...间7.2.4.1线性回归方程方差的估计回归系数的置信区间(PPT)
合集下载
线性回归分析教程ppt
04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。
线性回归分析PPT
分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。
《线性回归方程》课件
线性回归方程的假设
线性关系
自变量和因变量之间存在线性关系,即它们 之间的关系可以用一条直线来描述。
无异方差性
误差项的方差在所有观测值中保持恒定,没 有系统的变化。
无多重共线性
自变量之间不存在多重共线性,即它们之间 没有高度的相关性。
无自相关
误差项在不同观测值之间是独立的,没有相 关性。
02
线性回归方程的建立
详细描述
在销售预测中,线性回归方程可以用来分析历史销售数据,并找出影响销售的关键因素。通过建立线性回归模型 ,可以预测未来的销售趋势,为企业的生产和营销策略提供依据。
案例二:股票价格预测
总结词
线性回归方程在股票价格预测中具有一定的 应用价值,通过分析历史股票价ቤተ መጻሕፍቲ ባይዱ和影响股 票价格的因素,可以预测未来的股票价格走 势。
04
线性回归方程的应用
预测新数据
1 2
预测新数据
线性回归方程可以用来预测新数据,通过将自变 量代入方程,可以计算出对应的因变量的预测值 。
预测趋势
通过分析历史数据,线性回归方程可以预测未来 的趋势,帮助决策者制定相应的策略。
3
预测异常值
线性回归方程还可以用于检测异常值,通过观察 偏离预测值的点,可以发现可能的数据错误或异 常情况。
确定自变量和因变量
确定自变量
自变量是影响因变量的因素,通 常在研究问题中是可控制的变量 。在建立线性回归方程时,首先 需要确定自变量。
确定因变量
因变量是受自变量影响的变量, 通常是我们关心的结果或目标。 在建立线性回归方程时,需要明 确因变量的定义和测量方式。
收集数据
数据来源
确定数据来源,包括调查、实验、公开数据等,确保数据质量和可靠性。
统计学10.线性回归分析PPT课件
-973 1314090 1822500 947508
-929 975870 1102500 863784
-445 334050 562500 198381
-412 185580 202500 170074
-159 23910 22500 25408
28 4140 22500
762
402 180720 202500 161283
y ˆ 3.8 82 1 .5 3x 2 4 1 0 1 .02 x 228
2. 多重判定系数R2= 0.9373;调整后的R2= 0.9194 3. 回归方程的显著性检验
▪ F = 52.3498 F>F0.05(2,7)=4.74,回归方程显著
1520
9
35.1
28.2
1620
10
34.5
26.9
1570
一个二元线性回归的例子
(Excel 输出的结果)
SUMMARY OUTPUT
回归统计
Multiple R
0.968159025
R Square
0.937331897
Adjusted R Square 0.919426725
标准误差
2.010050279
且与 X 无关, 它反映了 Y 被 X 解释的不确定性。
如果随机干扰项 u 的均值为 0, 对上式求条件均值, 有
E(YX)12X
反映出从“平均”角度看,是确定性关系。
例:地区的多孩率与人均国民收入的散点图如下:
多 孩 率 Y
人均收入X
这两个变量之间的不确定关系,大致可以用下式表示:
Y12Ln X u
观测值
10
方差分析
《线性回归》PPT课件_OK
6
7
8
读取数据
• 在R环境下将数据读入系统并显示,使用如下语句:
9
数据的概括性度量
• R语句:
10
变量间相关性分析
• R语句:
11
• R语句: plot(a1$ROEt,a1$ROE)
12
模型的建立
模型、假设和参数估计
13
模型形式及假设
• 线性回归模型
y • i模 型假0 设 1 x i1 2 x i2 p x i pi
异方差性、非正态性、异常值
24
同方差性检验
25
同方差性检验
26
同方差性检验
27
同方差性检验
28
正态性检验
• 若t ~N(,2), 并且
• 则有 Pt q
Ptq
29
正态性检验
• 进一步可以得到
• 以及
q
z,
q z. • 所以在正态性假设下,残差 与 应该成线性关系。
t z
30
正态性检验
Ttnp1,1/2
21
22
显著性检验的结论
• 从F检验的结果看,模型的线性关系是显著的。 • 从T检验的结果看,ROEt和LEV两个变量通过了检验,GROWTH变量在
显著性水平降至0.1时也可以通过检验,因此这三个变量与因变量的线性 关系较为显著。
• 注意,这不说明应该删除其它变量!
