三、解答题18.因式分解(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+ 19.计算:(1)(﹣2a 2b )2•ab 2÷(﹣a 3b );(2)(x ﹣1)(x +1)(x 2+1);(3)20202﹣2022×2018(用乘法公式计算);(4)(a ﹣b ﹣3)(a ﹣b +3).20.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.21.(1)先化简,再求值:x 2﹣3x ﹣5=0,求代数式(x ﹣3)2+(x +y )(x ﹣y )+y 2的值;(2)已知x +y =4,xy =3,求x 2+y 2,(2x ﹣2y )2的值.22.我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如|x -2|+(y +3)2=0,因为|x -2|,(y +3)2都是非负数,则x -2=0,y +3=0,即可求x =2,y =-3,应用知识解决下列各题:(1)若(x +4)2+(y -3)2=0,求x ,y 的值.(2)若x 2+y 2-2x+4y=-5,求y x .(2)若2x 2+3y 2+8x -6y =-11,求(x +y )2020的值.23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

第十四章整式的乘法与因式分解单元检测卷2024-2025学年人教版数学八年级上册

第十四章整式的乘法与因式分解单元检测卷2024-2025学年人教版数学八年级上册

整式的乘法与因式分解单元检测卷一、选择题(每小题3分,共30分)1.下列是分式的为( )A.1x+5B.x 2−5πC.5x 8D.2−x 3 2.计算:4a 2a−b -2b 2a−b =( )A.2B.2a −bC.22a−bD.a−b 2a−b 3.计算(−b a )3⋅a 4的结果为( )A .ab 3B .−ab 3C .b 7aD .-b 7a 4.分式16x 2与−13xy 的最简公分母是( )A.6x 3yB.6x 2yC.18x 2yD.18x 3y 5.分式3a a 2−b 2的分母经过通分后变成2(a -b )2(a +b ),那么分子应变为( )A.6a (a -b )2(a +b )B.2(a -b )C.6a (a -b )D.6a (a +b )6.不改变分式0.5x−10.3x+2的值,把它的分子和分母中各项的系数都化为整数,结果为( )A.0.5x−13x+2B.5x−100.3x+2C.5x−13x+2D.5x−103x+20 7.甲、乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个.设乙每小时加工x 个零件,可列方程为( )A.1201.2x −120x =30 B.120x −1201.2x =30 C.1201.2x −120x =3060 D.120x −1201.2x =3060 8.一艘货轮在静水中的航速为40 km/h ,它以该航速沿江顺流航行120 km 所用时间,与以该航速沿江逆流航行80 km 所用时间相等,则江水的流速为( )A.5 km/hB.6 km/hC.7 km/hD.8 km/h9.【易错题】已知关于x 的分式方程m x−2+1=x 2−x 的解是非负数,则m 的取值范围是( )A.m ≤2B.m ≥2C.m ≤2且m ≠-2D.m <2且m ≠-210.【规律题】对于正数x ,规定f (x )=2x x+1.如:f (2)=2×22+1=43,f (12)=2×1212+1=23,f (3)=2×33+1=32,f (13)=2×1313+1=12.计算:f (1101)+f (1100)+f (199)+…+f (13)+f (12)+f (1)+f (2)+f (3)+…+f (99)+f (100)+f (101)=( )A.199B.200C.201D.202 二、填空题(每小题3分,共15分) 11.化简21−x −2x 1−x 的结果为_______.12.分式方程3x+1=32x 的解为_______.13.已知2x +y =10xy ,则4x+xy+2y 2x−4xy+y 的值为_____________.14.鼻病毒是引起普通感冒的主要病原体,冬季为高发期.它主要通过空气飞沫和直接接触传播.鼻病毒呈球形,直径15 nm~30 nm.则30 nm 用科学记数法表示为 _______________m.15.【易错题】当关于x 的分式方程4x+1+3x−1=m x 2−1有增根时,m 的值为_________.三、解答题(共75分)16.(8分)(1)化简:1x−1+x 2−3x x 2−1. (2)解方程:3x−1=5+3x 1−x .17.(7分)先化简,再求值:(1+3x−2)÷x+1x 2−4x+4,其中x =3.18.(8分)随着快递行业的快速发展,全国各地的农产品有了更广阔的销售空间,某农产品加工企业有甲、乙两个组共35名工人.甲组每天加工3 000件农产品,乙组每天加工2 700件农产品,已知乙组每人每天平均加工的农产品数量是甲组每人每天平均加工农产品数量的1.2倍,求甲、乙两组各有多少名工人.19.(8分)化简:(x x+1+x x−1)·x 2−1x .图1所示的是甲、乙两同学的部分运算过程:(1)甲同学解法的依据是____________,乙同学解法的依据是___________.(填序号)①等式的基本性质;②分式的基本性质;③乘法分配律;④乘法交换律.(2)请选择一种解法,写出完整的解答过程.20.(10分)观察以下等式:第1个等式:22+14=1+14;第2个等式:43+19=1+49;第3个等式:64+116=1+916;第4个等式:85+125=1+1625;……按照以上规律,解决下列问题:(1)写出第5个等式:________________.(2)写出你猜想的第n 个等式(用含n 的等式表示),并证明.21.(10分)【新定义】若非零实数x ,y ,z 满足1x +1y =1z ,我们称x ,y ,z 为“相机组合”,记为(x ,y ,z ).(1)若x 满足“相机组合”(2,1-3x ,6x -2),求x 的值.(2)若x ,y ,z 构成“相机组合”(x ,y ,z ),求分式xy+3xz−yz xy−3xz−yz 的值.22.(12分)商场进货员预测一种应季T 恤衫能畅销市场,就用4 000元购进一批这种T 恤衫,面市后果然供不应求.商场又用8 800元购进了第二批这种T 恤衫,所购数量是第一批购进数量的2倍,但每件的进价贵了4元.(1)该商场购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,最后缺码的40件T 恤衫按七折优惠售出,要使两批T 恤衫全部售完后利润率不低于80%(不考虑其他因素),那么每件T 恤衫的标价至少是多少元?23.(12分)如图2,A种小麦试验田是边长为a的正方形中减去一个边长为b的正方形蓄水池后余下的部(a+b)的正方形.分;B种小麦试验田是边长为12(1)设两块试验田都收获了m kg小麦,求A,B两种小麦单位面积产量的比.(2)当a=2b时,A,B两种小麦单位面积产量哪个较大?(3)若A,B两种小麦单位面积产量相同,求a,b满足的关系式.参考答案一、1.A 2.A3.B 【提示】(−b a )3⋅a 4=-b 3a 3⋅a 4=−ab 3.故选B. 4.B 【提示】各分母系数的最小公倍数为6,所有字母及最高次字母的积为x 2y ,故这两个分式的最简公分母是6x 2y .5.C 【提示】分式3a a 2−b 2的分母a 2-b 2=(a -b )(a +b ),经过通分后变成2(a -b )2(a +b ),那么分母乘以了2(a -b ),根据分式的基本性质,将分子3a 乘以2(a -b ),则分子应变为6a (a -b ).6.D 【提示】0.5x−10.3x+2=(0.5x−1)×10(0.3x+2)×10=5x−103x+20,故选D.7.D 【提示】乙每小时加工x 个零件,则甲每小时加工1.2x 个零件,根据题意,得120x −1201.2x =3060.故选D.8.D 【提示】设江水的流速为x km/h ,则沿江顺流航行的速度为(40+x )km/h ,沿江逆流航行的速度为(40-x )km/h ,根据题意,得12040+x =8040−x .解得x =8.经检验,x =8是分式方程的解.∴江水的流速为8km/h.故选D.9.C 【提示】分式方程去分母,得m +x -2=-x .解得x =2−m 2.由分式方程的解是非负数,得到2−m 2≥0,且2−m 2−2≠0.解得m ≤2且m ≠-2. 10.C 【提示】因为f (1)=2×11+1=1, f (2)=2×22+1=43,f (12)=2×1212+1=23, f (3)=2×33+1=32,f (13)=2×1313+1=12, f (4)=2×44+1=85,f (14)=2×1414+1=25,…f (101)=101×2101+1=10151,f (1101)=2×11011101+1=151, 所以f (2)+f (12)=43+23=2,f (3)+f (13)=32+12=2,f (4)+f (14)=85+25=2,…f (101)+f (1101)=10151+151=2.所以f (1101)+f (1100)+f (199)+…+f (13)+f (12)+f (1)+f (2)+f (3)+…+f (99)+f (100)+f (101)=2×100+1=201.二、11.2【提示】原式=2−2x 1−x =2(1−x )1−x =2.12.1【提示】去分母,得6x =3x +3.解得x =1.检验:当x=1时,2x (x+1)≠0.所以原方程的解为x=1.13.72【提示】因为2x +y =10xy ,所以4x+xy+2y 2x−4xy+y =2(2x+y )+xy 2x+y−4xy =21xy 6xy =72. 14. 3×10-8【提示】1 m=1 000 000 000 nm ,30 nm=0.000 000 03 m=3×10-8 m.15.6或-8【提示】分式方程去分母,得4(x -1)+3(x +1)=m .由这个方程有增根,得到x =1或x =-1.将x =1代入整式方程,得m =6.将x =-1代入整式方程,得m =-8.综上所述,m 的值为6或-8.三、16.(1)原式=x+1(x+1)(x−1)+x 2−3x (x+1)(x−1) =x 2−2x+1(x+1)(x−1)=(x−1)2(x+1)(x−1)=x−1x+1. (2)去分母,得3=5(x -1)-3x .去括号,得3=5x -5-3x .移项、合并同类项,得-2x =-8.系数化为1,得x =4.检验:将x =4代入x -1中,得4-1=3≠0.则原分式方程的解为x =4.17.原式=x−2+3x−2⋅(x−2)2x+1=x+1x−2⋅(x−2)2x+1=x −2.当x =3时,原式=3-2=1.18.设甲组有x 名工人,则乙组有(35-x )名工人,根据题意,得2 70035−x =3 000x ×1.2.解得x =20.经检验,x =20是所列方程的解,且符合题意.∴35-x =35-20=15.答:甲组有20名工人,乙组有15名工人.19.(1)②;③.(2)答案不唯一.如选择乙同学的解法.(x x+1+x x−1)·x 2−1x=x x+1∙x 2−1x +x x−1∙x 2−1x =x x+1∙(x+1)(x−1)x +x x−1∙(x+1)(x−1)x=x -1+x +1=2x .20.(1) 106+136=1+2536.(2)第n 个等式为:2n n+1+1(n+1)2=1+n 2(n+1)2. 证明:左边=2n n+1+1(n+1)2=2n (n+1)+1(n+1)2 =2n 2+2n+1(n+1)2=n 2+2n+1+n 2(n+1)2 =(n+1)2+n 2(n+1)2=1+n 2(n+1)2=右边,所以等式成立.21.(1)因为x 满足“相机组合”(2,1-3x ,6x -2),所以12+11−3x =16x−2,即3−3x 2−6x =16x−2.去分母,得3-3x =-1.解得x =43.经检验,x =43是方程的根.所以x 的值为43.(2)因为x ,y ,z 构成“相机组合”(x ,y ,z ),所以1x +1y =1z .则xz +yz =xy .原式=xz+yz+3xz−yz xz+yz−3xz−yz =4xz −2xz =-2.22.(1)设该商场购进第一批T 恤衫每件的进价是x 元,则第二批T 恤衫每件的进价为(x +4)元. 根据题意,得2×4 000x =8 800x+4.解得x =40.经检验,x =40是所列方程的解,且符合题意.x +4=40+4=44.答:该商场购进第一批、第二批T 恤衫每件的进价分别是40元和44元.(2)4 00040+8 80044=300(件).设每件T 恤衫的标价是y 元.根据题意,得(300-40)y +40×0.7y ≥(4 000+8 800)×(1+80%).解得y ≥80.答:每件T 恤衫的标价至少是80元.23.(1)根据题意,得A 种小麦单位面积的产量:m a 2−b 2,B 种小麦单位面积的产量:m14(a+b)2.则A ,B 两种小麦单位面积产量的比为m a 2−b 2:m14(a+b)2=m (a+b )(a−b )·14(a+b)2m =a+b 4(a−b ).(2)当a=2b时,m a2−b2=m4b2−b2=m3b2=3m9b2,m1 4(a+b)2=m14(2b+b)2=4m9b2,因为3m9b2<4m9b2,所以B种小麦单位面积产量较大.(3)根据题意,得ma2−b2=m14(a+b)2.整理,得4a2-4b2=(a+b)2,即4(a+b)(a-b)=(a+b)2. 因为a+b≠0,所以4(a-b)=a+b. 整理,得3a=5b.。

人教版八年级数学上册 整式的乘法与因式分解单元测试卷 (word版,含解析)

人教版八年级数学上册 整式的乘法与因式分解单元测试卷 (word版,含解析)

