2018-2019福州市质检试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
准考证号:姓名:1
(在此卷上答题无效)
2018—2019学年度福州市九年级质量检测
数学试题
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,满分150分.
注意事项:
1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生
要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名
是否一致.
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改
动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字
笔在答题卡上相应位置书写作答,在试题卷上答题无效.
3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.
4.考试结束后,考生必须将试题卷和答题卡一并交回.
第Ⅰ卷
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是
符合题目要求的.
1.下列天气预报的图标中既是轴对称图形又是中心对称图形的是
A B C D
2.地球绕太阳公转的速度约为110000千米/时,将110000用科学记数法表示,其结果是
A .61.110⨯
B .51.110⨯
C .41110⨯
D .6
1110⨯3.已知△ABC ∽△DEF ,若面积比为4∶9,则它们对应高的比是
A .4∶9
B .16∶81
C .3∶5
D .2∶3
4.若正数x 的平方等于7,则下列对x 的估算正确的是
A .1<x <2
B .2<x <3
C .3<x <4
D .4<x <5
5.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是
A .15°
B .22.5°
C .30°
D .45°6.下列各式的运算或变形中,用到分配律的是
A
.=B .222()ab a b =C .由25x +=得52x =-D .325a a a
+=7.不透明的袋子中装有除颜色外完全相同的a 个白球、b 个红球、c 个黄球,则任意摸出一个球,
是红球的概率是
A .b a c +
B .a c a b c +++
C .b a b c ++
D .a c b
+8.如图,等边三角形ABC 边长为5,D ,E 分别是边AB ,AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD
的长是
A .247
B .218
C .3
D .29.已知Rt △ABC ,∠ACB =90°,AC =3,BC =4,AD 平分∠BAC ,则点B 到射线AD 的距离是
A .2B
.C
D .3
10.一套数学题集共有100道题,甲、乙和丙三人分别作答,每道题至少有一人解对,且每人都解
对了其中的60道.如果将其中只有1人解对的题称作难题,2人解对的题称作中档题,3人都解对的题称作容易题,那么下列判断一定正确的是
A .容易题和中档题共60道
B .难题比容易题多20道
C .难题比中档题多10道
D .中档题比容易题多15道A
E D B C
F A
21
C B a b
A x
y B C
O 109876
0成绩/环次数12345678910乙甲第Ⅱ卷
注意事项:
1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.
二、填空题:本题共6小题,每小题4分,共24分.
11.分解因式:34m m -=.12.若某几何体从某个方向观察得到的视图是正方形,则这个几何体可以是.
13.如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是.14.若分式65
m m -+-的值是负整数,则整数m 的值是.15.在平面直角坐标系中,以原点为圆心,5为半径的⊙O 与
直线23y kx k =++(0k ≠)交于A ,B 两点,则弦AB 长
的最小值是.
16.如图,在平面直角坐标系中,O 为原点,点A 在第一象限,
点B 是x 轴正半轴上一点,∠OAB =45°
,双曲线k y x =过点A ,交AB 于点C ,连接OC ,若OC ⊥AB ,则tan ∠ABO
的值是.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题满分8分)
计算:3tan 30-+︒-(3.14π-)0.
18.(本小题满分8分)如图,已知∠1=
∠2,∠B =∠D ,求证:CB =CD .19.(本小题满分8分)先化简,再求值:(11x -)2
221x x x -+÷,其中1x +.20.(本小题满分8分)
如图,在Rt △ABC 中,∠ACB =90°,BD 平分∠ABC .
求作⊙O ,使得点O 在边AB 上,且⊙O 经过B ,D 两点;并证明
AC 与⊙O 相切.(要求尺规作图,保留作图痕迹,不写作法)
B C A
D 2
1C
A B
D
如图,将△ABC 沿射线BC 平移得到△A ′B ′C ′,使得点A ′落在
∠ABC 的平分线BD 上,连接AA ′,AC ′.
(1)判断四边形ABB ′A ′的形状,并证明;
(2)在△ABC 中,AB =6,BC =4,若AC ′⊥A′B′,求四边形ABB ′A ′
的面积.22.(本小题满分10分)
为了解某校九年级学生体能训练情况,该年级在3月份进行了一次体育测试,决定对本次测试的成绩进行抽样分析.已知九年级共有学生480人.请按要求回答下列问题:
(1)把全年级同学的测试成绩分别写在没有明显差别的小纸片上,揉成小球,放到一个不透
明的袋子中,充分搅拌后,随意抽取30个,展开小球,记录这30张纸片中所写的成绩,得到一个样本.你觉得上面的抽取过程是简单随机抽样吗?