23
模型的诊断
反映公司利润状况
• GROWTH: 主营业务增长率(sales growth rate)
反映公司已实现的当年增长率
• INV: 存货/资产总计(inventory to asset ratio)
反映公司的存货状况
7
8
读取数据
• 在R环境下将数据读入系统并显示,使用如下语句:
9
数据的概括性度量
• R语句:
10
变量间相关性分析
• R语句:
11
• R语句: plot(a1$ROEt,a1$ROE)
12
模型的建立
模型、假设和参数估计
13
模型形式及假设
• 线性回归模型
y • i模 型假0 设 1 x i1 2 x i2 p x i pi
异方差性、非正态性、异常值
24
同方差性检验
25
同方差性检验
26
同方差性检验
27
同方差性检验
28
正态性检验
• 若t ~N(,2), 并且
• 则有 Pt q
Ptq
29
正态性检验
• 进一步可以得到
• 以及
q
z,
q z. • 所以在正态性假设下,残差 与 应该成线性关系。
t z
30
正态性检验
Ttnp1,1/2
21
22
显著性检验的结论
• 从F检验的结果看,模型的线性关系是显著的。 • 从T检验的结果看,ROEt和LEV两个变量通过了检验,GROWTH变量在
显著性水平降至0.1时也可以通过检验,因此这三个变量与因变量的线性 关系较为显著。
• 注意,这不说明应该删除其它变量!
23
模型的诊断
反映公司利润状况
• GROWTH: 主营业务增长率(sales growth rate)
反映公司已实现的当年增长率
• INV: 存货/资产总计(inventory to asset ratio)
反映公司的存货状况
线性回归模型参数估计.ppt
3、有效性(最小方差性),即在所有线性无偏估计量
中,最小二乘估计量ˆ0 、 ˆ1 具有最小方差。
(1)先求ˆ0 与ˆ1 的方差
var(ˆ1) var( kiYi )
k
2 i
var( 0
1X i
i
)
k
2 i
var(i
)
xi xi2
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。
估计方法有多种,其种最广泛使用的是普通 最小二乘法(ordinary least squares, OLS)。
ˆ1
xi yi 5769300 0.777 xi2 7425000
ˆ0 Y ˆ0 X 1567 0.777 2150 103 .172 因此,由该样本估计的回归方程为:
Yˆi 103.172 0.777Xi
三、最小二乘估计量的性质
当模型参数估计出后,需考虑参数估计值的 精度,即是否能代表总体参数的真值,或者说需 考察参数估计量的统计性质。
上次课程回顾
一、变量间的关系及回归分析的基本概念
二、总体回归函数 三、随机扰动项 四、样本回归函数(SRF)
一、变量间的关系及回归分析的基本概念 1、变量间的关系
2、回归分析的基本概念
回归分析(regression analysis)是研究一个变量关于另一 个(些)变量的具体依赖关系的计算方法和理论。
ˆ1 的样本方差:
线性回归分析ppt课件
21
多元回归分析中的其他问题 u变量筛选问题 Ø向前筛选策略
解释变量不断进入回归方程的过程,首先选择与被解释变量具有最高 线性相关系数的变量进入方程,并进行各种检验;其次在剩余的变量中挑 选与解释变量偏相关系数最高并通过检验的变量进入回归方程。 Ø向后筛选策略
变量不断剔除出回归方程的过程,首先所有变量全部引入回归方程并 检验,然后在回归系数显著性检验不显著的一个或多个变量中,剔除t检验 值最小的变量。 Ø逐步筛选策略
合准则。
最小二乘法将偏差距离定义为离差平方和,即
