第六章刚体动力学_大学物理
大学物理刚体力学
![大学物理刚体力学](https://img.taocdn.com/s3/m/c43a1978482fb4daa58d4bbe.png)
4-2-1力矩 1.外力F在转动平面内:
Mi ri Fi
ri : 转动平面与转轴交点 o指向力的作用点的矢量 。
z
Fi
Fi
i
Fin
大小:Miz ri Fi sini ri Fi
(Fi Fi sini : 力的切向分量)
方向:右手螺旋,图中向上
2.外力 F不在转动平面内,将其分解为F和F||
解 (1)碰撞过程经历的时间极短,因此,系统所受外力(重力与轴的支持力)对于
轴O的力矩都为零,因而系统对轴O的角动量守恒。
碰前角动量
L1
mv l 2
碰后角动量
L2 J
J 为子弹与杆组成的系统相对于O的转动惯量,且:
M
J J 杆 J子弹
由角动量守恒
M l2 12
m( l )2 2
•O l mv
Md
dA Md M与d同向,dA为正;否则为负。
当刚体由
1
位置,外力矩作功:
2
A dA 2 Md 1
若M为恒力矩
A
2 Md M
1
2 1
d
M (1
2)
功— —力矩的角积累(空间积累)效应。
4-3-2刚体定轴转动的动能
mi:
Eki
1 2
mi
vi2
1 2
mi
ri2
2
总转动动能: Ek
此平行
转动:刚体上所有质元都绕同一直线(转轴)作圆周运动
如转轴相对所选参照系固定不动,称定轴转动
刚体运动=平动+转动
•A
•A
•C •A
•C •B •C
•B
•B
o
o
图4-1 刚体的平动
《大学物理》教学大纲
![《大学物理》教学大纲](https://img.taocdn.com/s3/m/4bfb9b1e2f3f5727a5e9856a561252d381eb2071.png)
《基础物理》教学大纲一、课程的性质、目的和任务大学物理课程是以经典物理和近代物理的基础知识和基本理论,以及物理学在科学技术上的应用为内容的高等学校各专业学生必修一门重要的基础课。
在大学物理课的各个教学环节中,都必须注意在传授知识的同时着重培养学生能力和思想方法,使学生初步学习自然科学的思想方法和研究问题的方法。
同时也注意在教学过程中结合相关内容进行思想品德教育。
以物理学基础知识为内容的大学物理课是高等学校理科非物理专业学生的一门重要的必修基础课。
物理学是整个自然科学的基础,高等学校中开设物理课的目的是使学生对物理学的内容和方法、工作语言、概念和物理图象、其历史、现状和前沿等方面,从整体上有个全面的了解。
学好大学物理课不仅对学生在校的学习十分重要,而且对学生毕业后的工作和进一步学习机关报理论、新知识、新技术、不断更新知识都将发生深远的影响。
在大学物理课的各个教学环节中,都必须注意在传授知识的同时着重培养能力,使学生初步学习科学的思想方法和研究问题的方法,通过本课程的教学,应使学生初步具备以下能力。
1.能够独立地阅读相当于大学物理水平的教材,参考书和文献资料,并能理解其主要内容和写出条理较清晰的笔记、小结或读书心得。
2.了解各种理想物理模型并能够根据物理概念、问题的性质和需要,抓住主要的因素,略去次要要素,对所研究的对象进行合理的简化。
3.会运用物理学的理论、观点和方法、分析、研究、计算或估算一般难度的物理问题、并能根据单位、数量级与已知典型结果的比较,判断结果的合理性。
二、教学内容第一章质点的运动第一节质点和参考系。
第二节描述质点运动的物理量。
第三节描述质点运动的坐标系。
第四节牛顿运动定律。
第五节力学中常见的力。
第六节伽利略相对性原理。
第二章功和能第一节功和功率第二节动能和动能定理第三节势能第四节机械能守恒定律第三章动量及质点角动量第一节动量和动量定理第二节质点系动量定理和质心运动定理第三节动量守恒定律第四节碰撞第四章角动量守恒定律第一节力矩第二节质点角动量守恒定律第五章刚体力学第一节刚体的运动第二节刚体动力学第三节定轴转动刚体的角动量守恒定律第六章流体力学第一节流体的压强第二节理想流体及其连续性方程第三节伯努利方程第七章振动和波第一节简谐振动第二节简谐振动的叠加第三节阻尼振动、受迫振动和共振第四节波的基本概念第五节简谐波第六节波的能量第七节波的干涉第八节多普勒效应第八章狭义相对论第一节狭义相对论的基本原理第二节狭义相对论的时空观第三节狭义相对论动力学第九章气体动理论第一节气体动理论和理想气体模型第二节理想气体的压强和温度第三节理想气体的内能第四节速率分布函数第十章电荷和静电场第一节电荷和库仑定律第二节电场和电场强度第三节高斯定理第四节电势及其与电场强度的关系第五节静电场中的金属导体第六节电容和电容器第七节静电场中的电介质第八节静电场的能量第十一章电流和恒磁场第一节恒定电流条件和导电规律第二节磁场和磁感应强度第三节毕奥一萨伐尔定律第四节磁场的高斯定理和安培环路定理第五节磁场对电流的作用第六节带电粒子在磁场中的运动第七节磁介质的磁化第十二章电磁感应第一节电磁感应定律及其基本规律第二节自感与互感第三节磁场能量第四节麦克斯韦电磁理论第十三章电路第一节基尔霍夫定律第二节交流电的基本概念第十四章波动光学第一节光波及其相干条件第二节分波前干涉第三节分振幅干涉第四节惠更斯-菲涅尔原理和衍射现象第五节单缝和圆孔夫琅和费衍射第六节衍射光栅第七节光的偏振态第八节偏振光的获得和检测第十五章波与粒子第一节黑体辐射第二节电光效应第三节康普顿效应第四节氢原子光谱和玻尔的量子理论第五节微观粒子的波动性第六节波函数、薛定谔方程第二十一章核物理简介第十八章热力学基础第一节热力学第一定律第二节理想气体热力学过程第三节卡诺循环第五节热力学第二定律三、学时分配四、教学安排与方式大学物理是一门基础课,以教师讲授为主,采用计算机多媒体技术辅助教学手段。
大学物理—刚体的动轴转动
![大学物理—刚体的动轴转动](https://img.taocdn.com/s3/m/4965294d783e0912a2162a70.png)
25
麦克斯韦分布
2 1 2 d mgR J mR 3 2 dt
设圆盘经过时间t停止转动,则有
t 0 2 1 g dt R d 0 0 3 2
1
麦克斯韦分布