答:.(填“是”或“不是”)
(2)下表是用简单随机抽样方法抽取的30名同学的体育测试成绩(单位:分):
59
69777372627978668185
84838486878885868990979198909596939299
若成绩为x 分,当x ≥90时记为A 等级,80≤x <90时记为B 等级,70≤x <80时记为C 等级,x <70时记为D 等级,根据表格信息,解答下列问题:
①本次抽样调查获取的样本数据的中位数是;
估计全年级本次体育测试成绩在A ,B 两个等级的人数是;
②经过一个多月的强化训练发现D 等级的同学平均成绩提高15分,C 等级的同学平均成绩提高10分,B 等级的同学平均成绩提高5分,A 等级的同学平均成绩没有变化,请估计强化训练后全年级学生的平均成绩提高多少分?
23.(本小题满分10分)
某汽车销售公司销售某厂家的某款汽车,该款汽车现在的售价为每辆27万元,每月可售出两辆.市场调查反映:在一定范围内调整价格,每辆降低0.1万元,每月能多卖一辆.已知该款汽车的进价为每辆25万元.另外,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,超过的部分每辆返利1万元.设该公司当月售出x 辆该款汽车.(总利润=销售利润+返利)
(1)设每辆汽车的销售利润为y 万元,求y 与x 之间的函数关系式;
(2)当x >10时,该公司当月销售这款汽车所获得的总利润为20.6万元,求x 的值.
B A
C A'B'C'
D
在正方形ABCD 中,E 是对角线AC 上一点(不与点A ,C 重合),以AD ,AE 为邻边作平行四边形AEGD ,GE 交CD 于点M ,连接CG .
(1)如图1,当AE <12
AC 时,过点E 作EF ⊥BE 交CD 于点F ,连接GF 并延长交AC 于点H .①求证:EB =EF ;
②判断GH 与AC 的位置关系,并证明;
(2)过点A 作AP ⊥直线CG 于点P ,连接BP ,若BP =10,当点E 不与AC 中点重合时,求
PA 与PC 的数量关系.B C D A E G
M F
H B C
D A 图1备用图
25.(本小题满分13分)
已知抛物线1(5)()2
y x x m =-+-(m >0)与x 轴交于点A ,B (点A 在点B 的左边),与y 轴交于点C .(1)直接写出点B ,C 的坐标;(用含m 的式子表示)
(2)若抛物线与直线12
y x =交于点E ,F ,且点E ,F 关于原点对称,求抛物线的解析式;(3)若点P 是线段AB 上一点,过点P 作x 轴的垂线交抛物线于点M ,交直线AC 于点N ,
当线段MN 长的最大值为258
时,求m 的取值范围.
答案及评分标准
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考
查内容比照评分参考制定相应的评分细则.
2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和
难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数.选择题和填空题不给中间分.
一、选择题:每小题4分,满分40分.
1.A 2.B 3.D 4.B 5.C 6.D 7.C 8.B
9.C 10.B 二、填空题:每小题4分,满分24分.
11.(2)(2)
m m m +-12.正方体13.甲
14.415
.16
注:12题答案不唯一,能够正确给出一种符合题意的几何体即可给分,如:某个面是正方形的长方体,底面直径和高相等的圆柱,等.
三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程和演算步骤.
17
.解:原式31=+-·····································································6分311=+-··············································································7分3=.···················································································8分18.证明:∵∠1=∠2,
∴∠ACB =∠ACD .·····································3分在△ABC 和△ADC 中,
B D ACB ACD A
C AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△ABC ≌△ADC (AAS ),··························································6分
∴CB =CD .·············································································8分
注:在全等的获得过程中,∠B =∠D ,AC =AC ,△ABC ≌△ADC ,各有1分.
19.解:原式22121x x x x x
--+=÷··································································1分21C A B
D
22
1(1)x x x x -=⋅-·······································································3分1
x x =-,··············································································5分当1x 时,原式=·····················································6分==.······················································8分20.解:B
C A
D O
·············································3分
如图,⊙O 就是所求作的圆.·························································4分
证明:连接OD .