n
Q( 0, 1, p) ( yi E( yi ))2
i 1
最小二乘估计就是寻找参数β0
、β1、…
βp的估计
值β̂0 、β ̂1、… β ̂p,使式(1)达到极小。通过
求极值原理(偏导为零)和解方程组,可求得估计值,
SPSS将自动完成。
每个解释变量进 入方程后引起的 判定系数的变化 量和F值的变化 量(偏F统计量)
输出个解释变量 和被解释变量的 均值、标准差、 相关系数矩阵及 单侧检验概率值
输出判定系数、 调整的判定系数、 回归方程的标准 误、回归方程显 著性检验的方差 分析表
输出方程中各解 释变量与被解释 变量之间的简单 相关、偏相关系 数和部分相关
30
n回归分析的其他操作
Ø选项
DW值
输出标准化残差 绝对值大于等于 3(默认)的样 本数据的相关信 息
多重共线性分 析: 输出各解释变 量的容忍度、 方差膨胀因子、
特征值、条件 指标、方差 比例等
31
n回归分析的其他操作
Ø选项
•标准化预测值 •标准化残差 •剔除残差 •调整的预测值 •学生化残差 •剔除学生化残差
线性回归计算方法及公式PPT课件
公式
(y = ax + b)
解释
其中(y)是因变量,(a)是斜率,(x)是自变量,(b)是截距。
实例二:多元线性回归分析
总结词
多个自变量的线性关系
详细描述
多元线性回归分析研究因变量与多个自变量之间的线性关 系。通过引入多个自变量,可以更全面地描述因变量的变 化规律。
公式
(y = a_1x_1 + a_2x_2 + ... + a_nx_n + b)
加权最小二乘法的公式
加权最小二乘法的公式是:(ŷ=β₀+β₁x₁+β₂x₂+...+βₙxₙ)其中,(w_i)是加权因 子,用于对不同观测值赋予不同的权重。
加权最小二乘法适用于数据存在异方差性的情况,通过给不同观测值赋予不同的 权重,能够更好地拟合数据。
主成分回归的公式
主成分回归的公式是:(ŷ=β₀+β₁z₁+β₂z₂+...+βₙzₙ)其中, (z_i)是主成分得分,通过对原始自变量进行线性变换得到。
误差项独立同分布
误差项被假设是相互独立的,并且具有相 同的分布(通常是正态分布)。
误差项无系统偏差
自变量无多重共线性
误差项被假设没有系统偏差,即它们不随 着自变量或因变量的值而变化。
自变量之间被假设没有多重共线性,即它 们是独立的或相关性很低。
02
线性回归模型
模型建立
确定因变量和自变量
首先需要确定研究的因变量和自变量, 以便建立线性回归模型。
以提供更稳定和准确的估 计。
(y = (X^T X + lambda I)^{1}X^T y)
其中(y)是因变量,(X)是自变量 矩阵,(lambda)是正则化参数
(y = ax + b)
解释
其中(y)是因变量,(a)是斜率,(x)是自变量,(b)是截距。
实例二:多元线性回归分析
总结词
多个自变量的线性关系
详细描述
多元线性回归分析研究因变量与多个自变量之间的线性关 系。通过引入多个自变量,可以更全面地描述因变量的变 化规律。
公式
(y = a_1x_1 + a_2x_2 + ... + a_nx_n + b)
加权最小二乘法的公式
加权最小二乘法的公式是:(ŷ=β₀+β₁x₁+β₂x₂+...+βₙxₙ)其中,(w_i)是加权因 子,用于对不同观测值赋予不同的权重。
加权最小二乘法适用于数据存在异方差性的情况,通过给不同观测值赋予不同的 权重,能够更好地拟合数据。
主成分回归的公式
主成分回归的公式是:(ŷ=β₀+β₁z₁+β₂z₂+...+βₙzₙ)其中, (z_i)是主成分得分,通过对原始自变量进行线性变换得到。
误差项独立同分布
误差项被假设是相互独立的,并且具有相 同的分布(通常是正态分布)。