所以刚体内任何一个质点的运动,都可代表整个 刚体的运动。 刚体运动时,如果刚体的各个质点在运动中 都绕同一直线圆周运动,这种运动就叫做转动, 这一直线就叫做转轴。 3. 刚体的定轴转动 定轴转动: 刚体上各点都绕同一转轴作不同半径的圆周运 动,且在相同时间内转过相同的角度。 特点: (1) 角位移,角速度和角加速度均相同;
F
(3) F1 对转轴的力矩为零,
在定轴转动中不予考虑。
转动 平面
r
F2
(4)在转轴方向确定后,力对 转轴的力矩方向可用+、-号表示。
2. 刚体定轴转动定律 对刚体中任一质量元mi
O’
f i -内力
-外力
ω
Fi
ri
mi
fi
i i
Fi
应用牛顿第二定律,可得: O
Lz Li cos mi Ri v i cos mi ri v i
m r
2 i i
10
式中 mi ri2 叫做刚体对 Oz 轴的转动惯量, 用J表示。
麦克斯韦分布
刚体转动惯量:
J mi ri2
刚体绕定轴的角动量表达式:
Lz J
麦克斯韦分布
a m2 m1 g M / r 1 r m2 m1 m r 2 当不计滑轮质量及摩擦阻力矩即令 m=0 、 M=0 时,有
2m1m2 T1 T2 g m2 m1
大学物理刚体归纳总结
![大学物理刚体归纳总结](https://img.taocdn.com/s3/m/f77191e2d0f34693daef5ef7ba0d4a7302766cb6.png)
大学物理刚体归纳总结在大学物理学习中,刚体是一个重要的概念,广泛应用于力学、动力学和静力学等领域。
本文将对刚体的定义、特点以及相关定理进行归纳总结,旨在帮助读者更好地理解和掌握刚体的基本知识。
一、刚体的定义和特点刚体是指可以看作一个整体、无论受到什么力都能保持形状不变的物体。
在实际应用中,我们常常将刚体简化为点、线或面,以便进行研究和计算。
刚体具有以下特点:1. 形状不变性:无论刚体受到外力的作用,其形状都不会发生改变。
2. 外力作用点的变化不引起内部构件间相对位置的改变:即刚体内各个质点之间的相对位置保持不变。
3. 刚体内各个质点之间的相对位置保持不变:即刚体内构件间的距离和角度不会发生变化。
二、刚体的运动学性质1. 刚体的平动:刚体作平动时,刚体上每个点的速度都相同,且方向相同。
2. 刚体的转动:刚体作转动时,刚体上的各点绕着同一条轴旋转。
这个轴称为刚体的转轴,刚体绕转轴的转动速度相同。
刚体平衡的条件是力矩的和等于零。
力矩是由力对刚体产生的转动效果,其大小与力的大小、作用点到转轴的距离和力的夹角相关。
四、刚体静力学定理与公式1. 雅可比定理:在刚体有多个力作用时,可以将这些力简化为只有一个力等效,该力的大小、方向和作用点都与原有多个力相同,这个力称为合力。
2. 力的合成定理:当刚体上有多个力作用时,可以将这些力合成为一个结果力,该力等效于原有多个力的合力。
3. 力矩的平衡条件:对于处于平衡状态的刚体,刚体上力矩的和必须等于零。
4. 平衡条件的应用:根据刚体平衡条件,可以解决各种与刚体平衡有关的问题,如悬挂物体的平衡、天平的平衡等。
五、刚体动力学定理与公式1. Euler定理:刚体绕固定轴的转动,转动惯量与角加速度和转矩之间存在关系,即转动惯量等于转矩与角加速度的比值。
2. 动量定理:外力矩与刚体的角动量之间存在关系,外力矩等于刚体的角动量关于时间的变化率。
3. 动能定理:刚体的动能与角速度和转动惯量之间存在关系,动能等于转动惯量与角速度平方的乘积的一半。
大学物理_第06章 刚体力学
![大学物理_第06章 刚体力学](https://img.taocdn.com/s3/m/560d0dc2a32d7375a5178024.png)
接触点相同线速度时: 1r1 2r2
联立解得:
1
J1
J1 ( r1 r2
)2
J2
0
2
r1 r2
J1
J1
(
r1 r2
)2
J
2
0
书上177页
解: dm
2 rdr
m2 rdr R2
2mrdr R2
df
2mrdr R2
g
dM
r
2mrdr R2
g et
2mr 2dr R2
g
M
R
dM
0
R 0
2mr 2 dr R2
dm dV
其中、、分别为质量线密度、面密度和体密度。
转动惯量
2). 转动惯量的计算:
质点、圆环、圆筒绕中心轴转动
z
z
Rm
oR m
R
m
o
质点的转动惯量为
Jo mR2
对于匀质圆环和薄圆筒,因各质元到轴的垂直距
离都相同,则有
Jo mR2
圆盘、圆柱绕中心轴转动
对于质量为m、半径为R、厚为l 的均匀圆盘取半径为 r宽
需要一个动力学方程 — 角动量定理
角动量定理: M dL
dt
转轴转动角动量表达式:
Mz
dLz dt
转轴分量角动量定理表达式:
n
Lz z mi (xi2 yi2 ) z J i1
转动定律:
Mz
dLz dt
d (J)
dt
J
d
dt
J
z v
r
P
当刚体绕固定轴转动时,刚体对该轴的转动惯量与角加速 度的乘积等于外力对此轴的合力距。 — 定轴转动定律
大学物理力学(全)ppt课件
![大学物理力学(全)ppt课件](https://img.taocdn.com/s3/m/51662e6a2e60ddccda38376baf1ffc4ffe47e2d0.png)
之和最小。
05
流体力学基础
流体的性质与分类
流体的定义
流体是指在外力作用下,能够连续变形且不能恢复原 来形状的物质。
流体的性质
流动性、压缩性、黏性。
流体的分类
按物理性质可分为气体和液体;按化学性质可分为纯 净物和混合物。
流体静力学
重力势能
重力做功与路径无关,只与初末 位置的高度差有关。 03
机械能守恒定律
04 只有重力或弹力做功的物体系统 内,动能与势能可以相互转化, 而总的机械能保持不变。
刚体定轴转动动力学
刚体定轴转动的描述
角速度、角加速度和转动惯量等物理量的定义和 计算。
刚体定轴转动的动能定理
刚体定轴转动时,合外力矩对刚体所做的功等于 刚体转动动能的变化。
弹性势能与动能之间的转化
在振动过程中,物体的动能和弹性势能不断相互转化。
弹性碰撞与非弹性碰撞
弹性碰撞