人教版八年级数学上册 整式的乘法与因式分解单元测试卷 (word版,含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.下列多项式中,能分解因式的是:A .224a b -+B .22a b --C .4244x x --D .22a ab b -+【答案】A【解析】根据因式分解的意义,可知A 、224a b -+能用平方差公式()()22a b a b a b -=+-分解,故正确;B 、22a b --=-(22a b +),不能进行因式分解,故不正确;C 、4244x x --不符合完全平方公式()2222a ab b a b ±+=±,故不正确;D 、22a ab b -+既没有公因式,也不符合公式,故不正确.故选:A.点睛:此题主要考查了因式分解,解题时利用因式分解的方法:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).3.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定【答案】A【解析】 解:∵a 2﹣4b =7,b 2﹣4c =﹣6,c 2﹣6a =﹣18,∴a 2﹣4b +b 2﹣4c +c 2﹣6a =7﹣6﹣18,整理得:a 2﹣6a +9+b 2﹣4b +4+c 2﹣4c +4=0,即(a ﹣3)2+(b ﹣2)2+(c ﹣2)2=0,∴a =3,b =2,c =2,∴此三角形为等腰三角形.故选A .点睛:本题考查了因式分解的应用,解题的关键是正确的进行因式分解.4.下列多项式中,能运用公式法进行因式分解的是( )A .a 2+b 2B .x 2+9C .m 2﹣n 2D .x 2+2xy+4y 2【答案】C【解析】试题分析:直接利用公式法分解因式进而判断得出答案.解:A 、a 2+b 2,无法分解因式,故此选项错误;B 、x 2+9,无法分解因式,故此选项错误;C 、m 2﹣n 2=(m+n )(m ﹣n ),故此选项正确;D 、x 2+2xy+4y 2,无法分解因式,故此选项错误;故选C .5.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.6.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .7.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为()2a b +,则宽为( )A .12B .1C .()12a b +D .+a b【答案】C【解析】【分析】用长方形的面积除以长可得.【详解】宽为:()()()()22222a ab ab ba b a b a b +++÷+=+÷+= ()12a b + 故选:C【点睛】考核知识点:整式除法与面积.掌握整式除法法则是关键.8.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B【解析】【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.9.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( ) A .3-,4-B .3-,4C .3,4-D .3,4 【答案】A【解析】【分析】根据题意可得规律为712a b ab +=-⎧⎨=⎩,再逐一判断即可.【详解】根据题意得,a ,b 的值只要满足712a b ab +=-⎧⎨=⎩即可, A.-3+(-4)=-7,-3×(-4)=12,符合题意;B.-3+4=1,-3×4=-12,不符合题意;C.3+(-4)=-1,3×(-4)=-12,不符合题意;D.3+4=7,3×4=12,不符合题意.故答案选A.【点睛】本题考查了多项式乘多项式,解题的关键是根据题意找出规律.10.已知a =96,b =314,c =275,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a【答案】C【解析】【分析】根据幂的乘方可得:a =69=312,c =527=315,易得答案. 【详解】因为a =69=312,b =143,c =527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方. 解题关键点:熟记幂的乘方公式.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.在边长为a 的正方形中剪掉一个边长为b 的小正方形()a b >,再沿虚线剪开,如图①,然后拼成一个梯形,如图②.根据这两个图形的面积关系,用等式表示是____________.【答案】a 2-b 2=(a+b)(a-b)【解析】【分析】根据正方形的面积公式和梯形的面积公式,即可求出答案.【详解】∵第一个图形的面积是a 2-b 2,第二个图形的面积是12(b +b +a +a )(a -b )=(a +b )(a -b ), ∴根据两个图形的阴影部分的面积相等得:a 2-b 2=(a+b)(a-b).故答案为a 2-b 2=(a+b)(a-b).【点睛】 本题考查了平方差公式得几何背景,熟练掌握平方差公式的定义是本题解题的关键.12.把方程x 2+4xy ﹣5y 2=0化为两个二元一次方程,它们是_____和_____.【答案】x +5y =0 x ﹣y =0【解析】【分析】通过十字相乘法,把方程左边因式分解,即可求解.【详解】∵x 2+4xy ﹣5y 2=0,∴(x +5y )(x ﹣y )=0,∴x +5y =0或x ﹣y =0,故答案为:x +5y =0和 x ﹣y =0.【点睛】该题重点考查了因式分解中的十字相乘法,能顺利的把方程左边因式分解是解题的关键所在.十字相乘法相关的知识点是:必须是二次三项式,并且符合拆解的原则,即可利用十字相乘分解因式.13.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.14.将22363ax axy ay -+分解因式是__________.【答案】()23a x y -【解析】根据题意,先提公因式,再根据平方差公式分解即可得:()()22222363323ax axy ay a x xy y a x y -+=-+=-. 故答案为()23a x y -.15.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.16.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.分解因式:a 3-a =【答案】(1)(1)a a a -+【解析】a 3-a =a(a 2-1)=(1)(1)a a a -+18.分解因式:32363a a a -+=_____.【答案】()231a a -【解析】【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可.【详解】()()232236332131a a a a a a a a -+=-+=-. 故答案为:()231a a -【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.因式分解34x x -= .【答案】()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-.。

人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)

人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)

人教版八年级数学上册《第十四章整式的乘法与因式分解》单元测试卷(带答案)一、单选题(共10小题,满分40分)1.下列计算正确的是( )A .a 2·a 3= a 6B .(a 2)3= a 6C .(2a )3=2aD .a 10÷a 2= a 52.下列因式分解正确的是( ) A .()3333x y x y ++=+B .221142x x x ++=+⎛⎫ ⎪⎝⎭ C .()()22x y x y x y -+=+- D .()()22444x y x y x y -=-+ 3.将295变形正确的是( )A .22295905=+B .()()29510051005=+-C .2229510010005=-+D .22295909055=+⨯+ 4.如果29x mx -+(m 是常数)是完全平方式,那么m 的值为( )A .3B .6±C .9±D .65.下列运算正确的是( )A .a 3+a 3=a 6B .a 2•a 3=a 6C .(ab )2=ab 2D .(a 2)4=a 86.如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“创新数”,如8=32﹣12,16=52﹣32,所以8,16都是“创新数”,下列整数是“创新数”的是( ) A .20 B .22 C .26 D .247.下列各式中不能用平方差公式计算的是( )A .()y-x ()x+yB .()2x-y ()-y+2xC .()x-3y ()x+3yD .()4x-5y ()5y+4x 8.已知(x -3)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =3,n =9B .m =3,n =6C .m =-3,n =-9D .m =-3,n =99.如图,长方形ABCD 中812812AB AD <<<<,,放入两个边长都为4的正方形 AEFG ,正方形DJIH 及一个边长为8的正方形KCML ,1S 和2S 分别表示对应阴影部分的面积,若12=S S ,则长方形ABCD 的周长是( )A .36B .40C .44D .4810.如果x y +,x y -与22x y -,4,m n +和mm 分别对应6个字:鹿,鸣,数,我,爱,学,现将()()222244m x y n x y -+-因式分解,结果呈现的可能是哪句话( ) A .我爱鹿鸣 B .爱鹿鸣 C .鹿鸣数学 D .我爱数学二、填空题(共8小题,满分32分)11.如图为杨辉三角表,它可以帮助我们按规律写出()na b +(其中n 为正整数)展开式的系数,请仔细观察表中规律,将()4a b +的展开式补充完整. ()1a b a b +=+ ()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++()4434a b a a b +=++ 22344a b ab b ++12.若4,8x y a b ==,则232x y -可表示为 (用含a 、b 的代数式表示).13.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是: .14.计算:()2321x x x -⋅+-= . 15.如图所示的运算过程中,若开始输入的值为43,我们发现第1次输出的结果为48,第二次输出的结果为24,…,则第2020次输出的结果为 .16.当2x =时,31ax bx ++的值为6,那么当2x =-时,31ax bx ++的值是 .17.已知关于x 、y 的二次式22754524x xy ay x y ++---可分解为两个一次因式的乘积,则a 的值是 . 18.卫星绕地球运动的速度(第一宇宙速度)为37.910⨯米/秒,求卫星绕地球运行5×103秒后所经过的路程是 米(用科学记数法表示)三、解答题(共6小题,每题8分,满分48分)19.计算.(1)()()2x y a b ++;(2)()()a b a b +-;(3)()13a b a ⎛⎫-- ⎪⎝⎭; (4)()()3223x y x y --;(5)()()322x x +--.20.利用因式分解计算:(1)20032-1999×2001(2)562+442+56×88.21.先化简,再求值:()()()2212112x x x -++-,其中=1x -.22.(1)计算:(﹣2x 2y )3÷(﹣4xy 2);(2)已知,如图,D 是△ABC 的边AB 上一点,AB∥FC ,DF 交AC 于点E ,DE=EF .求证:AE=CE .23.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到()2222a b a ab b +=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:_______;(2)若10a b c ++=,25ab ac bc ++=则222a b c ++=_______;(3)在棱长为a 的正方体上割去一个棱长为()b b a <的小正方体(如图3),通过用不同的方法计算图中余下几何体的体积,完成填空:()()33____________a b a b -=-.(4)利用(3)得到的恒等式分解因式:3327x y -.24.请阅读游戏玩法并回答问题:(1)如图1,有一个边长为a 的大正方形纸板,在正中心剪下边长为b 的正方形.则阴影部分面积是______.(2)将图1沿虚线剪开后重新拼接成图2,得到一个平行四边形.则这个平行四边形的底是______,高是______,面积是______.(3)由图1到图2可以得到等式______.(4)利用上述得到的等式计算9991001⨯.参考答案:1.B2.B3.C4.B5.D6.D7.B8.A9.B10.A11.612.a b13.()()2232325a b a b a b ab ++=++14.32363x x x --+15.6.16.-417.6。

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)

人教版八年级数学上册《整式的乘法与因式分解》测试卷(含答案)一、选择题(每小题3分,共30分)1.下列计算正确的是( )A.x+x²=x³B.x²・x³=x6C.(x³)²=x6D.x9÷x³=x³2.若12x m y2与13x3y n是同类项,则m,n的值为( )A.m=3,n=2B.m=2,n =3C.m=-3.n=2D.m=-2,n=33.下列因式分解不完全的是( )A.a²-2ab+b²=(a-b)²B.a³-a =a (a²-1)C.a²b-ab²=ab(a-b)D.a²-b²=(a+b)(a-b)4.已知(a +b)²=(a-b)²+M,则M为( )A.abB.2abC.-2abD.4ab5.下列多项式乘法中,能运用平方差公式的是()A.(a-b)(a-b)B.(a-b)(-a+b)C.(a+b)(-a+b)D.(a-b)(b-a)6.如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为( )A.-3B.3C.0D.17.如图的图形面积由以下哪个公式表示( )A.a²-b²=a(a-b)+b(a-b)B.(a-b)²=a²-2ab+b²C.(a+b)²=a²+2ab+b²D.a²-b²=(a+b)(a-b)8.若△ABC的三边a,b,c满足a²+b²+c²-ab-bc-ca=0,则△ABC是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形9.下列计算:①3a+2b=5ab;②3x³×(-2x²)=-6x5;③4a³b÷(-2a²b)=-2a;④(-a²)³=a6;⑤(-a)³÷(-a)=-a².其中正确的有( )A.1个B.2个C.3个D.4 个10.已知x+y=6,xy=8,下列结论:①(x+y)²=36;②x²+y²=20;③x-y=2;④x²y²=12.其中正确的是( )A.①②③④B.①②④C.①②D.①③④二、填空题(每小题3分,共18分)11.x平方x²+y²+2x-6y+10=0,则x・y=_________12.当x______时,(x-3)0=1.13.若x²+2(m-3)x+16是一个完全平方式,那么m应为_________.14.若x-1x =1,则x²+1x2的值是__________.15.观察下列关于自然数的等式:①3²-4X1²=5;②5²-4X2²=9;③7²-4X3²=13.根据上述规律解决下列问题:(1)完成第四个等式:____________________;(2)写出你猜想的第n个等式_____________________(用含n的式子表示).16.已知a,b满足等式x=a²+b²+5,y=2(2b-a),则x,y的大小关系为______________.三、解答题(72分)17.(10分)计算下列各题.(1)-2a²bx(−12ab2)x(-abc);(2)(5x-3)(-5x-3)-(5x+3)²+(5x-3)².18.(12分)分解因式。

第十四章整式的乘除与因式分解单元测试2024—2025学年人教版数学八年级上册

第十四章整式的乘除与因式分解单元测试2024—2025学年人教版数学八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________题号12345678910答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x ﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc ﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)