误差项无系统偏差
自变量无多重共线性
误差项被假设没有系统偏差,即它们不随 着自变量或因变量的值而变化。
自变量之间被假设没有多重共线性,即它 们是独立的或相关性很低。
02
线性回归模型
模型建立
确定因变量和自变量
首先需要确定研究的因变量和自变量, 以便建立线性回归模型。
以提供更稳定和准确的估 计。
(y = (X^T X + lambda I)^{1}X^T y)
其中(y)是因变量,(X)是自变量 矩阵,(lambda)是正则化参数
线性回归ppt课件
用来检验误差项之间是否存在序列相关。
d的值域为[0,4],在误差不存在序列相关时,d值应该在2左 右。d值小于2时意味着相邻的误差之间存在正相关;d值大于2 意味着相邻的误差存在负相关。
不一定只有时间序列数据才存在序列相关问题,各自独立的 变量之间出现序列相关的原因:
第六节 统计软件在线性回归分析中的应用
SPSS软件
模型设置、统计量选择、检验图形设置 分析结果的解释
STATA软件
各种设置的命令 分析结果的解释
SPSS图形的检验功能
检验误差项是否呈正态分布(Histogram of *zresid):
做法:以回归方程的标准化误差为横坐标,以标准化误差 的频数为纵坐标,并提供正态分布参照线 ;
当多重共线性发生时,方程的回归系数不可靠。
注意:
多重共线性指的是自变量之间的线性相关,当自变量 之间为非线性相关时,不一定产生严重的多重共线性 问题 。
多重共线性的检验
多重共线性的存在依据:
方程的确定系数很高,且y与各自变量的相关系数 也很高,但自变量的回归系数均不显著;
多个自变量的情形,某一自变量可被其他变量线 性表达出来;
回归方程预测值与误差项的关系图(散点图):
做法:
以回归方程标准化预测值为横坐标,以标准化误差为纵坐标。
作用:
线性关系的检查:若实际数据中变量间真为线性关系,该散点 图无明显趋势;
均方差性的检查:若均方差性存在,横轴各点上散点的纵向分 布宽度应该相等;
特异值的检查:若存在超出正负2区间的标准化误差值,便可 认为是特异值。
condition indexes)。
多重共线性的检验
检验指标及其计算
d的值域为[0,4],在误差不存在序列相关时,d值应该在2左 右。d值小于2时意味着相邻的误差之间存在正相关;d值大于2 意味着相邻的误差存在负相关。
不一定只有时间序列数据才存在序列相关问题,各自独立的 变量之间出现序列相关的原因:
第六节 统计软件在线性回归分析中的应用
SPSS软件
模型设置、统计量选择、检验图形设置 分析结果的解释
STATA软件
各种设置的命令 分析结果的解释
SPSS图形的检验功能
检验误差项是否呈正态分布(Histogram of *zresid):
做法:以回归方程的标准化误差为横坐标,以标准化误差 的频数为纵坐标,并提供正态分布参照线 ;
当多重共线性发生时,方程的回归系数不可靠。
注意:
多重共线性指的是自变量之间的线性相关,当自变量 之间为非线性相关时,不一定产生严重的多重共线性 问题 。
多重共线性的检验
多重共线性的存在依据:
方程的确定系数很高,且y与各自变量的相关系数 也很高,但自变量的回归系数均不显著;
多个自变量的情形,某一自变量可被其他变量线 性表达出来;
回归方程预测值与误差项的关系图(散点图):
做法:
以回归方程标准化预测值为横坐标,以标准化误差为纵坐标。
作用:
线性关系的检查:若实际数据中变量间真为线性关系,该散点 图无明显趋势;
均方差性的检查:若均方差性存在,横轴各点上散点的纵向分 布宽度应该相等;
特异值的检查:若存在超出正负2区间的标准化误差值,便可 认为是特异值。
condition indexes)。