碰撞过程中,物体间无机 械能损失的碰撞。碰撞后 两物体以相同的速度分开
,且动能之和不变。
非弹性碰撞
碰撞过程中,物体间有机 械能损失的碰撞。碰撞后 两物体以不同的速度分开
,且动能之和减小。
完全非弹性碰撞
伯努利方程的应用
伯努利方程在流体力学中有广泛的应用,如计算管道中流体的流速和流量、分析机翼升力原理、解释 喷雾器工作原理等。同时,伯努利方程也是一些工程领域(如水利工程、航空航天工程等)中设计和 分析的重要依据。
06
分析力学基础
约束与自由度
约束的概念
约束是对物体运动的一种限制,它减少了物体的自 由度。
牛顿运动定律
牛顿第一定律(惯性定律)
大学刚体知识点总结
![大学刚体知识点总结](https://img.taocdn.com/s3/m/b8eaa8750812a21614791711cc7931b765ce7b88.png)
大学刚体知识点总结一、刚体的概念和基本性质1. 刚体的基本概念刚体是指在运动或受力作用时,其内部各个部分之间的相对位置保持不变的物体。
刚体的定义包括两个方面:一是刚体的形状和大小在所讨论的现象中不发生改变;二是刚体内各点的相对位置在所讨论的现象中也不发生改变。
这意味着刚体是刚性的,并且不会发生形变。
2. 刚体的基本性质(1)刚性:刚体的所有部分在相互作用下保持相对位置不变,不发生相对位移或形变,这就是刚体的基本性质之一。
(2)刚体的自由度:刚体的自由度是指刚体可以自由运动的最少独立坐标数。
刚体的自由度可以通过不同类型的运动来描述,包括平动、转动和复合运动。
(3)刚体的质心:刚体的质心是指一个质点,它等效于整个刚体对于外力的作用。
在某些情况下,刚体可以看作是一个质点,其运动和受力可以通过质心来描述。
二、刚体的平动1. 刚体的平动运动在刚体的平动运动中,刚体上的各个点都以相同的速度和方向移动。
平动运动可以通过刚体的速度和加速度来描述,它是刚体运动的一种常见形式。
2. 刚体的平动运动描述(1)刚体的平动速度:刚体上的各个点的速度大小和方向相同,这就是刚体的平动速度。
刚体的平动速度可以通过质点运动方程或者质心运动方程来描述。
(2)刚体的平动加速度:刚体上的各个点的加速度大小和方向相同,这就是刚体的平动加速度。
刚体的平动加速度可以通过质点加速度方程或者质心加速度方程来描述。
(3)刚体的平动运动学问题:刚体的平动运动学问题包括刚体的位移、速度、加速度等相关内容,它们可以通过运动学方法来解决。
三、刚体的转动1. 刚体的转动运动在刚体的转动运动中,刚体围绕固定轴旋转。
转动运动是刚体运动的另一种常见形式,它可以通过角度和角速度来描述。
2. 刚体的转动运动描述(1)刚体的角度和角速度:刚体围绕固定轴旋转时,可以通过角度和角速度来描述。
角度是指刚体围绕轴线旋转的角度,角速度是指刚体围绕轴线旋转的角度变化率。
(2)刚体的转动惯量:刚体围绕轴线旋转时,需要通过转动惯量来描述其转动惯性。
大学物理刚体力学
![大学物理刚体力学](https://img.taocdn.com/s3/m/d3090553cd7931b765ce0508763231126edb77e3.png)
大学物理刚体力学标题:大学物理中的刚体力学在物理学的研究中,大学物理是引领我们探索自然界规律的重要途径。
而在大学物理中,刚体力学是一个相对独特的领域,它专注于研究物体在受到外力作用时的质点运动规律。
本文将探讨大学物理中的刚体力学。
一、刚体概念及特性刚体是指物体内部各质点之间没有相对位移,形状和体积不发生变化的理想化物体。
在刚体力学中,我们通常将刚体视为一个整体,研究其宏观运动规律。
刚体具有以下特性:1、内部质点无相对位移。
2、刚体不发生形变,形状和体积保持不变。
3、刚体在运动过程中,内部任意两质点间的距离保持不变。
二、刚体力学的基础知识1、刚体的运动形式刚体的运动形式包括平动、转动和振动。
平动是指刚体沿直线作均匀速度的运动;转动是指刚体绕某轴线作角速度变化的运动;振动是指刚体在平衡位置附近作往复运动的周期性运动。
2、刚体的动力学基础动力学是研究物体运动状态变化的原因和规律的科学。
在刚体力学中,动力学的基本方程包括牛顿第二定律、动量定理和动能定理等。
这些方程为我们提供了分析刚体运动状态变化的基本工具。
三、刚体的转动惯量转动惯量是描述刚体转动惯性大小的物理量。
它与刚体的质量、形状和大小有关。
在物理学中,转动惯量是研究刚体转动规律的重要参数。
通过计算转动惯量,我们可以了解刚体在受到外力矩作用时角速度变化的规律。
四、刚体的角动量角动量是描述物体绕某轴线旋转的物理量,与物体的质量、速度和半径有关。
在刚体力学中,角动量是一个非常重要的概念。
它可以帮助我们理解刚体在受到外力矩作用时的角速度变化规律。
同时,角动量守恒定律也是刚体力学中的一个重要定律。
在已知刚体的质量、转动惯量和角动量的基础上,我们可以建立刚体的动力学方程。
动力学方程可以帮助我们分析刚体在受到外力作用时的运动状态变化规律。
对于复杂的动力学问题,我们通常需要借助数学软件进行数值模拟和分析。
六、总结在大学物理中,刚体力学是一个相对独立且具有重要应用价值的领域。
大学物理刚体运动学
![大学物理刚体运动学](https://img.taocdn.com/s3/m/c74ec6abafaad1f34693daef5ef7ba0d4a736db3.png)
M ,(同向)加速转动。
M ,(反向)减速 —阻力矩。
8
(2) 外力不在垂直于转轴的平面内
P63 结论:z轴转动平面内的分量 的运算就是对z轴的力矩。
转轴 z
F
F
F1
P
F2
0r
o
转动平面
r轴
r
F轴
o
M
zkˆ
r
F
将F分解成
F1和F2。
F1与转轴平行, F2在转动平面内。
MF1对转r动F无2 (贡有献效,力仅矩考)虑。F2,
g
R
t
由此求得:
t
3R
4g
0
19
例:均质矩形薄板绕竖直边转动,初始角速度为0,转动时受到空气的
阻力.阻力垂直于板面,每一小面积所受阻力的大小与其面积及速度的 平方的乘积成正比,比例常数为k.试计算经过多少时间,薄板角速度 减为原来的一半.设薄板竖直边长为b,宽为a,薄板质量为m.