第十四章《整式乘法与因式分解》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题4分,共32分)三、解答题(本大题共6小题,共58分)19.(8分)计算:20.(8分)分解因式:21.(10分)(1)若,求的值;(2)已知,求的值.22.(10分)观察下列等式:…(1)根据以上等式写出______;(2)直接写出的结果(n 为正整数)______;2225,()9m n m n -=+=m n -()()2121y y y m +-+=224424y my m y m -+-+()()2111x x x -÷-=+()()32111xx x x -÷-=++()()432111xx x x x -÷-=+++()()511x x -÷-=()()11nx x -÷-(3)计算:.23.(10分)材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:.(1)分解因式:(2)若a ,都是正整数且满足,求的值;(3)若a ,b为实数且满足 , ,求S 的最小值.24.(12分)我们学习了完全平方公式,把它适当变形,可解决很多数学问题.2342023122222+++++⋅⋅⋅+()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++1ab a b +++()b a b >40ab a b ---=a b +50ab a b ---=22235S a ab b a b =+++-()()22222222a b a ab b a b a ab b +=++-=-+,例如:若,求的值.解∶又根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则___________;②若,则________________;(3)如图点C 是线段上的一点,以为边向线段的两侧作正方形,已知,两正方形的面积和20,求图中阴影部分的面积.42a b ab +==,²²a b +4a b += 2()16a b ∴+=22216a ab b ∴++=2ab = 2216216412a b ab ∴+=-=-=22626x y x y +=+=,xy 231m n mn +==,2m n -=()()456m m --=()()2245m m -+-=AB AC BC 、AB 5AB =12S S +=答案解析:一、单选题1.B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x 、y 的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:==展开后多项式不含x 、y 的一次项,,,,故选B .2.A【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法、乘法法则计算各式进行判断即可.【详解】(1)若,,则; 小明计算正确;(2);小明计算正确;(3);小明计算错误;(4);小明计算错误;(5).小明计算错误;故正确的有2个故答案为:A .3.D【分析】利用面积公式以及面积的和差将阴影面积表示出来即可.【详解】解:∵由图知阴影部分边长分别为(x -1),(x -2),()()2342x y x ay b +-++22422633844x axy bx xy ay by x ay b +++++---224(26)(28)(34)34x a xy b x b a y ay b+++-+-+- 280340b b a -=⎧∴⎨-=⎩34a b =⎧∴⎨=⎩1a b ∴-=-3m a =7n a =3721m n m n a a a +==⨯= ()()2020202020210.12580.125888-⨯=-⨯⨯=()222221a b ab ab a b ab ab ab a -÷=÷-÷=-()3328a a -=-()()22321263253x x x x x x x -+=+--=--连接,则阴影部分的面积,BD ()()1122a a b b a b =+++()212a b =+10=(2)由题意得,故答案为:;(3)由题意得,23.(1);(2)由得,,,,,,,,,解得,,;(3)由得,,,()121(1)1,n n n x x x x x ---÷-=++++ 121n n x x x --++++ ()2342023202412222221++++++=-÷ 2024(21)2 1.-=-1ab a b +++1()()ab a b =+++(1)(1)a b b =+++11()()a b =++40ab a b ---=15ab a b --+=115()()a b b ---=(1)(1)5a b --=a b > 11a b ∴->-551=⨯ 15a ∴-=11b -=6a =2b =8a b ∴+=50ab a b ---=5ab a b =++22235S a ab b a b∴=+++-()222355a a b b a b=+++++-22233155a a b b a b=+++++-2228215a b a b =++++22288216a ab b =++++++()()222216a b =++++,,,当,时,,∴S 的最小值为6.24.(1)解:;(2)①,,,,;②(3)设,则,所以,()2220a +≥ ()210b +≥6S ∴≥2a =-1b =-6S =6x y += 222()236x y x y xy ∴+=++=2226x y += 210xy ∴=5xy ∴=231m n mn +== ,()2222449m n m mn n ∴+=++=2245m n ∴+=()2222441m n m n mn -=+-= 21m n ∴-=±4,5,m a m b -=-= 4(5)45a b m m m ∴-=---=--1m +=-(4)(5)6,m m --= 6,ab ∴=2222(4)(5)m m a b ∴-+-=+2()2a b ab=-+2(1)26=-+⨯112=+13,=,AC m BC n ==2212,S m S n ==221220S S m n +=+=。

人教版数学八年级上册 整式的乘法与因式分解单元测试卷 (word版,含解析)

人教版数学八年级上册 整式的乘法与因式分解单元测试卷 (word版,含解析)
A. B.
C. D.
【答案】A
【解析】
【分析】
由正方形的面积公式可求x+y=12,x﹣y=2,可求x=7,y=5,即可求解.
【详解】
由题意可得:(x+y)2=144,(x﹣y)2=4,∴x+y=12,x﹣y=2,故B、C选项不符合题意;∴x=7,y=5,∴xy=35,故D选项不符合题意;∴x2+y2=84≠100,故选项A符合题意.
D.(a+b)(a﹣b)=a2﹣b2
【答案】C
【解析】
【分析】
根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4个矩形的面积.
【详解】
∵大正方形的面积﹣小正方形的面积=4个矩形的面积,
∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.
故选C.
=
=
=
=
=30.
故选A.
【点睛】
此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.
10.若33×9m=311,则m的值为()
A.2B.3C.4D.5
【答案】C
【解析】
【分析】
根据同底数幂的乘法的性质,幂的乘方的性质,可得关于m的方程,解方程即可求得答案.
【详解】
∵33×9m=311,
∴33×(32)m=311,
∴33+2m=311,
∴3+2m=11,
∴2m=8,
解得m=4,
故选C.
【点睛】
本题考查了同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.
二、八年级数学整式的乘法与因式分解填空题压轴题(难)

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列运算正确的是A .321ab ab -=B .246a a a ⋅=C .()325x x = D .232x x x ÷=2.如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数3.若23x =,45y =,则22x y +的值为( )A .15B .2-C .654.下列分解因式正确的是( )A 、2x 2﹣xy ﹣x=2x (x ﹣y ﹣1)B 、﹣xy 2+2xy ﹣3y=﹣y (xy ﹣2x ﹣3)C 、x (x ﹣y )﹣y (x ﹣y )=(x ﹣y )2D 、x 2﹣x ﹣3=x (x ﹣1)﹣35.在多项式①x 2+2xy ﹣y 2;②﹣x 2﹣y 2+2xy ;③x 2+xy+y 2;④4x 2+1+4x 中,能用完全平方公式分解因式的有( )A 、①②B 、②③C 、①④D 、②④6.若a*b=a 2+2ab ,则x 2*y 所表示的代数式分解因式的结果是( )A 、x 2(x 2+2y )B 、x (x+2)C 、y 2(y 2+2x )D 、x 2(x 2﹣2y )7.已知2011200920102010201020092011X =⨯⨯﹣,那么X 的值是( )A 、2008B 、2009C 、2010D 、20118.若m >﹣1,则多项式m 3﹣m 2﹣m+1的值为( )A 、正数B 、负数C 、非负数D 、非正数9.若(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2E ,则E 是( )A 、1﹣q ﹣pB 、q ﹣pC 、1+p ﹣qD 、1+q ﹣p10.把x 2﹣y 2﹣2y ﹣1分解因式结果正确的是( )A 、(x+y+1)(x ﹣y ﹣1)B 、(x+y ﹣1)(x ﹣y ﹣1)C 、(x+y ﹣1)(x+y+1)D 、(x ﹣y+1)(x+y+1)二 、填空题(本大题共5小题,每小题3分,共15分)11.若87a =,78b =,用含a 、b 的代数式表达5656为12.计算:⑴232223(2)8()()()______x y x x y -+⋅-⋅-=⑵2(2)(2)()______a b a b a b +--+=⑶22()()()_______x y x y y x -+--+=13.已知32131a a x x x x +⋅⋅=,则a 的值为14.⑴如果多项式219x kx ++是一个完全平方式,那么k 的值为⑵如果多项式24x kx -+是一个完全平方式,那么k 的值为15.填空:(1)222()______a b a b +=+-;(2)222()______a b a b +=-+;(3)22()()_______a b a b -=+-;三 、解答题(本大题共7小题,共55分)16.如果12m x =,3n x =,求23m n x +的值17.分解因式:2x x5129+---2383x x18.分解因式:22--=x xy y12111519.计算(1)2-+(2)(2)(2)x y(23)--a b b a(3)2222++-+(4)(22)(22) ()()a ab b a ab b-+-+x y y x20.已知实数a、b满足2a b()25-=,求22+=,2()1a b++的值.a b ab21.计算:222222224--÷+.(3)()(4)89xy x y x y y x y22.分解因式:5544+-+()x y x y xy人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一 、选择题1.B2.C3.A4.C5.D6.A7.B ;已知20102011﹣20102009=2010x ×2009×2011,则有20102009×2009×2011=2010x×2009×2011,则有x=2009.8.C ;多项式m 3﹣m 2﹣m+1=(m 3﹣m 2)﹣(m ﹣1)=m 2(m ﹣1)﹣(m ﹣1)=(m ﹣1)2(m+1),∵m >﹣1,∴(m ﹣1)2≥0,m+1>0,∴m 3﹣m 2﹣m+1=(m ﹣1)2(m+1)≥0,故选C .9.C ;(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2(1﹣q+p ).故选C .10.A ;原式=x 2﹣(y 2+2y+1)=x 2﹣(y+1)2=(x+y+1)(x ﹣y ﹣1).故选A .二 、填空题11.()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =12.⑴原式=6316x y -;⑵原式=22232a ab b ++;⑶原式=44x y -13.914.完全平方:2222()a ab b a b ±+=±, ⑴参看公式我们可以发现23k =±,学生在此极易少答案;⑵4k =±. 15.⑴2ab ;⑵2ab ;⑶4ab ;三 、解答题16.()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=17.2383(31)(3)x x x x --=+-;25129(3)(53)x x x x +-=+-18.22121115(35)(43)x xy y x y x y --=-+19.(1)原式222(23)4129x y x xy y =-=-+(2)原式22222(2)(44)44a b a ab b a ab b =--=--+=-+-(3)原始22224224()()a b ab a b ab a a b b ⎡⎤⎡⎤=+++-=++⎣⎦⎣⎦(4)原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-20.2222()()132a b a b a b ++-+==,22()()64a b a b ab +--==-,227a b ab ++=. 21.原式2222442249()1689x y x y x y y x y =--÷+422442244299297x y x y x y x y x y =--+=22.原式44()()x x y y x y =---44()()x y x y =--22()()()()x y x y x y x y =--++222()()()x y x y x y =-++。

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章整式乘法与因式分解》单元测试卷-附带有答案学校:班级:姓名:考号:一、单选题1.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a32.下列因式分解错误的是()A.a2+4a−4=(a+2)2B.2a−2b=2(a−b)C.x2−9=(x+3)(x−3)D.x2−x−2=(x+1)(x−2)3.将-12a2b-ab2提公因式-12ab后,另一个因式是()A.a+2b B.-a+2b C.-a-b D.a-2b4.已知x2+y2=4,xy=2那么(x+y)2的值为()A.6B.8C.10D.125.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为()A.10B.12C.14D.166.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁二、填空题7.若a=b+2,则代数式a2−2ab+b2的值为.8.若a+b=5,ab=6,则(a+2)(b+2)的值是。

9.若(2x﹣3)x+5=1,则x的值为.10.观察下列各式的规律:1×3=22−1:3×5=42−1:5×7=62−1:7×9=82−1…请将发现的规律用含n的式子表示为.11.若m2=n+2023,n2=m+2023,且m≠n,则代数式m3−2mn+n3的值为.三、计算题12.计算:(1)(−12ab)(23ab2−2ab+43b)(2)(2x+y)(2x-y)+(x+y)2-2(2x2-xy)13.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)214.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣12.四、解答题15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?16.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.17.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+ 10.请你计算出a、b的值各是多少,并写出这道整式乘法的符合题意结果.18.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.19.阅读材料,解决后面的问题:若m2+2mn+2n2−6n+9=0,求m−n的值.解:∵m2+2mn+2n2−6n+9=0∴(m2+2mn+n2)+(n2−6n+9)=0即:(m+n)2+(n−3)2=0,∴m+n=0,n−3=0解得:m=−3,n=3∴m−n=−3−3=−6.(1)若x2+y2+6x−8y+25=0,求x+2y的值;(2)已知等腰△ABC的两边长a,b,满足a2+b2=10a+12b−61,求该△ABC的周长;(3)已知正整数a,b,c满足不等式a2+b2+c2+36<ab+6b+10c,求a+b−c的值.参考答案和解析1.【答案】B【解析】【解答】解:∵2a•3a=6a2∴选项A不正确;∵(﹣a3)2=a6∴选项B正确;∵6a÷2a=3∴选项C不正确;∵(﹣2a)3=﹣8a3∴选项D不正确.故选:B.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.2.【答案】A【解析】【解答】A、原式不能分解,故答案为:A错误,符合题意;B、2a−2b=2(a−b)故答案为:B正确,不符合题意;C、x2−9=(x+3)(x−3)故答案为:C正确,不符合题意;D、x2−x−2=(x+1)(x−2)故答案为:D正确,不符合题意.故答案为:A.【分析】A、a2+4a-4不是完全平方式,不能用完全平方公式进行因式分解,即可判断A错误;B、利用提公因式法进行因式分解,即可判断B正确;C、利用平方差公式进行因式分解,即可判断C正确;D、利用十字相乘法进行因式分解,即可判断D正确.3.【答案】A【解析】【解答】解:∵−12a2b−ab2=−12ab(a+2b),∴将−12a2b−ab2提公因式−12ab后,另一个因式是a+2b.故答案为:A.【分析】利用提公因式的方法对−12a2b−ab2进行因式分解即可.4.【答案】B【解析】【解答】∵x2+y2=4∴(x+y)2=x2+2xy+y2=4+2×2=8故答案为:B.【分析】将x2+y2=4,xy=2代入(x+y)2=x2+2xy+y2计算即可.5.【答案】B【解析】【解答】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2设大正方形边长为a,小正方形的边长为b,∴a-b+2=b如图2,阴影部分面积=a2-2b2+(b-a−b2)2=44,解得b=6,∴a=10如图3,两个小正方形重叠部分的面积=b[(a-b)]=12.故答案为:B.【分析】根据图1重叠图形及已知条件,可得重叠部分的边长为2,设大正方形边长为a,小正方形的边长为b,可得a-b+2=b,根据图2阴影部分面积为44建立方程,从而求出b值,即得a值,根据图3两个小正方形重叠部分的面积=b[(a-b)]即可求出结论.6.【答案】A【解析】【解答】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米设运输的运费每吨为z元/千米①设在甲处建总仓库则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库∵a+d=5y,b+c=7y∴a+d<b+c则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适故答案为:A.【分析】根据比例分别设甲基地的产量为4x吨,可得乙、丙、丁基地的产量分别为5x吨、4x吨、2x 吨;设a=2y千米,可得b、c、d、e分别为3y千米、4y千米、3y千米、3y千米.接着设设运输的运费每吨为z元/千米,然后分别求出设在甲处、乙处、丙处、丁处的总费用,最后比较即可.7.【答案】4【解析】【解答】解:∵a=b+2∴a−b=2∴a2−2ab+b2=(a−b)2=22=4。