多重共线性的检验
检验指标及其计算
《线性回归》课件
无多重共线性
自变量之间没有高度相关,即 它们是独立的。
误差项的独立性
误差项(实际观测值与回归线 预测值之间的差异)是独立的 ,且服从同一分布。
线性关系
因变量和自变量之间存在线性 关系,即它们之间的关系可以 用一条直线来描述。
无异常值或离群点
数据集中没有极端或不寻常的 值,这些值可能会对回归线的 拟合产生不利影响。
04
CHAPTER
线性回归的预测与决策
预测
01
02
03
预测未来趋势
线性回归模型可以用来预 测因变量的未来趋势,基 于自变量和因变量之间的 线性关系。
预测响应变量
通过输入已知的自变量值 ,可以预测出对应的因变 量值。
预测误差
预测结果会受到模型误差 和观测误差的影响,因此 在实际应用中需要考虑这 些误差的影响。
实例二:销售预测
总结词
销售预测是线性回归在商业领域的重要应用,通过对历史销售数据进行分析,可 以预测未来的销售趋势。
详细描述
在销售预测中,线性回归模型可以用于分析历史销售数据,如销售额、销售量、 客户数量等,以预测未来的销售趋势。这种预测可以帮助企业制定生产和销售计 划,提高经营效率。
实例三:医学数据分析
总结词
医学数据分析是线性回归在医疗领域的应用,通过对疾病发 病率、死亡率等数据进行分析,可以预测未来的健康趋势。
详细描述
在医学数据分析中,线性回归模型可以用于分析疾病发病率 、死亡率、治愈率等数据,以预测未来的健康趋势。这种预 测可以帮助医疗机构制定预防和治疗方案,提高医疗服务的 质量和效率。
THANKS
同方差性检验
同方差性检验
用于检验回归模型的残差是否具有相同的方差,即方差齐 性。同方差性是线性回归模型的基本假设之一。
自变量之间没有高度相关,即 它们是独立的。
误差项的独立性
误差项(实际观测值与回归线 预测值之间的差异)是独立的 ,且服从同一分布。
线性关系
因变量和自变量之间存在线性 关系,即它们之间的关系可以 用一条直线来描述。
无异常值或离群点
数据集中没有极端或不寻常的 值,这些值可能会对回归线的 拟合产生不利影响。
04
CHAPTER
线性回归的预测与决策
预测
01
02
03
预测未来趋势
线性回归模型可以用来预 测因变量的未来趋势,基 于自变量和因变量之间的 线性关系。
预测响应变量
通过输入已知的自变量值 ,可以预测出对应的因变 量值。
预测误差
预测结果会受到模型误差 和观测误差的影响,因此 在实际应用中需要考虑这 些误差的影响。
实例二:销售预测
总结词
销售预测是线性回归在商业领域的重要应用,通过对历史销售数据进行分析,可 以预测未来的销售趋势。
详细描述
在销售预测中,线性回归模型可以用于分析历史销售数据,如销售额、销售量、 客户数量等,以预测未来的销售趋势。这种预测可以帮助企业制定生产和销售计 划,提高经营效率。
实例三:医学数据分析
总结词
医学数据分析是线性回归在医疗领域的应用,通过对疾病发 病率、死亡率等数据进行分析,可以预测未来的健康趋势。
详细描述
在医学数据分析中,线性回归模型可以用于分析疾病发病率 、死亡率、治愈率等数据,以预测未来的健康趋势。这种预 测可以帮助医疗机构制定预防和治疗方案,提高医疗服务的 质量和效率。
THANKS
同方差性检验
同方差性检验
用于检验回归模型的残差是否具有相同的方差,即方差齐 性。同方差性是线性回归模型的基本假设之一。
线性回归分析与方差分析.ppt
下面说明这一检验的方法.
若假设Y=a+bx+ 符合实际,则b不应为零 因为如果b=0,则Y=a+ 意味着Y与x无关
所以Y=a+bx是否合理,归结为对假设:
H0: b=0 H1 : b 0
进行检验
下面介绍检验假设H0的二种常用方法.