a
解 在板上距离转轴为r处取一长度为b,宽度 为dr的面积元,其面积为dS = bdr
mi
任取Δmi,其动能
d
Eki
1 2
Δmivi2
1 2
miri ω2 2
(vi riω)
整个刚体的转动动能等于 各质点动能之和。
Ek
i
12mi
ri
2ω2
1 2
(
i
mi
ri
2
)ω2
刚体的转动动能
Ek
1 2
Iω2
(平动动能: Ek
1 mv 2 ) 2
22
3.2 定轴转动的动能定理
(1)力矩的功
P — 力F的作用点。
《大学物理》刚体的转动练习题及答案
![《大学物理》刚体的转动练习题及答案](https://img.taocdn.com/s3/m/42f9ba3f5e0e7cd184254b35eefdc8d377ee1440.png)
《大学物理》刚体的转动练习题及答案一、简答题:1、为什么刚体绕定轴转动的动能的改变只与外力矩有关,而与内力矩无关?答案:对刚体,由于刚体内各质点间相对位移始终为零,内力总是成对出现,每对内力大小相等,方向相反,在一直线上,故内力矩做功之和一定为零,故刚体绕定轴转动的动能的改变与内力矩无关。
2、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。
3、下列物理量中,哪些量与原点的选择有关:(1) 速度,(2) 位矢,(3) 位移,(4) 角动量,(5) 动量 答案:与原点有关的物理量为:位矢,角动量。
4、质量、半径相同的两个圆盘,第一个质量分布均匀,第二个大部分质量分布在盘边缘,当它们以相同的角速度绕通过盘中心的轴转动时,哪个盘的转动动能大?为什么?答案:第二个盘的动能大。
因为由刚体转动动能221ωJ E k =知,在角速度一样时,转动惯量大的动能大;又因为2121mR J =,22mR J ≈,第二个转动惯量较大,所以转动动能较大。
5、在某一瞬时,刚体在一外力矩作用下,其角速度可以为零吗? 其角加速度可以为零吗?答案:由刚体转动定律αJ M =,知,在某一瞬时,刚体在一外力矩作用下,其角加速度不可以为零;由dtd ωα=,有⎰+=t dt 00αωω,可知其角速度此时可以为零。
6、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。
表达式为:αJ M =。
7、简述刚体定轴转动时的特点有哪些, 常用哪些物理量来描述刚体的转动?答案:刚体定轴转动的特点:转轴相对参照系固定,刚体内所有点都具有相同的角位移、角速度、角加速度;质点在垂直转轴的平面内运动,且作圆周运动。
刚体的转动通常用转动惯量J 、力矩M 、角加速度α、角动量L 等来描述。
转动力学刚体在大学物理中的运动分析
![转动力学刚体在大学物理中的运动分析](https://img.taocdn.com/s3/m/785e710dce84b9d528ea81c758f5f61fb73628dc.png)
转动力学刚体在大学物理中的运动分析转动力学是大学物理中的一个重要分支领域,研究的是刚体在转动运动下的力学性质和规律。
刚体指的是在运动过程中形状和大小不变的物体。
一、刚体的基本概念和特性刚体是指在外力作用下,各点之间相对位置不变的物体。
刚体可以看作由无穷多个质点组成,质点之间的距离始终保持不变。
在刚体的运动过程中,刚体内部各点都具有相同的转动角度和转动速度。
二、刚体的转动中心和转动轴刚体的转动中心是指在转动过程中,仍然保持位置不变的点。
对于一个刚体而言,转动中心可以是任意点,但通常选择质量分布均匀的位置作为转动中心。
刚体绕着转动轴进行转动,转动轴可以是任意直线,刚体绕转动轴旋转的角速度是一致的。
三、刚体转动的基本量刚体转动的角位移是刚体绕转动轴转过的角度,用Δθ表示。
刚体转动的角速度是指角位移随时间的变化率,用ω表示。
刚体转动的角加速度是指角速度随时间的变化率,用α表示。
四、刚体的转动惯量刚体的转动惯量是刻画刚体难以改变其转动状态的物理量。
刚体的转动惯量与刚体质量的分布有关,质量分布越分散,转动惯量越大。
转动惯量用I表示,单位是kg•m²。
对于简单形状的刚体,可以根据几何形状和质量分布求解转动惯量。
五、刚体的转动动力学刚体的转动动力学是研究刚体在受力作用下转动运动规律的学科。
刚体所受的合外力矩等于刚体转动惯量与刚体角加速度的乘积。
即M = Iα,其中M表示合外力矩,I表示刚体转动惯量,α表示刚体的角加速度。
根据这个关系,可以求解刚体在受力作用下的转动加速度和转动角速度。
六、刚体的转动定律刚体的转动定律包括角动量定理和角动量守恒定律。
角动量定理指出,刚体所受的合外力矩等于刚体角动量的变化率。
角动量守恒定律指出,在没有外力矩作用下,刚体的初始角动量等于其最终角动量。
这两个定律为研究刚体的转动运动提供了基本的理论依据。
七、刚体转动的应用刚体转动的运动规律和性质在实际中有着广泛的应用。
例如,汽车的方向盘、舞蹈中的旋转动作、田径项目中的标枪投掷等都涉及到刚体的转动运动。
6.1 刚体运动学(大学物理)
![6.1 刚体运动学(大学物理)](https://img.taocdn.com/s3/m/32bb1227cfc789eb172dc8cc.png)
1、转动惯量
刚体转动时,刚 体内的各质点作圆周 运动,刚体的动能等 于各质点动能之和。
mn
m1
rn
r1
r2 m2
1 1 1 2 2 2 Ek m1v1 m2v2 mnvn 2 2 2 n n 1 1 2 2 mivi mi (ri ) i 1 2 i 1 2 1 n 2 2 ( miri ) 2 i 1
1 l 1 2 2 J ml m ml 结果与前相同。 3 12 2
t
0
1 2 0 0 t t 2
v v 2a( x x0 )
2 2 0
2 ( )
2 2 0 0
匀变速转动
六 角量与线量之间的关系
1、位移与角位移之间的关系 刚体转过 刚体上的一点 位移 s
o
r
s
x
s r
第六章 刚体力学
本章主要内容:
6-1 刚体的运动 6-2 刚体的角动量、转动动能、转动惯量
6-3 力矩
刚体定轴转动定律
6-4 定轴转动的动能定理 6-5 刚体对定轴的角动量守恒定律
6-6 进动*
本章学习要求
2.理解转动惯量、力矩的概念,掌握转动定律。 3.掌握刚体转动的动能定理、角动量定理。
1.掌握刚体定轴转动的特点,理解角坐标、角位移 角速度、角加速度的概念。
1 n 刚体的转动动能 Ek ( miri2 ) 2 2 i 1 1 2 与平动动能比较 Ek mv 2 n 2 miri :相对于转轴的特征的物理量
i 1
转动惯量的定义:
单位:kg ·m2
J m r
i 1
大学物理 刚体力学(课堂PPT)
![大学物理 刚体力学(课堂PPT)](https://img.taocdn.com/s3/m/106c5e52ce2f0066f53322fd.png)
(2)转动 刚体中所有的点都绕同一直线做圆周运动, 则称刚 体作转动,该直线称转轴。
转动又分定轴转动和非定轴转动 。
转轴
固定转轴 瞬时转轴
定轴转动 非定轴转动
4
刚体的平面运动 (滚动)
5
+ 刚体的一般运动= 质心的平动 绕质心的转动
6
3.刚体的定轴转动
(1)角位置和角位移
P
Qx
x
角位移
PP
rd dW Md
-----力矩的功
合外力矩
F
d
r
ds
35
若力矩是恒量:
比较: 力矩的功就是力的功。
例题3-8
36