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册第十四章整式的乘法与因式分解单元测试卷(2024年秋)一、选择题(每小题3分,共30分)1.计算:8xy3·-1432=()A.2x4y5B.-2x4y5C.2x3yh6D.-2x3y5 2.[母题教材P118例5]多项式x2-4x+4因式分解的结果是() A.x(x-4)+4B.(x+2)(x-2)C.(x-2)2D.(x+2)2 3.[2024西安灞桥区模拟]计算(12x3-18x2-6x)÷(-6x)的结果为()A.-2x2+3x B.-2x2-3xC.-2x2-3x-1D.-2x2+3x+14.要使多项式(x+p)(x-q)不含x的一次项,则p与q的关系是() A.相等B.互为相反数C.互为倒数D.乘积为-15.[母题教材P104习题T1]下列各式计算正确的是() A.a2·a3=a6B.a6÷a3=a2C.(-2ab2)3=-8a3b6D.2a2+3a3=5a5 6.[2024泰安期末]当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()A.16B.8C.-8D.-16 7.若10a×100b=10000,则a+2b=()A.1B.2C.3D.48.若式子(x+2)(x-1)-(x+2)能因式分解成(x+m)(x+n),则mn的值是()A.2B.-2C.-4D.49.某同学在计算-3x加上一个多项式时错将加法做成了乘法,得到的答案是3x3-3x2+3x,由此可以推断出正确的计算结果是() A.x2+2x-1B.-x2-2x-1C.-x2+4x-1D.x2-4x+110.224-1可以被60和70之间某两个数整除,这两个数是() A.63,64B.63,65C.61,67B.61,65二、填空题(每小题3分,共15分)11.计算:(-1)2=.12.若x2-3mx+36是一个完全平方式,则m的值是.13.一个正方体的棱长是2×103cm,则这个正方体的体积为.14.[2024温州期中]已知(a+3)2=82,则(a+11)(a-5)的值为.15.3(22+1)(24+1)(28+1)…(232+1)+1计算结果的个位数字是.三、解答题(本大题共8个小题,满分75分)16.(8分)[2024盐城期中]因式分解:(1)m2-16n2;(2)xy4-6xy3+9xy2.17.(9分)[母题教材P112习题T4]先化简,再求值:[(2x-y)2-(3x +y)(3x-y)+5x2]÷(-2y),其中x=-12,y=1.18.(9分)若x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,试确定m,n的值.19.(9分)[2024扬州邗江区期中](1)已知a m=2,a n=5,求a2m+n的值;(2)如果2x+2+2x+1=24,求x的值.20.(9分)[情境题生活应用]某种植基地有一块长方形实验田和一块正方形实验田,长方形实验田每排种植(3a-b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a +b)排,其中a>b>0.(1)长方形实验田比正方形实验田多种植多少株豌豆幼苗?(2)当a=4,b=3时,长方形实验田比正方形实验田多种植多少株豌豆幼苗?21.(9分)[新视角新定义题]如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)试说明“神秘数”能被4整除;(2)两个连续奇数的平方差是“神秘数”吗?试说明理由.22.(11分)[新考法阅读类比题]先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0.∴(m+n)2+(n-3)2=0.∴m+n=0,n-3=0,解得m=-3,n=3.(1)若x2+2y2-2xy-4y+4=0,求x y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.23.(11分)知识生成:我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:由图①可以得到(a+b)2=a2+2ab +b2,基于此,请解答下列问题:直接应用:(1)若xy=5,x+y=7,直接写出x2+y2的值为;类比应用:(2)填空:①若x(4-x)=2,则x2+(x-4)2=;②若(x-3)(x-5)=2,则(x-3)2+(x-5)2=;知识迁移:(3)如图②,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形用地,再以AD,CD为边分别向外扩建正方形ADGH、正方形DCEF两块空地,并在这两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.答案1.B2.C3.D4.A5.C6.D7.D8.C9.B 10.B【点拨】224-1=(212-1)(212+1)=(26-1)(26+1)(212+1)=63×65×(212+1),则这两个数是63与65.二、11.212.±413.8×109cm314.1815.6三、16.【解】(1)m2-16n2=m2-(4n)2=(m+4n)(m-4n).(2)xy4-6xy3+9xy2=xy2(y2-6y+9)=xy2(y-3)2.17.【解】原式=(4x2-4xy+y2-9x2+y2+5x2)÷(-2y)=(2y2-4xy)÷(-2y)=-y+2x.当x=-12,y=1时,原式=-1+2×1-1=-2.18.【解】(x-1)(x2+mx+n)=x3+mx2+nx-x2-mx-n=x3+(m-1)x2+(n-m)x-n.∵x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,即x3-5x2+10x -6=x3+(m-1)x2+(n-m)x-n恒成立,∴n=6,m-1=-5,解得m=-4.∴m=-4,n=6.19.【解】(1)∵a m=2,a n=5,∴a2m+n=a2m·a n=(a m)2·a n=22×5=20.(2)∵2x+2+2x+1=2x·22+2x·2=4×2x+2×2x=6×2x,∴6×2x=24.∴2x=4=22.∴x=2.20.【解】(1)由题意,得(3a-b)(3a+b)-(a+b)2=9a2-b2-a2-2ab-b2=(8a2-2ab-2b2)(株).答:长方形实验田比正方形实验田多种植(8a2-2ab-2b2)株豌豆幼苗.(2)当a=4,b=3时,8a2-2ab-2b2=8×42-2×4×3-2×32=128-24-18=86.答:长方形实验田比正方形实验田多种植86株豌豆幼苗.21.【解】(1)设两个连续的偶数分别为2k,2k+2(k为整数),则由题意得(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∴“神秘数”能被4整除.(2)两个连续奇数的平方差不是“神秘数”.理由如下:设两个连续的奇数分别为2k-1,2k+1(k为整数),则(2k+1)2-(2k-1)2=8k,而由(1)知“神秘数”是4的奇数倍,不是偶数倍,但8k是4的偶数倍,∴两个连续奇数的平方差不是“神秘数”.22.【解】(1)∵x2+2y2-2xy-4y+4=x2-2xy+y2+y2-4y+4=(x-y)2+(y-2)2=0,∴x-y=0,y-2=0,解得x=2,y=2.∴x y =22=4.(2)∵a2+b2=10a+8b-41,∴a2-10a+25+b2-8b+16=0.∴(a-5)2+(b-4)2=0.∴a-5=0,b-4=0,解得a=5,b=4.∵c 是△ABC中最长的边,∴5≤c<9.23.【解】(1)39(2)①12②8(3)设AB=x m,BC=y m,则2(x+y)=120,∴x+y=60.由题意,得x2+y2=2000,∴xy=(+)2−(2+2)2=3600-20002=800.∴原有长方形用地ABCD的面积为800m2.。

2024-2025学年人教版八年级上册数学 第十四章 整式的乘法与因式分解 测试卷(含答案)

2024-2025学年人教版八年级上册数学   第十四章  整式的乘法与因式分解  测试卷(含答案)

第十四章测试卷一、选择题1.计算(a³)²÷a² 的结果是 ( )A. a³B. a⁴C. a⁷D. a⁸2.若(x−4)⁰=1,则x的取值范围是 ( )A. x≠4B. x>4C. x<4D. x≥43.下列因式分解正确的是( )A.2ax²−4ax=2a(x²−2x)B.−ax²+4ax−4a=−a(x−2)²C.x²+2xy+4y²=(x+2y)²D.−m²+n²=(−m+n)(−m−n)4.已知x+1x =5, 那么x2+1x2=( )A.10B.23C.25D.275.化简(a+b+c)²−(a−b+c)² 的结果为( )A.4ab+4bcB.4acC.2acD.4ab--4bc6.不等式(x+1)(x-2)>x(x+2)的解集是( )A.x>23 B.x>−23C.x<23 D.x<−237.已知((10x-31)(13x-17)-(13x-17)(3x-23)可因式分解成( ax+b)(7x+c),其中a,b,c均为整数,则a-b+c的值为( )A.-12B.-4C.22D.388.长方形的面积是9a²−3ab+6a³,一边长是3a,则它的另一边长是( )A.3a²−b+2a²B.b+3a+2a²C.2a²+3a−bD.3a²−b+2a9.已知a²−2a−1=0, 则a⁴−2a³−2a+ 1 等于( )A.0B.1C.2D.310.如图,两个正方形的边长分别为a、b,如果a+b=18, ab=60,则图中阴影部分的面积为( )A.144B.72C.68D.36二、填空题11.计算: (18x3y2−12x2y3+x2y2)÷(−6x2y2)=12.分解因式:a²b+ab²-a-b= .13.若规定 a⊗b=10ᵃ×10ᵃ,如 2⊗3=10²×10³=10⁵,则 4⊗8为 .14.若a-b=2,a-c=1.则(2a−b−c)²+(c−a)²=.15.多项式 x²+y²−4x+6y+15的最小值是 .三、解答题16.(8分)计算:(1)[(m+n)(m−n)+(m−n)2−4m(m−n)]÷(2m);(2)(m+n+2)(m+n-2)-m(m+4n).17.(9分)把下列各式分解因式:(1)(x−1)+b²(1−x);(2)−3x⁷+24x⁵−48x³;(3)(x+3)(x+4)+(x²−9).18.(9分)化简并求值:(2a−b)²−(4a+b)(a−b)−2b²,其中 a=12,b=−13.19.(9分)如图,一块长为 (6a²+4b²)m,宽为 5a ⁴m 的长方形铁皮,在它的四个角上各剪去一个边长为 2a³m的小正方形,然后将剩余部分折成一个无盖的盒子,则这个盒子的表面积是多少?20.(9分)已知 2ⁿ=a,5ⁿ=b,20ⁿ= c.试探究a ,b ,c 之间有什么关系.21.(10分)已知 2⁴⁸−1可以被 60 至 70 之间的某两个数整除,求这两个数.22.(10分)阅读材料:常用的分解因式方法有提公因式法、公式法等,但有的多项式只用上述方法是无法分解的,如 x²−4y²+2x −4y,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程:x²−4y²+2x −4y=(x²−4y²)+(2x −4y )=(x+2y)(x-2y)+2(x-2y)=(x-2y)(x+2y+2).这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式: x²−6xy +9y²−3x +9y;(2)△ABC 的三边长a,b,c 满足 a²−b²−ac +bc =0,判断 △ABC 的形状.^23.(11分)在《乘法公式》中我们学习了完全平方公式:(a±b)²=a²±2ab +b².类比此公式,我们把( (a+b)ⁿ写成如下形式:(a+b)n=Ca n b0+C1a n−1b1+C2a n−2b2+⋯+C n−1ab n−1+C n a0b n,右边的多项式叫做(a+b)ⁿ的二项展开式.把C0,C1,C2,⋯,Cn−1,Cn叫做二项式的系数,C+C1+C2+⋯+Cn−1+Cn的和叫做二项式的系数之和.(1)仔细观察下列各式中系数的规律,并填空:①(a+b)¹的二项式的系数之和为,((a+b)²的二项式的系数之和为,((a+b)³的二项式的系数之和为;②请写出(a+b)¹⁰的二项式的系数之和: .(2)设(x+1)17=a17x17+a16x16+⋯+a1x+a0,求a1+a2+a3+⋯+ a₁₆+a₁₇的值;(3)你能在(2)的基础上求出a2+a4+a6+⋯+a14+a16的值吗? 若能,请写出过程,若不能,请说明理由.第十四章测试卷1、B2、A3、B4、B5、A6、D7、C8、C9、C 10、B11、-3x+2y-1612、(a+b)(ab-1)13、101214、10 15、216、(1)解:原式=(m²−n²+m²−2mn+n²−4m²+4mn)÷(2m)=(−2m²+2mn)÷(2m)=-m+n.(2)解:原式= (m+n)²−2²−m²−4mn=m²+2mn+n²−4−m²−44mn =n²−2mn−4.17、(1)解:原式= (x−1)−b²(x−1)=(x−1)(1−b²)=(x−1)(1−b)(1+b).(2)解:原式=−3x³(x⁴−8x²+16)=−3x³(x²−4)²=−3x³(x+2)(x−2)².(3)解:原式= (x+3)(x+4)+(x+3)(x−3)=(x+3)(x+4+x−-3) =(x+3)(2x+1). 18、解:原式=4a²−4ab+b²−(4a²−3ab−b²)−2b²=−ab,当 a=12,b=−13时,原式=−12×(−13)=16.19、解:由题意,得这个盒子的表面积为(6a²+4b²)⋅5a⁴−4×(2a³)²=30a⁶+20a⁴b²−16a⁶=(14a⁶+20a⁴b²)(m²).20、解:因为 c=20ⁿ=(4×5)ⁿ=4ⁿ×5ⁿ=(2²)ⁿ×5ⁿ=(2ⁿ)²×5ⁿ=a²b,所以a,b,c之间的关系是 c=a²b.21、解:248−1=(224+1)(224−1)=(224+1)(2¹²+1)(2¹²−1)=(224+1)) (2¹²+1)(2⁶+1)(2⁶−1)=(224+1)(2¹²+1)×65×63,所以这两个数为63和65.22、解:(1)x²−6xy+9y²−3x+9y=(x²−6xy+9y²)−(3x−9y)=(x−3y)²-3(x-3y)=(x-3y)(x-3y-3).(2)∵a²−b²−ac+bc=0,(a²−b²)−(ac−bc)=0,∴(a+b)(a−b)−c(a−b)=0,∴(a−b))[(a+b)-c]=0,∵a,b,c是△ABC的三边长,∴(a+b)−c>0,∴a− b=0,得 a=b,∴△ABC是等腰三角形.23.解:(1) ①2¹、 2²、2³ ② 2¹⁰ .(2)由(1)①得( (x+1)¹⁷的二项式的系数之和为2¹⁷,即 a₀+a₁+a₂+a3+⋯+a16+a17=217,当x=0时, 1=a0,∴a1+a2+a3+⋯+a16+a17=2¹⁷−1.(3)当x=1时, (1+1)17=217=a17×1+a16×1+⋯+a1×1+a=a17+a16+⋯+a1+a①,当x=-1 时, (−1+1)¹⁷=0=−a17+a16−⋯+a2−a1+a0②,①+②)得 2(a0+a2+a4+a6+⋯+a14一a16=1,∴a2+a4+a6+⋯+a14+a16=216−1.。