1.t检验法
若H0成立,即b=0,由定理7.1知,
bˆ
~ N (0,1)
yˆ0 aˆ bˆx0
作为y0的预测值.可以证明
T
y0 yˆ0
~ t(n 2)
n ˆ
n2
1 1 n
(x0 x)2
n
(xi x)2
i1
从而可得
P | T | t (n 2) 1
2
所以,给定置信概率 1 ,Y0的置信区间为
( y0 (x0 ), y0 (x0 ))
其中
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+
若假设Y=a+bx+ 符合实际,则b不应为零 因为如果b=0,则Y=a+ 意味着Y与x无关
所以Y=a+bx是否合理,归结为对假设:
H0: b=0 H1 : b 0
进行检验
下面介绍检验假设H0的二种常用方法.
1.t检验法
若H0成立,即b=0,由定理7.1知,
bˆ
~ N (0,1)
yˆ0 aˆ bˆx0
作为y0的预测值.可以证明
T
y0 yˆ0
~ t(n 2)
n ˆ
n2
1 1 n
(x0 x)2
n
(xi x)2
i1
从而可得
P | T | t (n 2) 1
2
所以,给定置信概率 1 ,Y0的置信区间为
( y0 (x0 ), y0 (x0 ))
其中
第九章 线性回归分析与方差分析
第一节 一元线性回归分析 第二节 可线性化的非线性回归 第三节 多元线性回归简介 第四节 方差分析
第一节 一元线性回归分析
在许多实际问题中,我们常常需要研究多 个变量之间的相互关系。 一般来说,变量之间的关系可分为两类: 一类是确定性关系,确定性关系是指变量之间的关 系可以用函数关系来表达,例如电流I电压V电 阻R之间有关系式V=IR。 另一类是非确定性关系,有些变量之间的关系是非 确定性的关系,这种关系无法用一个精确的函数 式来表示。
直线附近.但各点不完全在一条直线上,这是由于Y
还受到其他一些随机因素的影响.
这样,Y可以看成是由两部分叠加而成,一部
分是x的线性函数a+bx,另一部分是随机因素引起的
误差 ,即
y
Y=a+bx+
Spss线性回归分析讲稿ppt课件
绘制各自变量与因变量之间的关系散点图,观
察其与因变量之间是否具有线性关系。然后,
将自变量进行组合,生成若干自变量的子集,再
针对每一个自变量的子集生成回归分析报告。
比较调整后的R2值,挑选最优的自变量子集,
生成回归分析模型。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
①一元线性回归:y=a+bx (有一个自变量)
②多元线性回归:
(有两个或两个以上的自变量)
(2)按回归曲线的形态分
①线性(直线)回归
②非线性(曲线)回归
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
回归分析
(二)回归分析的主要内容
即销售量的95%以上的变动都可以被该模型所解释,拟和优度较高。
表3
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归分析
表4给出了回归模型的方差分析表,可以看到,F统计量为
734.627,对应的p值为0,所以,拒绝模型整体不显著的
图1
奖金-销售量表
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归
以奖金-销售量表图1做回归分析
2、绘制散点图
打开数据文件,选择【图形】-【旧对话框】-【散点/点状】
图2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
察其与因变量之间是否具有线性关系。然后,
将自变量进行组合,生成若干自变量的子集,再
针对每一个自变量的子集生成回归分析报告。
比较调整后的R2值,挑选最优的自变量子集,
生成回归分析模型。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
①一元线性回归:y=a+bx (有一个自变量)
②多元线性回归:
(有两个或两个以上的自变量)
(2)按回归曲线的形态分
①线性(直线)回归
②非线性(曲线)回归
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
回归分析
(二)回归分析的主要内容
即销售量的95%以上的变动都可以被该模型所解释,拟和优度较高。
表3
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归分析
表4给出了回归模型的方差分析表,可以看到,F统计量为
734.627,对应的p值为0,所以,拒绝模型整体不显著的
图1
奖金-销售量表
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
一元线性回归
以奖金-销售量表图1做回归分析
2、绘制散点图
打开数据文件,选择【图形】-【旧对话框】-【散点/点状】
图2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
线性回归计算方法及公式 ppt课件
ppt课件
26
logistic回归模型参数的意义