例题3-8 一根质量为m、长为l的均匀细棒OA,可绕通过 其一端的光滑轴O在竖直平面内转动。今使棒从水平位置开始 自由下摆,求细棒摆到竖直位置时重力所做的功。
解:在棒的下摆过程中,对转轴O而 言,支承力N通过O点,所以支承力N的 力矩等于零,重力G的力矩则是变力矩,
N π (300)3 3104 r
2 π 2 π 450
14
1.力矩
力
二、刚体定轴转动的转动定律
改变质点的运动状态
质点获得加速度
力矩 改变刚体的转动状态
(1) 力矩的定义式
r M
rr
r F
刚体获得角加速度 M
大小:M Fr sin Fd
(2) 物M理 意r 义F
是决定刚体转动的物理量,表明力的大小、 方向和作用点对物体转动的影响。
图3-14
33
解:隔离物体m,设线中的张力为T,物体m 的加速度为a,由牛顿第二定律可得
mg T ma
以待测刚体和转动架为整体,设待测刚体的转 动惯量为J,由绕定轴转动的转动定律可得
《大学物理》试卷答案(补充试卷)--5刚体力学
![《大学物理》试卷答案(补充试卷)--5刚体力学](https://img.taocdn.com/s3/m/1b7ace8eb9d528ea81c7793e.png)
m 2 v0l m2 vl J 4 4
m2l v0 v 3m2 v0 v 11.3rad / s 4J m1l
g m
M J
其中 于是
M 1 mgl sin 30 mgl / 4 2 M 3g 7.35 rad/s 2 J 4l
60°
当棒转动到水平位置时
M
1 mgl 2
则
M 3g 14.7 rad/s 2 J 2l
18、一均匀木杆,质量为m1 = 1 kg,长l = 0.4 m,可绕通过它的中点且 与杆身垂直的光滑水平固定轴,在竖直平面内转动.设杆静止于竖直位 置时,一质量为m2 = 10 g的子弹在距杆中点l/ 4处穿透木杆(穿透所用时 间不计),子弹初速度的大小v0 = 200 m/s,方向与杆和轴均垂直.穿出 后子弹速度大小减为v = 50 m/s,但方向未变,求子弹刚穿出的瞬时, 杆的角速度的大小.(木杆绕通过中点的垂直轴的转动惯量J = m1l 2 / 12) 解:在子弹通过杆的过程中,子弹与杆系统因外力矩为零,故 角动量守恒.则有
[ B ]
2、几个力同时作用在一个具有光滑固定转轴的刚体上,如 果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变 [ D ]
3、一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的 O 两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳 与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳 中的张力 m m1 2 (A) 处处相等. (B) 左边大于右边. [ C ] (C) 右边大于左边.(D) 哪边大无法判断 4、两个匀质圆盘A和B的密度分别为 A 和 B,若 A > B ,但两圆盘的质量 与厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为JA和JB,则 (A) JA>JB. (C) JA=JB. (B) JB>JA. (D) JA、JB哪个大,不能确定 [ B ]
《大学物理期末复习》刚体动力学2
![《大学物理期末复习》刚体动力学2](https://img.taocdn.com/s3/m/7e32b45676a20029bc642d32.png)
圆
锥 摆
T
m oR
mg v
圆锥摆系统 动量不守恒; 角动量守恒; 机械能守恒.
作业: P10:一、12,13,14,15,17,20。
1、刚体的角动量、角动量定理及其守恒定律, 2、力矩的功、转动动能定理、刚体的势能。
Bye-bye
解:取半径为r宽为dr的薄圆环,
dm ds 2rdr ds d (r2 ) Z
dJ r 2dm 2r3dr
J
dJ
R
2r 3dr
1 R4
0
2
m
R 2
J
1 mR2 2
OR
问:实心圆柱对其轴的转动惯量是多少?
3、求质量为m、半径为R、厚为l 的实心圆柱的转动
惯量。轴与柱面垂直并通过盘心。 解:取半径为r宽为dr的薄圆环,
θ mg
置的细杆处于非
O
稳定平衡状态,当其受到微小扰动时,细
杆将在重力作用下由静止开始绕铰链O 转
动.试计算细杆转动到与竖直线成 角时
的角加速度和角速度.J 1 ml2
3
解 细杆受重力和
铰链对细杆的约束力FN
作用,由转动定律得
m,l
1 mgl sin J
2
J 1 ml2
3g sin
θ
mg O
m M
2
g
v 2 v02 2ah v
2ah
4mgh 2m M
v 1 4mgh
R R 2m M
2.16
a a
m2 m1
m3
T2
T1
.
T2
T1
m2 g T2 m2a
T1
m 1
g
m1a
大学物理学第五版马文蔚ch.ppt
![大学物理学第五版马文蔚ch.ppt](https://img.taocdn.com/s3/m/befe330accbff121dd368382.png)
§4-2 力矩 转动定律转动惯量
一、力矩 ①力臂:从转轴 z 与 截面的交点O到力 F 的作用线的垂直距离 d~力 F 对转轴的力臂
M
z
o
r
d
F
②力矩:
在垂直与转轴的平 面内,外力 F 与力线到 转轴的距离d(力臂)的乘 积定义为对转轴的力矩。
M r F
为正。 定轴转动,规定: 力矩逆时针方向 M
Fi
mi
F i Fi mi ai
建立自然坐标:切向、法向;
切向分量式为: Fit Fit mi ait mi ri
法向分量式为: mi ain Fin Fin ②利用 M r F ,即为:M ri Fit
注:切向分力与圆的半径及转轴三者互相垂直。
二、刚体定轴转动的转动定律
~利用力矩定义+牛顿第二定律,研究刚体作定 轴转动的动力学规律。
设:oz 为定轴, P为 刚体中任一质点 i ,其 质量为 mi。质点 i 受外力 F i ,内力 Fi 的作用,均在与 Oz 轴 相垂直的同一平面内。 ①牛顿第二定律:
z
Fi
Oi r i
Fit F it
v
r
d 角加速度矢量: dt
刚体运动学中所用 d 的角量关系及角量 = dt 和线量的关系如下: v r
d d 2 2 dt dt at r an r 2
注意:、是矢量,由于在定轴转动中轴的方 位不变,故用正负表示其方向。 在刚体作匀加 0 0t 1 t 2 2 速转动时,相 2 应公式如下: 0 t 2 0 2 作业:P143 4-6 4-11
角动量 变化率
大学物理课件 理论力学 第六章 刚体的平面运动
![大学物理课件 理论力学 第六章 刚体的平面运动](https://img.taocdn.com/s3/m/d60ec6670242a8956bece4c7.png)
2
例如: 曲柄连杆机构中连杆AB的运动, A点作圆周运动,B点作直线运动,AB 杆的运动既不是平动也不是定轴转动, 而是平面运动.
注意: (1)平面运动刚体内各点的运动是不同 的; (2)不能把平面运动与平动混为一谈。
3
请 看 动 画
4
二、刚体的平面运动可以简化为平面图形S在其自身平面内的 运动
A1A2作平动 A点代表A1A2的运动 ...... S代表刚体的运动
因此,在研究平面运动时, 不需考虑刚体的形状和尺寸,只 需研究平面图形的运动,确定平 面图形上各点的速度和加速度.