《整式的乘法与因式分解》单元综合检测题(带答案)精选全文完整版

《整式的乘法与因式分解》单元综合检测题(带答案)精选全文完整版

可编辑修改精选全文完整版人教版数学八年级上学期《整式的乘法与因式分解》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·北京清华附中初二期中)如果(x +m )与(x ﹣4)的乘积中不含x 的一次项,则m 的值为( ) A .4 B .﹣4 C .0 D .12.(2018·富阳市实验中学初三期末)下列计算正确的是( )A .(2a ﹣b)(﹣2a+b)=4a 2﹣b 2B .(2a ﹣b)2=4a 2﹣2ab+b 2C .(2a ﹣b)2=4a 2﹣4ab+b 2D .(a+b)2=a 2+b 23.(2019·吉林东北师大附中初二月考)下列因式分解中,正确的是( )A .x 2-4y 2=(x-4y)(x+4y)B .ax+ay+a=a(x+y)C .a(x-y)+b(y-x)=(x-y)(a-b)D .4x 2+9=(2x+3)24.(2019·全国初一单元测试)化简(m +1)2-(1-m)(1+m)的正确结果是( )A .2m 2B .2m +2C .2m 2+2mD .05.(2019·眉山东辰国际学校初二期中)若9x 2+mxy +16y 2是一个完全平方式,那m 的值是( ) A .±12 B .-12 C .±24 D .-246.(2019·眉山东辰国际学校初二期中)已知m 2+n 2+2m ﹣6n+10=0,则m+n 的值为( )A .3B .﹣1C .2D .﹣27.(2019·北京交通大学附属中学初二期中)计算结果为x 2-5x -6的是( )A .(x -6)(x +1)B .(x -2)(x +3)C .(x +6)(x -1)D .(x +2)(x -3)8.(2019·重庆市璧山区青杠初级中学校初二期中)下列算式能用平方差公式计算的是( )A.(2a +b)(2b-a)B.(x+1)(-x-1)C.(3x-y)(-3x +y)D.(-a-b)(-a +b) 9.(2019·北京初三)已知232a a -=,那么代数式()()2221a a -++的值为( )A.﹣9B.﹣1C.1D.910.(2019·上海初一期中)将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A.4xB.4x -4C.4x 4D.4x -二、填空题(每小题4分,共24分)11.(2019·北京清华附中初二期中)若计算2x -1与ax +1相乘的结果中不含有x 的项,则a 的值为______________.12.(2019·九江市同文中学初二期中)分解因式:()()()2x y x y y x ----=________.13.(2019·福建初三)计算()()2211ab ab +--=_________.14.(2019·山西初三)若2322a b a b +=--=,,则224a b -=_________.15.(2019·九江市同文中学初一期中)若a +b =5,ab =3,则3a 2+3b 2=____________.16.(2019·湖北初二期中)若2(3)4x m x +-+是完全平方式,则数m 的值是________. 三、解答题一(每小题6分,共18分)17.(2019·河南初三)化简:2(2)(2)2(3)(1)x x x x x +---+-18.(2019·九江市同文中学初一期中)若x 2+mx +n=(x -3)(x +4),求(m +n)2的值.19.(2019·吉林初二期中)请你将下式化简,再求值:(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),其中x 2﹣3x =1.四、解答题二(每小题7分,共21分)20.(2018·江苏初一期末)把下列各式因式分解:(1)249-x (2)3222x x y xy +﹣21.(2019·九江市同文中学初一期中)计算(用简便方法):(1)499×501;(2)20202-2019×2021.22.(2019·吉林初二期中)已知 x +y =4,xy =3.(1)求 x 2+y 2 的值;(2)求 x 3y +2x 2y 2+xy 3.五、解答题三(每小题9分,共27分)23.(2018·浙江中考真题)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式()()()2x a x b x a b x ab ++=+++,即()()()2x a b x ab x a x b +++=++,是否可以因式分解呢?当然可以,而且也很简单.如()()()2243131313x x x x x x ++=+++⨯=++;()()()()2245151515x x x x x x --=+-+⨯-=+-.请你仿照上述方法分解因式:(1)2718x x -- (2)221213x xy y +-24.(2013·浙江中考真题)乘法公式的探究及应用.(1)如图1可以求出阴影部分的面积是(写成两数平方差的形式);(2)比较图1、图2两图的阴影部分面积,可以得到乘法公式(用式子表达);(3)运用你所得到的公式,计算下列各题:①(2m+n﹣p)(2m﹣n+p) ②10.3×9.7.25.(2017·湖南中考真题)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.参考答案一、单选题(每小题3分,共30分)1.(2019·北京清华附中初二期中)如果(x+m)与(x﹣4)的乘积中不含x的一次项,则m的值为() A.4 B.﹣4 C.0 D.1【答案】A【解析】【分析】先根据已知式子,可找出所有含x的项,合并系数,令含x项的系数等于0,即可求m的值.【详解】解:(x+m)(x-4)=x2+(m-4)x+4m,乘积中不含x的一次项,∴m-4=0,∴m=4.所以A选项是正确的.【点睛】本题主要考查多项式乘多项式,注意运算的准确性.2.(2018·富阳市实验中学初三期末)下列计算正确的是()A.(2a﹣b)(﹣2a+b)=4a2﹣b2B.(2a﹣b)2=4a2﹣2ab+b2C.(2a﹣b)2=4a2﹣4ab+b2D.(a+b)2=a2+b2【答案】C【解析】【分析】利用完全平方公式求解判定.【详解】A. (2a﹣b)(﹣2a+b)=-(2a﹣b)2,故A选项错误;B. (2a﹣b)2=4a2−4ab+b2,故B选项错误;C. (2a−b)2=4a2−4ab+b2,故C选项正确;D. (a+b)2= a2+2ab+b2,故D选项错误.故答案选:C.本题考查了完全平方公式,解题的关键是熟练的掌握完全平方公式.3.(2019·吉林东北师大附中初二月考)下列因式分解中,正确的是( )A.x2-4y2=(x-4y)(x+4y) B.ax+ay+a=a(x+y)C.a(x-y)+b(y-x)=(x-y)(a-b) D.4x2+9=(2x+3)2【答案】C【解析】【分析】根据完全平方公式和平方差公式,对各选项分析判断后利用排除法求解.【详解】A、应为x2-4y2=(x-2y)(x+2y),故本选项错误;B、应为ax+ay+a=a(x+y+1),故本选项错误;C、a(x-y)+b(y-x)=(x-y)(a-b),故本选项正确;D、应为4x2+12x+9=(2x+3)2,故本选项错误.故选C.【点睛】本题考查了公式法提公因式法分解因式,运用提公因式法时,注意各项符号的变化,运用公式法的时候,注意公式的结构特征.4.(2019·全国初一单元测试)化简(m+1)2-(1-m)(1+m)的正确结果是( )A.2m2B.2m+2 C.2m2+2m D.0【答案】C【解析】解:(m+1) 2 -(1-m)(1+m)=m2+2m+1-1+m2=2m2+2m.故选C.点睛:本题考查了平方差公式和完全平方公式的应用,能正确运用公式展开是解此题的关键.5.(2019·眉山东辰国际学校初二期中)若9x2+mxy+16y2是一个完全平方式,那m的值是( )A.±12 B.-12 C.±24 D.-24【答案】C【解析】∵9x2+mxy+16y2是一个完全平方式,又∵(3x±4y)2=9x2±24xy+16y2,故选:C.6.(2019·眉山东辰国际学校初二期中)已知m2+n2+2m﹣6n+10=0,则m+n的值为()A.3B.﹣1C.2D.﹣2【答案】C【解析】试题解析:m2+n2+2m-6n+10=0变形得:2222+++-+=++-=()()()(),m m n n m n2169130∴m+1=0且n-3=0,解得:m=-1,n=3,则m+n=-1+3=2.故选C.7.(2019·北京交通大学附属中学初二期中)计算结果为x2-5x-6的是( )A.(x-6)(x+1) B.(x-2)(x+3)C.(x+6)(x-1) D.(x+2)(x-3)【答案】A【解析】【分析】根据多项式乘多项式法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,把各选项计算出结果,即可得答案.【详解】A、(x-6)(x+1)=x2-5x-6;B、(x-2)(x+3)=x2+x-6;C.(x+6)(x-1)=x2+5x-6;D、(x+2)(x-3)=x2-x-6.故选A.【点睛】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.8.(2019·重庆市璧山区青杠初级中学校初二期中)下列算式能用平方差公式计算的是( )A.(2a+b)(2b-a)B.(x+1)(-x-1)C.(3x-y)(-3x+y)D.(-a-b)(-a+b)【解析】【分析】平方差公式为(a+b)(a ﹣b)=a 2﹣b 2,根据公式的特点逐个判断即可.【详解】A 、不能用平方差公式进行计算,故本选项错误;B 、不能用平方差公式进行计算,故本选项错误;C 、不能用平方差公式进行计算,故本选项错误;D 、能用平方差公式进行计算,故本选项正确;故选:D .【点睛】考查了平方差公式,熟练掌握平方差公式及其公式特点是解本题的关键.9.(2019·北京初三)已知232a a -=,那么代数式()()2221a a -++的值为( ) A.﹣9B.﹣1C.1D.9【答案】D【解析】【分析】 原式利用完全平方公式化简,去括号合并得到最简结果,把已知等式整理后代入计算即可求出值.【详解】解:∵232a a -=,即223a a -=,∴原式22442226369a a a a a =-+++=-+=+=,故选:D .【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2019·上海初一期中)将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A.4xB.4x -4C.4x 4D.4x -【答案】B【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.二、填空题(每小题4分,共24分)11.(2019·北京清华附中初二期中)若计算2x -1与ax +1相乘的结果中不含有x 的项,则a 的值为______________.【答案】2.【解析】【分析】根据多项式与多项式相乘的法则计算,根据题意可知一次项系数为0,据此列出方程,解方程即可.【详解】解:(ax+1)(2x-1)=2ax 2+(2-a)x-1,∵结果中不含有x 的项∴2-a=0,解得,a=2,故答案为:2.【点睛】本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.12.(2019·九江市同文中学初二期中)分解因式:()()()2x y x y y x ----=________.【答案】()()21x y x y --+【解析】【分析】先把(y-x)转化为(x-y),然后提取公因式(x-y),再对余下的多项式整理即可.【详解】(x-y)(2x-y)-(y-x),=(x-y)(2x-y)+(x-y),=(x-y)(2x-y+1).故答案是:()()21x y x y --+.【点睛】考查了提公因式法分解因式,把(y-x)转化为(x-y),整体思想的利用是解题的关键,要注意符号的变化. 13.(2019·福建初三)计算()()2211ab ab +--=_________.【答案】4ab【解析】【分析】利用平方差公式进行解答.【详解】解:(ab+1)2-(ab-1)2=(ab+1+ab-1)(ab+1-ab+1)=2ab×2=4ab . 故答案是:4ab .【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.14.(2019·山西初三)若2322a b a b +=--=,,则224a b -=_________.【答案】-6【解析】【分析】根据平方差公式可以求得题目中所求式子的值.【详解】∵2a+b=-3,2a-b=2,∴4a 2-b 2=(2a+b)(2a-b)=(-3)×2=-6,故答案为:-6.【点睛】考查平方差公式,解答本题的关键是明确题意,利用平方差公式解答.15.(2019·九江市同文中学初一期中)若a +b =5,ab =3,则3a 2+3b 2=____________.【答案】57【解析】【分析】首先根据完全平方公式将22a b +用()a b +与ab 的代数式表示,然后把a b +,ab 的值整体代入计算.【详解】解:a b 5+=,ab 3=,223a 3b ∴+()23a b 6ab =+-,23563=⨯-⨯ 57=.故答案为:57.【点睛】本题考查完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式解题关键是要了解22a b +与()2a b +之间的联系.16.(2019·湖北初二期中) 若2(3)4x m x +-+是完全平方式,则数m 的值是________. 【答案】7或-1【解析】∵x 2+(m −3)x +4是完全平方式,∴m −3=±4,∴m =7或−1.故答案为:7或-1.三、解答题一(每小题6分,共18分)17.(2019·河南初三)化简:2(2)(2)2(3)(1)x x x x x +---+-【答案】43x -【解析】【详解】先去括号,再合并同类项化简求值.解:2(2)(2)2(3)(1)x x x x x +---+-22242621x x x x x =--++-+43x =-.【点睛】本题考查整式的混合运算,关键是公式的运用以及合并同类项.18.(2019·九江市同文中学初一期中)若x 2+mx +n=(x -3)(x +4),求(m +n)2的值.【答案】121【解析】【分析】由题可知(3)(4)x x -+等于x 2+mx +n ,将(3)(4)x x -+进行化简可得212x x +-,进而可求出m 和n 的值即可求出本题答案.【详解】∵(3)(4)x x -+,24312x x x =+--,212x x =+-,2x mx n =++,∴1m = ,12n =-,∴22()(112)121m n +=-=.【点睛】本题考查了多项式乘多项式,熟练掌握该知识点是本题解题的关键.19.(2019·吉林初二期中)请你将下式化简,再求值:(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),其中x 2﹣3x =1.【答案】3x 2﹣9x +4,7【解析】【分析】运用平方差公式、完全平方公式和多项式的乘法的运算法则计算,再合并同类项,然后整体代入求值.【详解】(x +2)(x ﹣2)+(x ﹣2)2+(x ﹣4)(x ﹣1),=x 2﹣4+x 2﹣4x +x 2﹣5x +4,=3x 2﹣9x +4,当x 2﹣3x =1时,原式=3x 2﹣9x +4,=3(x 2﹣3x )+4,=3×1+4, =7.【点睛】本题考查了平方差公式,完全平方公式,多项式的乘法,熟练掌握公式和运算法则是解题的关键,注意整体代入思想.四、解答题二(每小题7分,共21分)20.(2018·江苏初一期末)把下列各式因式分解:(1)249-x (2)3222x x y xy +﹣【答案】(1)(2x+3)(2x-3);(2)x(x-y)2【解析】分析:(1)直接利用平方差公式进行分解即可;(2)首先提取公因式x ,再利用完全平方公式进行二次分解即可.详解:(1)原式=(2x +3)(2x ﹣3);(2)原式=x (x 2﹣2xy +y 2)=x (x ﹣y )2.点睛:本题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2019·九江市同文中学初一期中)计算(用简便方法):(1)499×501;(2)20202-2019×2021.【答案】(1)249999;(2)1.【解析】【分析】(1)原式变形后,利用平方差公式计算即可得到结果;(2)原式变形后,利用平方差公式化简,去括号合并即可得到结果.【详解】(1)原式=(500-1)×(500+1)=5002-12=249999;(2)原式=20202-(2020-1)×(2020+1)=20202-(20202-1)=1.【点睛】本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.22.(2019·吉林初二期中)已知x+y=4,xy=3.(1)求x2+y2 的值;(2)求x3y+2x2y2+xy3.【答案】(1)x2+y2=10;(2)48.【解析】【分析】(1)根据已知条件可算出(x+y)2,利用完全平方公式及其变形可求得结果.(2)对代数式进行提公因式xy,得到xy(x+y)2,再代已知条件即可.【详解】(1)∵x+y=4,∴(x+y)2=x2+2xy+y2=16∵xy=3∴x2+y2=(x+y)2-2xy=16-2×3=10(2)x3y+2x2y2+xy3=xy(x2+2xy+y2)=xy(x+y)2=3×42=48【点睛】本题考查了完全平方式的变形应用,解题关键是掌握完全平方公式中已知x+y(x-y),xy,x 2+y 2中任意两个式子,即可求出另一个代数式.五、解答题三(每小题9分,共27分)23.(2018·浙江中考真题)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式()()()2x a x b x a b x ab ++=+++,即()()()2x a b x ab x a x b +++=++,是否可以因式分解呢?当然可以,而且也很简单.如()()()2243131313x x x x x x ++=+++⨯=++;()()()()2245151515x x x x x x --=+-+⨯-=+-.请你仿照上述方法分解因式:(1)2718x x -- (2)221213x xy y +-【答案】①()()29x x +-;②()()13x y x y +-【解析】【分析】(1)逆用乘法公式(x+a) (x+b)=x 2+(a+b)x+ab 即可.(2)逆用乘法公式(x+a) (x+b)=x 2+(a+b)x+ab 即可.【详解】(1)x 2-7x-18=(x+2)(x-9);(2)x 2+12xy-13y 2=(x+13y)(x-y).【点睛】本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a) (x+b)=x 2+(a+b)x+ab,进行因式分解,属于中考常考题型.24.(2013·浙江中考真题)乘法公式的探究及应用.(1)如图1可以求出阴影部分的面积是 (写成两数平方差的形式);(2)比较图1、图2两图的阴影部分面积,可以得到乘法公式 (用式子表达);(3)运用你所得到的公式,计算下列各题:①(2m+n ﹣p)(2m ﹣n+p) ②10.3×9.7.【答案】(1) a2﹣b2 (2)(a+b)(a﹣b)=a2﹣b2 (3)①4m2﹣n2+2np﹣p2②99.91【解析】分析:(1)利用正方形的面积公式就可求出;(2)仔细观察图形就会知道长,宽,由面积公式就可求出面积,建立等式就可得出;(3)利用平方差公式就可方便简单的计算.详解:(1) a2﹣b2;(2)(a+b)(a﹣b)=a2﹣b2;(3)①原式=[2m+(n﹣p)]•[2m﹣(n﹣p)]=(2m)2﹣(n﹣p)2=4m2﹣n2+2np﹣p2;②原式=(10+0.3)×(10﹣0.3)=102﹣0.32=99.91点睛:此题主要考查了平方差公式的探究及应用,即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.对于有图形的题同学们注意利用数形结合求解更形象直观.25.(2017·湖南中考真题)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.【答案】(1)C;(2)(x﹣2)4;(3)(x+1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C;(2)(x2﹣4x+1)(x2﹣4x+7)+9,设x2﹣4x=y,则:原式=(y+1)(y+7)+9=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4;(3)设x2+2x=y,原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2+2x+1)2=(x+1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.。