优势比(odds ratio, OR):暴露人群发病优势与非暴露 人群发病优势之比。
P(1) / [1-p(1)] OR= ——————— P(0) / [1-p(0)]
Ln(oR)=logit[p(1)]-logit[p(0)]=(B0+B×1) -(B0+B×0)=B 可见 B 是暴露剂量增加一个单位所引起的对数优势的增 量,或单位暴露剂量与零剂量死亡优势比的对数。eB就 是两剂量死亡优势比。常数项B0是所有变量 X等于零时 事件发生优势的对数。
30
回归模型中自变量的筛选
和多元线性回归分析一样,在Logistic回 归分析中也须对自变量进行筛选。方法 和多元线性回归中采用的方法一样,有 向后剔除法、向前引入法及逐步筛选法 三种。筛选自变量的方法有wald检验、 Score test、likelihood ratio test(wald chisquare test)三种。
ppt课件
1
多元线性回归
• 多元线性回归是简单线性回归的直接推广,其包含一 个因变量和二个或二个以上的自变量。
• 简单线性回归是研究一个因变量(Y)和一个自变量 (X)之间数量上相互依存的线性关系。而多元线性回 归是研究一个因变量(Y)和多个自变量(Xi)之间数 量上相互依存的线性关系。 • 简单线性回归的大部分内容可用于多元回归,因其基 本概念是一样的。
H0:K个自变 量为好 H1:K+1个自变量为好
ppt课件 15
• 向前引入法(forward selection) 自变量由少到多一个一个引入回归方程。 将 corr(y , xj)最大而又能拒绝H0者,最 先引入方程,余此类推。至不能再拒绝 H0为止。
线性回归模型PPT课件
(2)
Var(u
i
)
σ
2 u
i 1,2,,n
等方差性
(3)Cov(ui,u j ) 0 (4) Cov(ui,X i ) 0
i j,i,j 1,2,,n i 1,2,,n
无序列相关
进一步假定
u~N(
0,σ
2 u
)
6
1 回归模型的一般描述
五、回归分析预测的一般步骤
1. 以预测对象为因变量建立回归模型; 2. 利用样本数据对模型的参数进行估计; 3. 对参数的估计值及回归方程进行显著性检验; 4. 利用通过检验的方程进行预测。
σ 2(e0 )
σ u2 [1
1 n
(x0 (xi
x)2 -x)2
]
3. 给定置信水平1 ,置信区间为 ( yˆ tα σˆ(e ),yˆ tα σˆ(e, ))其中, 是自t由α 度为年n-2的t分布临界值,
ˆ (e0 ) ˆu
1 1 n
解:使用Excel实现回归
b
(yi
y)(xi (xi x)
x)
.
b y βˆx .
于是所求的方程为 yˆi 138.3480 6.9712 xi
这说明,该厂电的供应量每增加一 万度,年产值增加6.9712万元。
产值(万元)Y 213 242 286 305 306 342 351 373 379 377 384 395 387 402 418
1. 定义:假定Y与X的回归方程为 yˆi bo bxi ,对于给定的 自变量 X x,0 求得 yˆ0 bo bx0 ,称这种预测为点预测。
完整的计量经济学 计量经济学第五章 线性回归的PPT课件
被忽略的因素对被解释变量的影响,会从 误差项中表现出来,导致误差不再是纯粹 的随的变量关系为
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
X 若采用变量关系 E () ( 0 0 ) ( 1 1 )X 1 0 (2 2 )X 2 3 X 3
Y 0 1 X 1 2 X 2
Y Y
或
D 1i
0,当 i是男性时 1,当 i是女性时
38
对于截面数据计量分析的例子
对于截面数据计量分析中,观测对象特征差异导致的规律 性扰动,也可以利用虚拟变量加以处理。
如观测对象的性别是一个影响因素,解决的办法就是在模 型中引进虚拟变量,即
D1,D2,D3和D4,
这个虚拟变量就能解决由于观测对象的性别因素所导 致的误差项均值非0问题。
非线性变量关系的残差序列图
e
i
8
(三)问题的处理和非线性回归
1、模型修正和变换 恢复模型的合理非线性形式 然后再变换成线性模型
9
泰勒级数展开法
2、泰勒级数展开法 假设一个非线性的变量关系为:
Y f X 1 , ,X K ;1 P
在 处对 B 0b 1,0 ,b P 0 β1, ,P 作泰勒级数展开:
第五章 线性回归的定式偏差
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
线性回归的定式偏差
本章讨论变量关系非线性、存在异常值、 规律性扰动和解释变量缺落等导致的线性 回归模型前两条假设不成立的定式偏差, 包括它们对线性回归分析的影响、判断和 处理的方法等。
1 0 2 0
1 1 X 2 1 X
1 2
数理统计-线性回归 ppt课件
PPT课件
3
2.统计相关关系:变量之间存在某种关系, 但变量Y并不是由变量X唯一确定的,它们 之间没有严格的一一对应关系。两个变量 间的这种关系就是统计关系,亦称相关关 系。例如:小麦的产量Y与施肥量x1,品种x2 等存在关系,但给定x1,x2的数值后Y的值还 是无法确定的.