5
三.运动方程
为了确定平面图形的运动,取静系Oxy,在图形上任取一 点O’(称为基点),并取任一线段O’A,只要确定了O’A的位
平面图形的运动可以看成是绕它的一系列速度瞬心作瞬时转动。 注意:速度瞬心的加速度不为于零。 4.确定速度瞬心位置的方法
①已知图形上一点的速度vA 和图形角
速度,则速度瞬心
AI vA / , AI vA 且I在 vA顺转向绕A点转90º的方向一侧。
②已知一平面图形在固定面上作无滑动的
滚动(或称纯滚动), 则图形与固定面的 接触点I为速度瞬心。
18
⑤已知某瞬时图形上A,B两点的速度方向相 同,且不与AB连线 垂直.
此时, 图形的瞬心在无穷远处,图形的角
速度 =0, 图形上各点速度相等, 这种情况称
为瞬时平动. (此时各点的加速度不相等)
对④(a)的情况,若vA=vB, 也是瞬时平动.
19
例如: 曲柄连杆机构在图示位置时,连杆BC作瞬时平动.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章机械振动刚体转动的角坐标、角位移、角速度和角加速度的概念以及它们和有关线量的关系刚体定轴转动的动力学方程,熟练使用刚体定轴转动定律刚体对固定轴的角动量的计算,正确应用角动量定理及角动量守恒定理掌握刚体的概念和刚体的基本运动理解转动惯量的意义及计算方法,会利用平行轴定理和垂直轴定理求刚体的转动惯量掌握力矩的功,刚体的转动动能,刚体的重力势能等的计算方法了解进动现象和基本描述§6.1 刚体和自由度的概念一. 力矩力是引起质点或平动物体运动状态(用动量描述)发生变化的原因.力矩则是引起转动物体运动状态(用动量聚描述)发生变化的原因.将分解为垂直于z 轴和平行于z 轴的两个力及,如右图.由于不能改变物体绕z 轴的转动状态,因此定义对转轴z 的力矩为零.这样,任意力对z 轴的力矩就等于力对z 轴的力矩,即力矩取决于力的大小、方向和作用点.在刚体的定轴转动中,力矩只有两个指向,因此一般可视为代数量.根据力对轴的力矩定义,显然,当力平行于轴或通过轴时,力对该轴的力矩皆为零.讨论:(1)力对点的力矩.(2) 力对定轴力矩的矢量形式力矩的方向由右螺旋法则确定.(3) 力对任意点的力矩,在通过该点的任一轴上的投影,等于该力对该轴的力矩.例: 已知棒长L,质量M,在摩擦系数为μ 的桌面转动(如图)求摩擦力对y 轴的力矩.解: 以杆的端点O 为坐标原点,取Oxy坐标系,如图在坐标为x 处取线元dx,根据题意,这一线元的质量和摩擦力分别为则该线元的摩擦力对y轴的力矩为积分得摩擦力对y轴的力矩为注: 在定轴转动中,力矩可用代数值进行计算,例如二. 刚体对定轴的转动定律实验证明: 当力矩M为零时,则刚体保持静止或匀速转动,当存在M时,角加速度β与M成正比,而与转动惯量J 成反比,即.也可写成国际单位中k=1.若设作用在刚体上的外力对z轴的力矩总和为合外力矩,刚体对z 轴的转动惯量为J, 则有上式表明,刚体绕定轴转动时,刚体对该轴的转动惯量与角加速度的乘积,等于作用在刚体上所有外力对该轴的力矩的代数和.该式称为刚体绕定轴转动微分方程,也称转动定律.讨论:(1) M 正比于β ,力矩越大,刚体的β越大(2) 力矩相同,若转动惯量不同,产生的角加速度不同(3) 与牛顿定律比较,转动定律的理论证明:如右图,在刚体上任取一质量元,作用在质量元上的力可以分为两类:表示来自刚体意外一切力的合力(称外力),表示来自刚体内各质点对该质量元作用力的合理(称内力).刚体绕定轴Z 转动过程中,质量元以为半径作圆周运动,按牛顿第二定律,有将此矢量方程两边都投影到质量元的圆轨迹切线方向上,则有再将此式两边乘以,则得对固定轴的力矩对所有质量元求和,则得等式右边第一项为合外力矩;第二项为所有内力对z 轴的力矩总和,由于内力总是成对出现,而且每对内力大小相等、方向相反,且在一条作用线上,因此内力对z 轴的力矩的和恒等于零.又.则有即证.三. 转动惯量刚体对某Z 轴的转动惯量,等于刚体上各质点的质量与该质点到转轴垂直距离平方的乘积之和,即事实上刚体的质量是连续分布的,故上式中的求和可写为定积分,即刚体对轴转动惯量的大小决定于三个因素,即刚体的质量、质量对轴的分布情况和转轴的位置.(1) J 与刚体的总质量有关例 1 两根等长的细木棒和细铁棒绕端点轴转动惯量解:在如图的棒上取一线元dx,则积分得其转动惯量为显然,本题中,则(2) J 与质量分布有关例2 圆环绕中心轴旋转的转动惯量解: 在如图的圆环上取一线元dl,则积分得其转动惯量为例3 圆盘绕中心轴旋转的转动惯量解: 在如图的圆盘上取一宽为dr的圆环带,令,则质量元则积分得圆盘的转动惯量为(3) J 与转轴的位置有关例 4 均匀细棒绕端点轴转动惯量解: 在如图棒上取一线元dx,积分得棒的转动惯量为例 5 均匀细棒对通过中心并与棒垂直得轴的转动惯量解: 如图,以杆的中心O为坐标原点,取Oxz坐标系.积分得棒对z轴的转动惯量为四. 平行轴定理及垂直轴定理1. 平行轴定理设刚体得质量为M,质心为C,刚体对通过质心某轴z(称为质心轴)得转动惯量为.如有另一与z 轴平行的任意轴,且z和两轴间的垂直距离L.刚体对轴的转动惯量设为,则可以证明:.即刚体对任意轴(轴)的转动惯量等于刚体对通过质心并与该轴平行的轴(z轴)的转动惯量加上刚体的质量与两轴间垂直距离L平方的乘积.这个结论称为平行轴定理.例1 : 求均匀细棒的转动惯量.解: 如图,已知均质杆对质心轴z 的转动惯量为,为通过杆的一端、且与z 轴平行的轴的转动惯量,按平行轴定理有2.垂直轴定理如右图所示, x、y轴在刚体内, z轴垂直于刚体.则刚体对z 轴的转动惯量等于其对x、y轴的转动惯量之和此即为垂直轴定理.例求对圆盘的一条直径的转动惯量解:以圆盘圆心C为坐标圆点,建立xyz 坐标系如右图.易求得圆盘对z 轴的转动惯量为根据垂直轴定理,有又则五. 