八年级数学上册《第14章 整式的乘法与因式分解》单元测试卷和答案详解

八年级数学上册《第14章 整式的乘法与因式分解》单元测试卷和答案详解

人教新版八年级上册《第14章整式的乘法与因式分解》单元测试卷(1)一.选择题(共10小题)1.多项式36a2bc﹣48ab2c+12abc的公因式是()A.24abc B.12abc C.12a2b2c2D.6a2b2c2 2.(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3B.0C.12D.243.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.104.若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±105.下列各式从左到右的变形中,属于因式分解的是()A.a(a+1)=a2+aB.a2+2a﹣1=a(a+2)﹣1C.4a2﹣2a=2a(2a﹣1)D.a2﹣4+4a=(a+2)(a﹣2)+4a6.已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.127.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.a2b•a3b2=a5b2D.(﹣3a2b)2=9a4b28.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±69.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣310.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二.填空题(共8小题)11.已知xy=,x﹣y=﹣3,则x2y﹣xy2=.12.计算(20x3﹣8x2+12x)÷4x=.13.若2m=a,32n=b,m,n为正整数,则23m+10n=.14.已知x+=5,那么x2+=.15.若3m•3n=1,则m+n=.16.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,则p+q的值=.17.分解因式:a2﹣4b2=.18.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为.三.解答题(共4小题)19.计算:(1)﹣b2×(﹣b)2×(﹣b3)(2)(2﹣y)3×(y﹣2)2×(y﹣2)520.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.21.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.22.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.人教新版八年级上册《第14章整式的乘法与因式分解》单元测试卷(1)参考答案与试题解析一.选择题(共10小题)1.多项式36a2bc﹣48ab2c+12abc的公因式是()A.24abc B.12abc C.12a2b2c2D.6a2b2c2【考点】公因式.【分析】根据确定公因式的方法定系数,①即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进行计算即可得出答案.【解答】解:多项式36a2bc﹣48ab2c+12abc中,系数36、﹣48、12最大公约数是12,三项的字母部分都含有字母a、b、c,其中a的最低次数是1,b的最低次数是1,c的最低次数是1,因此公因式为12abc.故选:B.2.(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3B.0C.12D.24【考点】多项式乘多项式.【分析】先根据多项式乘以多项式法则进行计算,合并同类项,根据已知得出方程2m﹣24=0,求出即可.【解答】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵(mx+8)(2﹣3x)展开后不含x的一次项,∴2m﹣24=0,∴m=12.故选:C.3.若3x=15,3y=5,则3x﹣y等于()A.5B.3C.15D.10【考点】同底数幂的除法.【分析】根据同底数幂的除法,底数不变,指数相减,可得答案.【解答】解:3x﹣y=3x÷3y=15÷5=3,故选:B.4.若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【考点】完全平方式.【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.5.下列各式从左到右的变形中,属于因式分解的是()A.a(a+1)=a2+aB.a2+2a﹣1=a(a+2)﹣1C.4a2﹣2a=2a(2a﹣1)D.a2﹣4+4a=(a+2)(a﹣2)+4a【考点】因式分解的意义;因式分解﹣提公因式法.【分析】根据因式分解的定义判断即可.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.从左边到右边的变形不属于因式分解,故本选项不符合题意;故选:C.6.已知x﹣y=3,xy=3,则(x+y)2的值为()A.24B.18C.21D.12【考点】完全平方公式.【分析】先根据完全平方公式进行变形得出(x+y)2=(x﹣y)2+4xy,再求出答案即可.【解答】解:∵x﹣y=3,xy=3,∴(x+y)2=(x﹣y)2+4xy=32+4×3=21,故选:C.7.下列算式中,正确的是()A.a4•a4=2a4B.a6÷a3=a2C.a2b•a3b2=a5b2D.(﹣3a2b)2=9a4b2【考点】单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数幂的乘法法则、同底数幂的除法法则、单项式乘单项式的运算法则、积的乘方法则计算,判断即可.【解答】解:A、a4•a4=a4+4=a8,本选项计算错误;B、a6÷a3=a6﹣3=a3,本选项计算错误;C、a2b•a3b2=a5b3,本选项计算错误;D、(﹣3a2b)2=9a4b2,本选项计算正确;故选:D.8.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±6【考点】完全平方式.【分析】根据完全平方公式进行计算即可.【解答】解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,故选:C.9.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5B.﹣5C.3D.﹣3【考点】多项式乘多项式.【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【解答】解:(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.10.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24【考点】完全平方公式的几何背景.【分析】表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.【解答】解:如图,三角形②的一条直角边为(a﹣b),另一条直角边为b,因此S△②=(a﹣b)b=ab﹣b2,S△①=a2,∴S阴影部分=S大正方形﹣S△①﹣S△②,=a2﹣ab+b2,=[(a+b)2﹣3ab],=(100﹣54)=23,故选:C.二.填空题(共8小题)11.已知xy=,x﹣y=﹣3,则x2y﹣xy2=﹣.【考点】因式分解﹣提公因式法.【分析】提公因式法分解因式后,再整体代入求值即可.【解答】解:x2y﹣xy2=xy(x﹣y)=×(﹣3)=﹣,故答案为:﹣.12.计算(20x3﹣8x2+12x)÷4x=5x2﹣2x+3.【考点】整式的除法.【分析】根据整式的除法运算法则即可求出答案.【解答】解:原式=20x3÷4x﹣8x2÷4x+12x÷4x=5x2﹣2x+3,故答案为:5x2﹣2x+3.13.若2m=a,32n=b,m,n为正整数,则23m+10n=a3b2.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:32n=25n=b,则23m+10n=23m•210n=a3•b2=a3b2.故答案为:a3b2.14.已知x+=5,那么x2+=23.【考点】完全平方公式.【分析】所求式子利用完全平方公式变形后,将已知等式代入计算即可求出值.【解答】解:∵x+=5,∴x2+=(x+)2﹣2=25﹣2=23.故答案为:23.15.若3m•3n=1,则m+n=0.【考点】零指数幂;同底数幂的乘法.【分析】根据同底数幂的乘法法则及非0数的0次幂等于1进行计算.【解答】解:∵3m•3n=3m+n=1,16.已知(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,则p+q的值=4.【考点】多项式乘多项式.【分析】根据多项式乘多项式的法则计算,然后根据不含x2项和x3项就是这两项的系数等于0列式,求出p和q的值,从而得出p+q.【解答】解:(x2+px+8)(x2﹣3x+q),=x4+(p﹣3)x3+(8﹣3p+q)x2+(pq﹣24)x+8q,∵(x2+px+8)(x2﹣3x+q)的展开式中不含x2项和x3项,∴,解得:,所以p+q=3+1=4.17.分解因式:a2﹣4b2=(a+2b)(a﹣2b).【考点】因式分解﹣运用公式法.【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).18.若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为1.【考点】因式分解的应用.【分析】由已知字母a、b的系数为2、﹣3,代数式中前二项的系数4、﹣6,提取此二项的公因式2a后,代入求值变形得﹣2a+3b,与已知条件互为相反数,可求出代数式的值为1.【解答】解:∵2a﹣3b=﹣1,∴4a2﹣6ab+3b=2a(2a﹣3b)+3b=2a×(﹣1)+3b=﹣2a+3b=﹣(2a﹣3b)=﹣(﹣1)=1三.解答题(共4小题)19.计算:(1)﹣b2×(﹣b)2×(﹣b3)(2)(2﹣y)3×(y﹣2)2×(y﹣2)5【考点】同底数幂的乘法.【分析】(1)直接利用同底数幂的乘法运算法则进而计算得出答案;(2)直接利用同底数幂的乘法运算法则进而计算得出答案.【解答】解:(1)﹣b2×(﹣b)2×(﹣b3)=b2×b2×b3=b7;(2)(2﹣y)3×(y﹣2)2×(y﹣2)5=﹣(y﹣2)3(y﹣2)7=﹣(y﹣2)10.20.如果x2+Ax+B=(x﹣3)(x+5),求3A﹣B的值.【考点】因式分解的意义.【分析】根据整式的乘法,可得相等的整式,根据相等整式中同类项的系数相等,可得答案.【解答】解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15.3A﹣B=3×2+15=21.21.下面是小华同学在笔记本上完成课堂练习的解题过程:(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣6xy+3y2﹣x2﹣2y2第一步=3x2﹣6xy+y2第二步小禹看到小华的做法后,对她说:“你做错了,在第一步运用公式时出现了错误,你好好查一下.”小华仔细检查后发现,小禹说的是正确的.解答下列问题:(1)请你用标记符号“”在以上小华解答过程的第一步中圈出所有错误之处;(2)请重新写出完成此题的解答过程.【考点】平方差公式;完全平方公式.【分析】根据完全平方公式以及平方差公式解答即可.【解答】解:(1)如图所示:(2)(2x﹣3y)2﹣(x﹣2y)(x+2y)=4x2﹣12xy+9y2﹣x2+4y2=3x2﹣12xy+13y2.22.已知a﹣b=1,a2+b2=13,求下列代数式的值:(1)ab;(2)a2﹣b2﹣8.【考点】完全平方公式.【分析】(1)由(a﹣b)2=a2+b2﹣2ab及已知条件可求得答案;(2)(a+b)2=a2+b2+2ab及已知条件可求得a+b的值,进而得出a2﹣b2﹣8的值即可.【解答】解:(1)∵a﹣b=1,∴(a﹣b)2=a2+b2﹣2ab=1,∵a2+b2=13,∴13﹣2ab=1,∴ab=6;(2)∵a2+b2=13,ab=6,∴(a+b)2=a2+b2+2ab=13+12=25,∴a+b=5或﹣5,∵a2﹣b2﹣8=(a+b)(a﹣b)﹣8,∴当a+b=5时,(a+b)(a﹣b)﹣8=﹣3;当a+b=﹣5时,(a+b)(a﹣b)﹣8=﹣5﹣8=﹣13.。