两个变量之间若存在线性关系称为线性 相关,存在非线性关系称为曲线相关,通常 通过适当的变量变换,曲线相关可转换为 线性相关。
PPT课件
9
x=100:10:190;y=[45,51,54,61,66,70,74,78,85,89]; plot(x,y,'.r')
观察散点图, ( x)具有线性函数a bx的形式.
PPT课件
10
2.建立回归模型
( x) a bx 一元线性回归问题 假设对于x的每一个值有Y~N (a bx, 2 ),a,
yˆ aˆ bˆx Y 关于 x 的经验回归方程
由于aˆ y bˆx,
回归方程 回归直线
yˆ y bˆ( x x),
回归直线通过散点图的几何中心( x, y).
PPT课件
15
n
n
记 lxx ( xi x)2 , l yy ( yi y)2 ,
i 1
C1
(x2 )
C2
考察Y的数学期望E(Y ).x1
x2
x
E(Y ) Y x ( x) Y关于x的回归函数
PPT课件
7
问题的一般提法
对 x 的一组不完全相同的值x1, x2 ,, xn , 设 Y1, Y2 ,,Yn 分别是在 x1, x2 ,, xn 处对 Y 的独立 观察结果.
估计的回归方程PPT课件
相关系数的显著性检验
第33页/共108页
相关系数的显著性检验
( r 的抽样分布)
1. r 的抽样分布随总体相关系数和样本容量的大
小而变化
• 当样本数据来自正态总体时,随着n的增大,r 的抽样 分布趋于正态分布,尤其是在总体相关系数很小或接 近0时,趋于正态分布的趋势非常明显。而当远离0时, 除非n非常大,否则r的抽样分布呈现一定的偏态。
1.对变量之间关系密切程度的度量
2.对两个变量之间线性相关程度的度量称为简单相 关系数
3.若相关系数是根据总体全部数据计算的,称为总
体相关系数,记为
4.若是根据样本数据计算的,则称为样本相关系数,
记为 r
• 也称为线性相关系数(linear correlation coefficient)
• 或 称 为 Pearson 相 关 系 数 (Pearson’s correlation coefficient)
0 0
月均销售额
20
40
60
年广告费投入
月均销售额 80
第15页/共108页
散点图
(例题分析)
【例2】一家大型商业银行在多个地区设有分行,其业 务主要是进行基础设施建设、国家重点项目建设、固 定资产投资等项目的贷款。近年来,该银行的贷款额 平稳增长,但不良贷款额也有较大比例的增长,这给 银行业务的发展带来较大压力。为弄清楚不良贷款形 成的原因,希望利用银行业务的有关数据做些定量分 析,以便找出控制不良贷款的办法。下面是该银行所 属的25家分行2002年的有关业务数据
Y X Y X Y X 60
1 -7 46 -2 41 3 50 40
14 -6 49 -1 34 4 30
Y