转动定律的应用举例例1 一轻绳绕在半径r =20 cm 的飞轮边缘,在绳端施以F =98 N 的拉力,飞轮的转动惯量J =0.5 kg·m 2,飞轮与转轴间的摩擦不计,(如图)求: (1) 飞轮的角加速度(2) 如以重量P =98 N 的物体挂在绳端,试计算飞轮的角加速度解: (1) 根据转动定律,有(2) 分别对物体和飞轮进行受力分析,如图所示,根据牛顿运动定律和转动定律,有,因为,所以有例2一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 在直棒上取如图的质量元dm ,则积分得整个直棒重力对轴O的力矩为又故由上式可以看出,重力对整个棒的合力矩等于重力全部集中于质心所产生的力矩.则角加速度为:又, 则杆下摆至角速度为例3圆盘以在桌面上转动,受摩擦力而静止求到圆盘静止所需时间解:在圆盘内取一半径为r 的,厚度为dr 的环带, 其质量为该环带的摩擦力对质心轴的力矩为积分得圆盘的摩擦力力矩为由转动定律得所以,得则例4如图一个刚体系统,已知转动惯量,现有一水平作用力作用于距轴为处求轴对棒的作用力(也称轴反力)解: 设轴对棒的作用力为N,分解为.由转动定律得由质心运动定理得解得打击中心则思考题1. 刚体可有不止一个转动惯量吗? 除了刚体的形状和质量以外,要求它的转动惯量,还要已知什么信息?2.能否找到这样一个轴,刚体绕该轴的转动惯量比绕平行于该轴并通过质心的轴的转动惯量小?3.刚体在力矩作用下绕定轴转动,当力矩增大或减小时,其角速度和角加速度将如何变化?4.猫有一条长长的尾巴,它习惯于在阳台上睡觉,因而从阳台上掉下来的事情时有发生.长期的观察表明猫从高层的楼房的阳台掉到楼外的人行道上时,受伤的程度将随高度的增加而减少,据报道有只猫从32层楼掉下来,也仅仅只有胸腔和一颗牙齿有轻微的损伤.为什么会这样呢?(点击图片播放动画)§ 6.2 绕定轴转动刚体的动能动能定理一. 转动动能刚体I 绕定轴z 转动,转动惯量,某时刻t ,角速度ω ,角加速度为β,设想刚体是由大量质点组成,现研究质量为的质点i,如图.显然,质点i 的速度为,由质点动能的定义知,质量i 的动能为由于动能为标量且永为正,故整个刚体的动能E等于组成刚体所有质点动能的算数和,即即绕定轴转动刚体的动能,等于刚体对转动的转动惯量于其角速度平方乘积的一半. 将刚体绕定轴转动的动能与质点的动能加以比较,再一次看出转动惯量对应于质点的质量,即转动惯量是刚体绕轴转动惯性大小的量度.二.力矩的功力的累积过程——力矩的空间累积效应功的定义如图,设绕定轴z 转动刚体上P 点作用有一力,现研究刚体转动时力在其作用点P 的元路程ds 上的功.由图易得即作用在定轴转动刚体上的力的元功,等于该力对转轴的力矩于刚体的元角位移的乘积.这也称为力矩的元功.力矩作功的微分形式对一有限过程刚体从角坐标到的过程中,力矩对刚体所作的功为若力矩M为常数,则上式可以进一步写成既作用在定轴转动刚体上的常力矩在某一转动过程中对刚体所作的功,等于该力矩与刚体角位移的乘积.讨论:(1) 合力矩的功(2) 力矩的功就是力的功(3) 内力矩作功之和为零三. 转动动能定理——力矩功的效果力矩的元功此式表示绕定轴转动刚体动能的微分,等于作用在刚体上所有外力元功的代数和.这就是绕定轴转动刚体的动能定理的微分形式. 若定轴转动的刚体在外力作用下,角速度从变到,则由微分式,可得到式中A 表示刚体角速度从变到这一过程中,作用于刚体上的所有外力所作功的代数和. 上式表明,绕定轴转动刚体在任一过程中动能的增量,等于在该过程中作用在刚体上所有外力所作功的总和.这就是绕定轴转动刚体的动能定理的积分形式.刚体的机械能等于刚体的动能、重力势能之和.其中的重力势能为故刚体的机械能又可表示为刚体的机械能守恒,则有对于包括刚体的系统,功能原理和机械能守恒定律仍成立.例1一根长为l , 质量为m 的均匀细直棒,可绕轴O 在竖直平面内转动,初始时它在水平位置求它由此下摆角时的解: 易得杆摆至角时对O 轴的力矩为由动能定理,重力矩作的功得又,由此得即例2图示装置可用来测量物体的转动惯量.待测物体A 装在转动架上,转轴Z 上装一半径为r的轻鼓轮,绳的一端缠绕在鼓轮上,另一端绕过定滑轮悬挂一质量为m 的重物.重物下落时,由绳带动被测物体A绕Z 轴转动.今测得重物由静止下落一段距离h .所用时间为t .求物体 A 对Z 轴的转动惯量.设绳子不可伸缩,绳子、各轮质量及轮轴处的摩擦力矩忽略不计.待测物 A 的机械能:重物m 的机械能:由机械能守恒得:又则可得故,物体 A 对Z 轴的转动惯量为思考题1.两个重量相同的球分别用密度为的金属制成,今分别以角速度绕通过球心的轴转动,试问这两个球的能量之比多大?§ 6.3 动量矩和动量矩守恒定律一. 质点动量矩( 角动量) 定理和动量矩守恒定律1.质点的动量矩设一质点在平面S ,如图所示.在时刻t,质点的动量为,对某固定点O质点的位矢为,则质点对O点的动量矩(或质点对O点的角动量)定义为: 位矢和动量的矢积,即根据矢积定义,质点对O点动量的大小为:指向由右螺旋法则确定.(可以证明,质点对某点的动量矩,在通过该点的任意轴上的投影就等于质点对该轴的动量矩)特例:质点作圆周运动时,说明: (1) 质点的动量矩与质点的动量及位矢(取决于固定点的选择)有关(2) 当质点作平面运动时,质点对运动平面内某参考点O 的动量矩也称为质点对过O 垂直于运动平面的轴的动量矩例一质点m ,速度为v ,如图所示A、B、C 分别为三个参考点,此时m 相对三个点的距离分别为.求此时刻质点对三个参考点的动量矩解: 质点对某点的动量矩, 在通过该点的任意轴上的投影就等于质点对该轴的动量矩2. 质点的动量矩定理质点为m 的质点,在力的作用下运动,某一时刻t ,质点相对固定点O 的位矢为,速度为,按上述质点动量矩的定义,有两边对时间求导,得由于,故上式右边第二项为零,而第一项中,因此,上式右边第二项是作用在质点上所有力的合力对O 点的力矩,即此式表明,在惯性系中,质点对任意固定点O的动量矩对时间的导数,等于作用在质点上所有力的合力对同一点O 的力矩.这就是质点动量矩定理.