∵BD 平分∠ABC ,
∴∠CBD =∠ABD .·····························································5分
∵OB =OD ,
∴∠OBD =∠ODB ,
∴∠CBD =∠ODB ,·····························································6分
∴OD ∥BC ,
∴∠ODA =∠ACB
又∠ACB =90°,
∴∠ODA =90°,
即OD ⊥A C .······································································7分
∵点D 是半径OD 的外端点,
∴AC 与⊙O 相切.······························································8分
注:垂直平分线画对得1分,标注点O 得1分,画出⊙O 得1分;结论1分.
21.(1)四边形ABB ′A ′是菱形.··································································1分
证明如下:由平移得AA ′∥BB ′,AA ′=BB ′,
∴四边形ABB ′A ′是平行四边形,∠AA ′B =∠A ′B C .··············2分
∵BA ′平分∠ABC ,
∴∠ABA ′=∠A ′BC ,
∴∠AA ′B =∠A ′BA ,······················································3分
∴AB =AA ′,
∴□ABB ′A ′是菱形.·······················································4分
(2)解:过点A 作AF ⊥BC 于点F .
由(1)得BB ′=BA =6.
D
由平移得△A ′B ′C ′≌△ABC ,
∴B ′C ′=BC =4,
∴BC ′=10.·····························5分
∵AC ′⊥A ′B ′,
∴∠B ′EC ′=90°,
∵AB ∥A ′B ′,
∴∠BAC ′=∠B ′EC ′=90°.
在Rt △ABC ′中,AC
′8==.····································6分
∵S △ABC ′1122
AB AC BC AF ''=⋅=⋅,∴AF 245
AB AC BC '⋅==',····························································7分∴S 菱形ABB ′A ′1445
BB AF '=⋅=,∴菱形ABB ′A ′的面积是1445.···················································8分22.(1)是;···························································································2分
(2)①85.5;336;··············································································6分
②由表中数据可知,30名同学中,A 等级的有10人,B 等级的有11人,
C 等级的有5人,
D 等级的有4人.依题意得,15410551101030⨯+⨯+⨯+⨯··········································8分5.5=.·······································································9分
∴根据算得的样本数据提高的平均成绩,可以估计,强化训练后,全年
级学生的平均成绩约提高5.5分.············································10分
23.解:(1)27250.1(2)0.1 2.2y x x =---=-+;··········································4分
(2)依题意,得(0.1 2.2)0.5101(10)20.6x x x -++⨯+⨯-=,··················7分
解得1216x x ==.···································································9分
答:x 的值是16.·································································10分
注:(1)中的解析式未整理成一般式的扣1分.
24.(1)①证明:∵四边形ABCD 是正方形,
∴∠ADC =∠BCD =90°,CA 平分∠BCD .∵EF ⊥EB ,∴∠BEF =90°.证法一:过点E 作EN ⊥BC 于点N ,···········1分∴∠ENB =∠ENC =90°.
∵四边形AEGD 是平行四边形,∴AD ∥GE ,
∴∠EMF =∠ADC =90°,∴EM ⊥CD ,∠MEN =90°,
∴EM =EN ,·······················································2分
∵∠BEF =90°,
∴∠MEF =∠BEN ,
∴△EFM ≌△EBN ,
∴EB =EF .························································3分B C D A E G
M F N H
证明二:过点E 作EK ⊥AC 交CD 延长线于点K ,··················1分
∴∠KEC =∠BEF =90°,
∴∠BEC =∠KEF ,
∵∠BEF +∠BCD =180°,∴∠CBE +∠CFE =180°.∵∠EFK +∠CFE =180°,∴∠CBE =∠KFE .