人教版八年级数学上册 整式的乘法与因式分解单元测试卷(解析版)

人教版八年级数学上册 整式的乘法与因式分解单元测试卷(解析版)

人教版八年级数学上册 整式的乘法与因式分解单元测试卷(解析版)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.在矩形ABCD 中,AD =3,AB =2,现将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.则S 1﹣S 2的值为( )A .-1B .b ﹣aC .-aD .﹣b【答案】D【解析】【分析】 利用面积的和差分别表示出S 1、S 2,然后利用整式的混合运算计算它们的差.【详解】∵1()()()(2)(2)(3)S AB a a CD b AD a a a b a =-+--=-+--2()()()2(3)()(2)S AB AD a a b AB a a a b a =-+--=-+--∴21S S -=(2)(2)(3)a a b a -+--2(3)()(2)a a b a -----32b b b =-+=-故选D.【点睛】本题考查了整式的混合运算,计算量比较大,注意不要出错,熟练掌握整式运算法则是解题关键.2.已知n 16221++是一个有理数的平方,则n 不能取以下各数中的哪一个( ) A .30B .32C .18-D .9【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n 的值,然后选择答案即可.【详解】2n 是乘积二倍项时,2n +216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n+216+1=2n+2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n+216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n可以取到的数是9、30、-18,不能取到的数是32.故选B.【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.3.已知4821可以被在0~10之间的两个整数整除,则这两个数是()A.1、3 B.3、5 C.6、8 D.7、9【答案】D【解析】248-1=(224+1)(224-1)= (224+1)(212+1)(212-1)= (224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)(26+1)(23+1) (23-1) , 23+1=9, 23-1=7,所以这两个数是7、9.故选D.点睛:平方差公式:a2-b2=(a+b)(a-b).4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是( )A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a2-2b(a-b)-b2=a2-2ab+b2=(a-b)2,∴(a-b)2=a2-2ab+b2.故选B5.已知4y2+my+9是完全平方式,则m为()A.6 B.±6 C.±12 D.12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m 的值即可.【详解】∵4y 2+my +9是完全平方式,∴m =±2×2×3=±12.故选:C .【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.6.若(x 2-x +m )(x -8)中不含x 的一次项,则m 的值为( )A .8B .-8C .0D .8或-8 【答案】B【解析】(x 2-x +m )(x -8)=322328889(8)8x x mx x x m x x m x m -+-+-=-++- 由于不含一次项,m+8=0,得m=-8.7.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.8.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++【答案】B【解析】【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.9.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0,∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.若6a b +=,7ab =,则-a b =( )A .±1B .C .2±D .±【答案】D【解析】【分析】由关系式(a-b )2=(a+b )2-4ab 可求出a-b 的值【详解】∵a+b=6,ab=7, (a-b )2=(a+b )2-4ab∴(a-b )2=8,∴a-b=±.故选:D .【点睛】考查了完全平方公式,解题关键是能灵活运用完全平方公式进行变形.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.因式分解:a 3-9ab 2=__________.【答案】a (a -3b )(a +3b )【解析】【分析】首先提取公因式a ,进而利用平方差公式分解因式得出即可.【详解】a 3-9ab 2=a (a 2-9b 2)=a (a-3b )(a+3b ).故答案为:a (a-3b )(a+3b ).【点睛】本题考查了提取公因式以及公式法分解因式,正确应用平方差公式是解题的关键.12.(1)已知32m a =,33n b =,则()()332243mn m n m a b a b a +-⋅⋅=______. (2)对于一切实数x ,等式()()212x px q x x -+=+-均成立,则24p q -的值为______.(3)已知多项式2223286x xy y x y +--+-可以分解为()()22x y m x y n ++-+的形式,则3211m n +-的值是______. (4)如果2310x x x +++=,则232016x x x x +++⋅⋅⋅+=______.【答案】(1)5-; (2)9; (3)78-; (4)0. 【解析】【分析】(1)根据积的乘方和幂的乘方,将32m a =整体代入即可;(2)将等式后面部分展开,即可求出p 、q 的值,代入即可;(3)根据多项式乘法法则求出()()22x y m x y n ++-+,即可得到关于m 、n 的方程组,解之即可求得m 、n 、的值,代入计算即可;(4)4个一组提取公因式,整体代入即可.【详解】(1)32m a =,33n a =,()()()()332222343333m n m n m m n m n a b a b a a b a b ∴+-⋅⋅=+-22232343125=+-⨯=+-=-(2)222x px q x x -+=--对一切实数x 均成立,1p ∴=,2q =-249p q ∴-=(3)()()222223286x y m x y n x xy y x y ++-+=+--+-,()()22222322223286x xy y m n x n m y mn x xy y x y ∴+-+++-+=+--+- 21,28,6,m n n m mn +=-⎧⎪∴-=⎨⎪=-⎩解得2,3.m n =-⎧⎨=⎩ 321718m n +∴=-- (4)2310x x x +++=,232016x x x x ∴+++⋅⋅⋅+()()2320132311x x x x x x x x =++++⋅⋅⋅++++000=+⋅⋅⋅+=故答案为: −5;9;78-;0. 【点睛】 本题主要考察幂的运算及整式的乘法,掌握其运算法则是关键.13.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.14.已知a m =3,a n =2,则a 2m ﹣n 的值为_____.【答案】4.5【解析】分析:首先根据幂的乘方的运算方法,求出a 2m 的值;然后根据同底数幂的除法的运算方法,求出a 2m-n 的值为多少即可.详解:∵a m =3,∴a 2m =32=9,∴a 2m-n =292m n a a ==4.5. 故答案为:4.5. 点睛:此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.15.因式分解:2()4()a a b a b ---=___.【答案】()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.16.分解因式:x 3y ﹣2x 2y+xy=______.【答案】xy (x ﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy (x 2-2x+1)=xy (x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.17.分解因式:4ax 2-ay 2=________________.【答案】a (2x+y )(2x-y )【解析】【分析】首先提取公因式a ,再利用平方差进行分解即可.【详解】原式=a (4x 2-y 2)=a (2x+y )(2x-y ),故答案为a (2x+y )(2x-y ).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.若(2x ﹣3)x+5=1,则x 的值为________.【答案】2或1或-5【解析】(1)当2x −3=1时,x=2,此时()2+543-=1,等式成立;(2)当2x −3=−1时,x=1,此时()1523+-=1,等式成立; (3)当x+5=0时,x=−5,此时()0103--=1,等式成立.综上所述,x 的值为:2,1或−5.故答案为2,1或−5.19.分解因式:32363a a a -+=_____.【答案】()231a a -【解析】【分析】先提取公因式3a ,再根据完全平方公式进行二次分解即可.【详解】 ()()232236332131a a a a a a a a -+=-+=-. 故答案为:()231a a -【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.【答案】a 2+2ab+b 2=(a+b )2【解析】试题分析:两个正方形的面积分别为a 2,b 2,两个长方形的面积都为ab ,组成的正方形的边长为a +b ,面积为(a +b )2,所以a 2+2ab +b 2=(a +b )2.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.。

人教版八年级数学上册《第十四章 整式的乘法与因式分解》测试卷-带参考答案

人教版八年级数学上册《第十四章 整式的乘法与因式分解》测试卷-带参考答案

人教版八年级数学上册《第十四章整式的乘法与因式分解》测试卷-带参考答案一、选择题1.化简(-x)3·(-x)2的结果正确的是()A.−x6B.x6C.x5D.−x52.计算(2x)3的结果是()A.2x3B.6x C.8x3D.6x33.若4m=a,8n=b则22m+6n的值是()A.ab2B.a+b2C.a2b3D.a2+b34.若(x−3)(x+5)=x2+px+q,则p为()A.-15 B.2 C.8 D.-25.若m>0,m x=3,m y=2则m x−3y的值为()A.32B.−32C.1 D.386.若a+b=3,ab=1则(a−b)2的值为()A.4 B.5 C.6 D.7 7.若x2+mx+n分解因式的结果是(x﹣2)(x+1),则m+n的值为()A.﹣3 B.3 C.1 D.﹣1 8.若a−b=3,ab=1则a3b−2a2b2+ab3的值为()A.3B.4C.9D.12二、填空题9.计算2x⋅5x2的结果等于.10.若10a=3,10b=5则10b−a=.11.若(a−2023)0=1,则a的取值范围是.12.因式分解:1−4m+4m2=.13.如果x2−2kx+16是一个完全平方式,则k=.三、解答题14.计算:(1)7m(4m2p)2÷7m2;(2)(15x2y-10xy2)÷5xy.15.分解因式:(1)x2−9;(2)2x2−20x+50.,b=﹣2.16.先化简,再求值:(2a+b)2﹣(2a+3b)(2a﹣3b),其中a=1217.两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2-2a=m,b2-2b=m,求a+b和m的值.18.阅读下列材料:常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如x2−4y2+2x−4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:(1)分解因式:9x2−9x+3y−y2;(2)已知△ABC的三边a、b、c满足a2−b2−ac+bc=0,判断△ABC的形状并说明理由.1.D2.C3.A4.B5.D6.B7.A8.C9.10x310.5311.a≠202312.(1−2m)213.±414.(1)解:7m(4m2p)2÷7m2=7m×16m4p2÷7m2=112m5p2÷7m2=16m3p2;(2)解:(15x2y-10xy2)÷5xy=15x2y÷5xy−10xy2÷5xy=3x−2y .15.(1)解:原式=(x+3)(x−3)(2)解:原式=2(x2−10x+25)=2(x−5)216.解:原式=4a2+4ab+b2﹣(4a2﹣9b2) =4a2+4ab+b2﹣4a2+9b2=4ab+10b2当a =12,b=﹣2时,原式=4 ×12×(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36.17.(1)解:∵a2+b2=5,ab=2∴(a+b)2=a2+2ab+b2=5+2×2=9∴a+b=±3(2)解:∵a2-2a=m,b2-2b=m∴a2-2a=b2-2b,a2-2a+b2-2b=2m∴a2-b2-2(a-b)=0∴(a-b)(a+b-2)=0∵a≠b∴a+b-2=0∵a2-2a+b2-2b=2m∴a2+b2-2(a+b)=2m∵a2+b2=5∴5-2×2=2m解得:m=12即a+b=2,m=1218.(1)解:9x2−9x+3y−y2=(9x2−y2)−(9x−3y)=(3x−y)(3x+y)−3(3x−y)=(3x−y)(3x+y−3)(2)解:依据分组分解法,得(a2−b2)−(ac−bc)=0(a−b)(a+b)−c(a−b)=0(a−b)(a+b−c)=0根据三角形三边关系,易得a+b−c>0∴a−b=0∴a=b∴△ABC为等腰三角形。