质点动量矩定理的微分形式:质点动量矩定理的积分形式:质点所受合力矩的冲量矩等于质点的动量矩的增量说明:(1) 冲量矩是质点动量矩变化的原因(2) 质点动量矩的变化是力矩对时间的积累结果质点动量矩定理也可直接用来求解质点动力学问题,特别是质点在运动过程中始终和一个点或一根轴相关联的问题,例如单摆运动,行星运动等问题.3. 质点动量矩守恒定律在质点动量矩定理可以看出,当作用在质点上的合力对固定点的力矩恒为零时,质点对该点的动量矩为常矢量,即若时,=常矢量这就是质点动量守恒定律.讨论:(1) 动量矩守恒定律是物理学的基本定律之一,它不仅适用于宏观体系,也适用于微观体系, 且在高速低速范围均适用(2) 通常对有心力:过O 点,M= 0, 动量矩守恒.例如由动量矩守恒定律可导出行星运动的开普勒第二定律行星对太阳的位矢在相等的时间内扫过相等的面积例发射一宇宙飞船去考察一质量为M 、半径为R 的行星, 当飞船静止于空间距行星中心4R 时,以速度发射一质量为m 的仪器.要使该仪器恰好掠过行星表面求θ 角及着陆滑行的初速度多大解:由引力场(有心力)系统的机械能守恒得由质点的动量矩守恒得则所以有二. 刚体定轴转动的动量矩定理和动量矩守恒定律1. 刚体定轴转动的动量矩刚体以角速度ω 绕定轴z转动时,刚体上任意一点均在各自所在的垂至于z轴的平面那作圆周运动,如图.由于刚体上任一质点对z轴的动量矩都具有相同的方向(或者说都具有相同的正负号),因此整个刚体对z轴的动量矩应为各质点对z轴的动量矩之和,即上式表明,绕定轴转动刚体对z 轴的动量矩,等于刚体对该轴的转动惯量与角速度的乘积.2. 刚体定轴转动的动量矩定理将动量矩表达式对时间求导,得由于刚体对给定轴的转动惯量是一常量,因此利用前面讲过的转动定律,可以将上式进一步写成上式表明,绕定轴转动刚体对z轴的动量矩对时间的导数,等于作用在刚体上所有外力对z轴的力矩的代数和.这就是刚体绕定轴转动情况下的动量矩定理.动量矩定理微分形式:将上式两边乘以dt并积分,得动量矩定理积分形式:,分别表示在时刻转动刚体对z轴得动量矩,成为在时间内对z 轴得冲量矩.冲量矩表示了力矩在一段时间间隔内的积累效应.上式表明,定轴转动刚体的动量矩在某一时间间隔内的增量,等于同一时间间隔内作用在刚体上的冲量矩.3. 刚体绕定轴转动的动量矩守恒定律当作用在定轴转动刚体上的所有外力对转轴的力矩代数和为零时,根据动量矩定理式,刚体在运动过程中动量矩保持不变(守恒),即=0时,=常量.以上的讨论是对绕定轴转动的刚体进行的.对绕定轴转动的可变形物体来说,如果物体上各点绕定轴转动的角速度相同,即可用同一角速度来描述整个物体的转动状态,则某一时刻t , 物体对转动轴的动量矩也可表示为该物体在时刻t 对同一轴的转动惯量与角速度的乘积.只是由于物体上各点相对于轴的位置是可变的,所以对轴的转动惯量不再是一个常量,可表示为可以证明,这是可变形物体对转轴的动量矩对时间的导数仍然等于作用于该可变形物体的所有外力对同一轴的力矩的代数和,即仍成立. 这时如果作用在可变形物体上所有外力对该轴的力矩的代数和恒为零,则在运动过程中,可变形物体对转轴的动量矩保持不变(守恒).更一般地说,如果作用在质点系上所有外力对某一固定轴的力矩之和为零,则质点系对该轴的动量矩保持不变,这是动量矩守恒定律的更为一般的表述形式.动量矩守恒定律在实际生活中及工程中有着广泛的应用.例如花样滑冰的表演者可以容过伸展或收回手脚(改变对轴的转动惯量)的动作来调节旋转的角速度.例一长为l 的匀质细杆,可绕通过中心的固定水平轴在铅垂面内自由转动,开始时杆静止于水平位置.一质量与杆相同的昆虫以速度垂直落到距O点l /4 处的杆上,昆虫落下后立即向杆的端点爬行,如图所示.若要使杆以匀角速度转动.求昆虫沿杆爬行的速度解:设杆和昆虫的质量均为m ,昆虫与杆碰后以共同的角速度转动.昆虫落到杆上的过程为完全非弹性碰撞,对于昆虫和杆构成的系统,和外力矩为零,动量矩守恒,故有化简此式可得杆的转动角速度,即由题可知,此后杆以此角速度作匀速转动.设碰后t 时刻,杆转过角,昆虫爬到距O 点为r的位置处, 此时,昆虫和杆系统所受合外力矩为根据动量定理,有由题设不变,所以其中的值为带入上式有因此,为了使保持不变,昆虫的爬行速率应为说明:此题使一个系统绕定轴转动问题.在解此题的过程中应用了动量矩定理,该定理与刚体绕定轴转动定律的区别.三. 进动如图为一玩具陀螺,我们发现如果陀螺不绕自身对称轴旋转,则它将在起重力对质点O的力矩作用下翻到.但是当陀螺以很高的转速绕自身对称轴(称作自转或自旋)时,尽管陀螺仍然受重力矩作用,陀螺却不会翻到.陀螺的重力对O点的力矩作用结果将使陀螺的自转轴沿虚线所示的路径画出一个圆锥面来.我们称陀螺高速旋转时,其轴绕铅直轴的转动为进动.陀螺绕其对称轴以角速度高速旋转,如下图.对固定点O,它的动量矩L 可近似(未计进动部分的动量矩)表示为作用在陀螺上的力对O 点的力矩只有重力的力矩.显然, 垂至于动量矩矢量,按动量矩定理→可见在极短的时间内,动量矩的增量与d与平行, 也垂直于.这表明,在dt 时间内,陀螺在重力矩作用下,其动量矩的大小未变,但方向却改变了(方向绕铅直轴z 转过了dθ角)事实上,由于,带入动量矩定理式中.得所以,若陀螺自转角速度保持不变,则进动角速度也应保持不变.实际上由于各种摩擦阻力矩的作用,将使不断减小,与此同时,进动角速度Ω 将逐渐增大,进动将变得不稳定.以上的分析是近似的,只适用于自转角速度比进动角速度Ω 大得多得情况.因为有进动的存在,陀螺的总动量矩除了上面考虑到的因自转运动产生的一部分外,尚有进动产生的部分.只有在时,才能不计及因进动而产生的动量矩.思考题1. 如果一个质点在作直线运动,那么质点相对于那些点动量矩守恒?2. 如果作用在质点上的总力矩垂直于质点的动量矩,那么质点动量矩的大小和方向会发生变化吗?3. 当刚体转动的角速度很大时,作用在上面的力及力矩是否一定很大?4. 一个人随着转台转动,两手各拿一只重量相等的哑铃,当他将两臂伸平,他和转台的转动角速度是否改变?5. 试说明: 两极冰山的融化是地球自转速度变化的原因之一.。