又∠ECK =12
∠BCD =45°,∴∠K =45°,∴∠K =∠ECK ,
∴EC =EK ,························································2分
∴△EBC ≌△EFK ,
∴EB =EF .························································3分
证明三:连接BF ,取BF 中点O ,连接OE ,OC .·················1分
∵∠BEF =∠BCF =90°,∴OE =12BF =OC ,∴点B ,C ,E ,F 都在以O 为圆心,OB 为半径的⊙O 上.∵ BE
BE =,∴∠BFE =∠BCA =45°,·········2分∴∠EBF =45°=∠BFE ,
∴EB =EF .························································3分
②GH ⊥AC .···············································································4分证明如下:∵四边形ABCD 是正方形,
四边形AEGD 是平行四边形,
∴AE =DG ,EG =AD =AB ,AE ∥DG ,
∠DGE =∠DAC =∠DCA =45°,
∴∠GDC =∠ACD =45°.············································5分由(1)可知,
∠GEF =∠BEN ,EF =EB .∵EN ∥AB ,∴∠ABE =∠BEN =∠GEF ,
∴△EFG ≌△BEA ,·····················6分
∴GF =AE =DG ,∴∠GFD =∠GDF =45°,
∴∠CFH =∠GFD =45°,
∴∠FHC =90°,
∴GF ⊥AC .······························································7分
(2)解:过点B 作BQ ⊥BP ,交直线AP 于点Q ,取AC 中点O ,
∴∠PBQ =∠ABC =90°.
∵AP ⊥CG ,
∴∠APC =90°.C D G M F A E N B H B C D A E G
M F O H G B C D A E M F K H
①当点E 在线段AO 上时,(或“当102AE AC <<时”)∠PBQ -∠ABP =∠ABC -∠ABP ,
即∠QBA =∠PBC .································8分∵∠ABC =90°,
∴∠BCP +∠BAP =180°.
∵∠BAP +∠BAQ =180°,
∴∠BAQ =∠BCP .································9分∵BA =BC ,
∴△BAQ ≌△BCP ,······························10分∴BQ =BP =10,AQ =CP ,
在Rt △PBQ 中,PQ
=
=∴PA +PC =PA +AQ =PQ
=········································11分②当点E 在线段OC 上时,(或“当12AC AE AC <<时”)∠PBQ -∠QBC =∠ABC -∠QBC ,
即∠QBA =∠PBC .
∵∠ABC =∠APC =90°,∠AKB =∠CKP ,∴∠BAQ =∠BCP .·······························12分∵BA =BC ,∴△BAQ ≌△BCP ,∴BQ =BP =10,AQ =CP ,
在Rt △PBQ 中,PQ
=
=∴PA -PC =PA -AQ =PQ
=············13分综上所述,当点E 在线段AO 上时,PA +PC
=当点E 在线段OC 上时,PA -PC
=25.(1)B (m ,0),C (0,52
m );·····························································2分解:(2)设点E ,F 的坐标分别为(a ,2a ),(a -,2
a -),························3分代入25111(5)()(5)2222y x x m x m x m =-+-=-+-+,得22511(5)2222511(5)2222
a a m a m a a m a m ⎧-+-+=⎪⎨⎪---+=-⎩①,②·········································4分由①-②,得(5)m a a -=.
∵0a ≠,
∴6m =,·············································································5分∴抛物线的解析式为2111522
y x x =-++.··································6分(3)依题意得A (5-,0),C (0,52
m ),由0m >,设过A ,C 两点的一次函数解析式是y kx b =+,
九年级数学—11—(共5页)将A ,C 代入,得5052k b b m -+=⎧⎪⎨=⎪⎩.,解得1252
k m b m ⎧=⎪⎨⎪=⎩,,∴过A ,C 两点的一次函数解析式是5122y mx m =+.····················7分设点P (t ,0),则5t m - (0m >),
∴M (t ,2511(5)222t m t m -+-+),N (t ,5122mt m +).①当50t - 时,
∴MN 255111(5)()22222
t m t m mt m =-+-+-+25122
t t =--.·····························································8分∵102
-<,∴该二次函数图象开口向下,又对称轴是直线52
t =-,∴当52
t =-时,MN 的长最大,此时MN 2555251()(22228
=-⨯--⨯-=.·································9分②当0t m < 时,
∴MN 255111[(5)]22222mt m t m t m =+--+-+25122t t =+.············10分∵102
>,∴该二次函数图象开口向上,又对称轴是直线52
t =-,∴当0t m < 时,MN 的长随t 的增大而增大,∴当t m =时,MN 的长最大,此时MN 25122m m =+.···············11分∵线段MN 长的最大值为258
,∴25251228
m m + ,·······························································12分整理得2550(
24
m + ,
m ∵
0m >,
∴m 的取值范围是0m < .········································13分。