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章整式的乘法与因式分解一、单选题1.(2020八下·丹东期末)下列各式中从左到右的变形中,是因式分解的是()A. m(a+b+c)=ma+mb+mcB. x2+6x+36=(x+6)2C. a2−b2+1=(a+b)(a−b)+1D. 10x2−5x=5x(2x−1)2.(2020七下·汉中月考)计算(-2a)2-3a2的结果是()A. -a2B. a2C. -5a2D. 5a23.(2020·河北)对于① x−3xy=x(1−3y),② (x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4.(2020七下·株洲开学考)下面式子从左边到右边的变形中是因式分解的是()A. (x+1)2=x2+2x+1B. x2+3x−16=x(x+3)−16C. (x+1)(x−1)=x2−1D. x2−16=(x+4)(x−4)5.(2021七下·阜南期末)计算a•a5−(2a3)2的结果为()A. a6−2a5B. −a6C. a6−4a5D. −3a66.(2020七下·汉中月考)下列计算正确的是()A. x2+3x2=4x4B. x2y⋅2x3=2x4yC. (6x2y2)÷(3x)=2x2D. (−3x)2=9x27.(2020七下·越城期中)已知2a=3,8b=6,22a﹣3b+1的值为()A. 3B. 32C. 2D. 58.(2019八下·鼓楼期末)计算3×((2018−√20182−12×20192×3)2﹣2018×(2018−√20182−12×20192×3)+1的结果等于()A. ﹣2017B. ﹣2018C. ﹣2019D. 20199.(2020七下·滨湖期中)任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s⩽t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=p q.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=3 6=12,给出下列关于F(n)的说法:① F(2)=12;② F(48)=13;③ F(n2+n)=nn+1;④若n是一个完全平方数,则F(n)=1,其中正确说法的个数是()A. 4B. 3C. 2D. 110.(2019七下·丹阳期中)已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B. −12C. ﹣2 D. 12二、填空题11.(2020七下·泰兴期中)已知32×9m×27=321,求m=________.12.(2020七下·溧阳期末)(-2020)0=________.13.(2020·上虞模拟)因式分解:a²-9b²=________。

人教版八年级数学上册 整式的乘法与因式分解单元测试卷(含答案解析)

人教版八年级数学上册 整式的乘法与因式分解单元测试卷(含答案解析)

人教版八年级数学上册整式的乘法与因式分解单元测试卷(含答案解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.8【答案】C【解析】【分析】【详解】试题分析:根据题意可得A=(2-1)(2+1)(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216根据21=2;22=4;23=8;24=16;25=32;···因此可由16÷4=4,所以216的末位为6故选C点睛:此题是应用平方差公式进行计算的规律探索题,解题的关键是通过添加式子,使原式变化为平方差公式的形式;再根据2的n次幂的计算总结规律,从而可得到结果.2.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为()A.6 B.7 C.8 D.9【答案】C【解析】【分析】设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6a2,得出a2+4ab+4b2=(a+2b)2,再根据正方形的面积公式将a、b代入,即可得出答案.【详解】解:设2为a,3为b,则根据5张边长为2的正方形纸片的面积是5a2,4张边长分别为2、3的矩形纸片的面积是4ab,6张边长为3的正方形纸片的面积是6b2,∵a 2+4ab+4b 2=(a+2b )2,(b >a )∴拼成的正方形的边长最长可以为a+2b=2+6=8,故选C .【点睛】此题考查了完全平方公式的几何背景,关键是根据题意得出a 2+4ab+4b 2=(a+2b )2,用到的知识点是完全平方公式.3.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.【答案】A【解析】【分析】根据多项式相乘展开可计算出结果.【详解】 ()()1x m x +-=x 2+(m-1)x-m ,而计算结果不含x 项,则m-1=0,得m=1.【点睛】本题考查多项式相乘展开系数问题.4.若999999a =,990119b =,则下列结论正确是( ) A .a <bB .a b =C .a >bD .1ab =【答案】B【解析】 ()9999999909990909119991111===99999a b +⨯⨯==⨯, 故选B.【点睛】本题考查了有关幂的运算、幂的大小比较的方法,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.5.已知(x -2015)2+(x -2017)2=34,则(x -2016)2的值是( )A .4B .8C .12D .16【答案】D【解析】(x -2 015)2+(x -2 017)2=(x -2 016+1)2+(x -2 016-1)2=22(2016)2(2016)1(2016)2(2016)1x x x x -+-++---+=22(2016)2x -+=34∴2(2016)16x-=故选D.点睛:本题主要考查了完全平方公式的应用,把(x-2 015)2+(x-2 017)2化为 (x-2016+1)2+(x-2 016-1)2,利用完全平方公式展开,化简后即可求得(x-2 016)2的值,注意要把x-2016当作一个整体.6.若代数式x2+ax+64是一个完全平方式,则a的值是()A.-16 B.16 C.8 D.±16【答案】D【解析】试题分析:根据完全平方式的意义,首平方,尾平方,中间加减积的2倍,可知a=±2×8=16.故选:D点睛:此题主要考查了完全平方式的意义,解题关键是明确公式的特点,即:完全平方式分两种,一种是完全平方和公式,就是两个整式的和括号外的平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘法及因式分解 章节测试题考试时间:90分钟 满分:100分一、选择题(每小题3分,共24分) 1. 11()4-等于( )A . 14-B. -4 C . 4 D. 142. 计算232()x y xy ÷,结果是( )A. xy B. y C. x D . 2xy3. 下列式子计算正确的是( )A. 660a a ÷= B. 236(2)6a a -=-C. 222()2a b a ab b --=-+ D. 22()()a b a b a b ---+=- 4. 下列从左到右的变形,属于分解因式的是( )A. 2(3)(3)9a a a -+=- B. 25(1)5x x x x +-=+- C. 2(1)a a a a +=+ D. 32x y x x y =⋅⋅ 5. 把2288x y xy y -+分解因式, 正确的是( )A . 22(44)x y xy y -+ B. 22(44)y x x -+ C. 22(2)y x - D . 22(2)y x + 6. 下列各式能用平方差公式计算的是( )A . (2)(2)a b b a +- B. 11(1)(1)22x x -+-- C. ()(2)a b a b +- D. (21)(21)x x --+ 7. 若二项式241a ma ++是一个含a 的完全平方式,则m 等于( )A. 4 B. 4或-4 C . 2 D . 2或-2 8. 如图,两个正方形边长分,a b ,如果6a b ab +==,则阴影部分的面积为( )A. 6B. 9C. 12 D .18二、填空题(每小题2分,共20分)9. (1)计算:232a b ab ⨯= . (2)(-0. 25)11×(-4)12= .10. 世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0. 000 000 076克,用科学记数法表示是 克。

11. (1)若34,97xy==,则23x y +的值为 .(2)已知2530m n ++=,则432m n⨯的值为 . 12. (1)若1a b -=,则221()2a b ab +-= . (2)已知8,10a b ab +=-=,则2211a ab b -++= . 13. 计算()(21)x a x +-的结果中不含关于字母x 的一次项,则a = . 14. 3108与2144的大小关系是 . 15. 已知4s t +=,则228s t t -+= .16. 如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于,a b 的恒等式为 .17. 观察下列关于x 的单项式,探究其规律: 23456,3,5,7,9,11x x x x x x ,……按照上述规律,第2 016个单项式是 .18. 若多项式441x +加上一个含字母x 的单项式,就能变形为一个含x 的多项式的平方,则这样的单项式为 . 三、解答题(共56分) 19. (8分)计算.(1) 3201()20.256( 3.14)2π--⨯--+-;(2) 1020171()(2016)(1)2π-+---;(3) 0231(2016)()(3)2--++-;(4) 化简:2(23)(3)(3)x y y x x y --+-.20. (12分)将下列各式分解因式.(1) 21245x x -- ; (2) 32363x x x -+; (3) 29()4()a x y x y ---;(4) 32242x x x -+; (5) 268x y xy y -+-; (6) 22222()4x y x y +-.21. ( 3分)求代数式2(2)()2()a b a b a b +---的值,其中11,3a b =-=-.22. ( 3分)先化简,再求值: 2(2)(2)3(2)x y x y x y +-+-,其中1,2x y ==-.23. ( 6分)(1)先化简,再求值: (1)(3)4(1)3(1)(1)x x x x x x ---+++-,其中116x =.(2)已知1739273m m m+⨯⨯=,求: 2332()()m m m -÷⋅的值.24. ( 4分)已知25,1x y xy +==.求下列各式的值. (1) 2224x y xy +;(2) 22(2)(21)x y --.25. ( 6分)设22221231,53a a =-=-,……,22(21)(21)n a n n =+--. (n 为正整数)(1)试说明n a 是8的倍数;(2)若ABC ∆的三条边长分别为12,,k k k a a a ++ (k 为正整数). ①求k 的取值范围;②是否存在这样的k ,使得ABC ∆的周长为一个完全平方数,若存在,试举出一例;若不存在,说明理由.26. (7分)(1)猜想:试猜想22a b +与2ab 的大小关系,并说明理由;(2)应用:已知15(0)x x x -=≠,求221x x +的值 (3)拓展:代数式221x x+是否存在最大值或最小值,若不存在,请说明理由;若存在,请求出最小值.27. ( 7分)一个直角三角形的两条直角边分别为,()a b b a >,斜边为c .我国古代数学家赵爽用四个这样的直角三角形拼成了如图的正方形,(1)探究活动:如图①,中间围成的小正方形的边长为 (用含有,a b 的代数式表示);(2)探究活动:如图①,用不同的方法表示这个大正方形的面积,并写出你发现的结论:(3)新知运用:根据你所发现的结论完成下列问题.①某个直角三角形的两条直角边,a b 满足式子222616410a b a b +--+=,求它的斜边c 的值;②如图②,这个勾股树图形是由正方形和直角三角形组成的,若正方形,,,A B C D 的面积分别为2,3,1,2.则最大的正方形E 的面积是 .参考答案一、1. C 2. B 3. D 4. C5. C 6. B 7. B 8. B 二、9. (1)326a b (2)4- 10. 87.610-⨯11. (1)28 (2) 1812. (1)12(2)45 13. 1214. 10814432>15. 1616. 22()()a b a b a b -=+- 17. 20164031x18. 24x ±或84x三、19. (1) 2 (2)4(3)22- (4)2251210x xy y --+20. (1)(15)(3)x x -+ (2)23(1)x x -(3) ()(32)(32)x y a a -+- (4)22(1)x x - (5)(2)(4)y x x --- (6)22()()x y x y -+ 21. 原式222222(2)a ab b a ab b =----+22222242)a ab b a ab b =---+-233ab b =-当1a =-,13b =-时, 原式21123(1)()3()333=⨯-⨯---=22. 原式222243(44)x y x xy y =-+-+2222412123x y x xy y =-+-+ 2216122x xy y =-+当1x =,2y =-时,原式22161121(2)2(2)=⨯-⨯⨯-+⨯-1624848=++=23. (1)原式222434433x x x x x =-+--+- 8x =-当116x =时,原式118162=-⨯=- (2)因为1739273mmm+⨯⨯=所以511733m m ++=所以5117m m +=+ 所以4m =233265()()4m m m m m m -÷=-÷=-=-24. (1)原式2(2)10xy x y =+=(2)原式2222242x y x y =--+2222(2)4217x y x y xy =-+++=-25. (1)因为22(21)(21)n a n n =+--(2121)(2121)428n n n n n n =++-+-+==n 为正整数,所以n a 是8的倍数.(2)①由题意,得12k k k a a a +++>,即888(1)8(2)k k k ++>+ 解得1k >. ②ABC 的周长为88(1)8(2)24(1)k k k k ++++=+46(1)k =⨯+,故存在这样的k ,使得ABC 的周长为一个完全平方数,如5k =.26. (1)因为2222()0a b ab a b +-=-≥,所以222a b ab +≥(2) 222211()25227x x x x +=-+=+= (3)因22211()22x x x x +=-+≥,当1x x =时,221x x+取得最小值2,此时1x =或1x =-27. (1)b a -(2)大正方形的面积为2c 或22214()2ab b a a b ⨯+-=+.结论:222a b c +=. (3)①由题意,得22(3)2(4)0a b -+-=,故3a =,4b =,故22225c a b =+=,5c =②8。

相关文档
最新文档