第二章(微分方程)

合集下载

第二章动力学系统的微分方程模型

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。

在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。

在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。

在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。

§2.1 动力学系统统基本元件任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。

1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。

惯量(质量)=)加速度(力(2/)s m N 惯量(转动惯量)=)角加速度(力矩(2/)s rad m N ⋅2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。

按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。

对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。

x k F ∆=这里k 称为弹簧刚度,x ∆是弹簧相对于原长的变形量,弹性力的方向总是指向弹簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。

3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。

阻尼力通常表示为:αxc R = 阻尼力的方向总是速度方向相反。

当1=α,为线性阻尼模型。

否则为非线性阻尼模型。

应注意当α等于偶数情况时,要将阻尼力表示为:||1--=αx xc R 这里的“-”表示与速度方向相反§2.2 动力学建模基本定理1 动力学普遍定理对于大多数力学问题,可以使用我们熟知的牛顿动力学基本定理来解决,动力学普遍定理包括动量定理、动量矩定理和动能定理,以及其他变形形式,普遍定理的特点是比较直观,针对不同的问题可以选择不同的力学定理,在一般情况下利用普遍定理可以得到大多数动力学系统的数学模型。

常微分方程第二章第一讲

常微分方程第二章第一讲

2.1.2 可化为变量分离方程的类型
引言 有的微分方程从表面上看,不是可分 离变量的微分方程,但是,通过适当的变量替 换,就可以很容易地化为“变量分离方程”, 在这里,介绍两类这样的方程。 1. 齐次方程
1)方程的类型
定义
dy y g ( ) (2.5) 的方程,称为齐次 dx x 微分方程,这里 g (u ) 是 u 的连续函数。 14
dy ( y) f ( x)dx C (2.2)
可以证明这就是方程(2.1)的通解.
2)如果存在 y0, ( y0 ) 0, 则方程( .1 使 2 )还有特解
y y0
(**)
微分方程(2.1)的所有解为:式(2.2)和(**).
注意:积分常数C 的相对任意性。
7
3.变量分离方程的解题步骤
即 1 , 2 1 ,
则 ON OM ,
PM 而 tan 2 , OP ON
_____ _____
则有 y'
y x x y
2 2
.
上述方程为齐次微分 方程,可用变量变换 法求解。
27
小结 1.变量分离方程的形状 dy f ( x) ( y )或M 1 ( x) N1 ( y ) dx M 2 ( x) N 2 ( y ) dy 0 dx 2.变量分离方程的求解:分离变量法 步骤:分离变量,两边积分,检查是否有遗漏的特解
2
(*)
23
分离变量,得 dX 1 u du 2 X 1 2u u 两边积分,得 ~ 2 2 ln X ln | u 2u 1 | C
即X (u 2u 1) C1 (C1 e ), 此外容易验证 u 2 2u 1 0 亦为方程(*)的解,因此方程(*)的通解为 X 2 (u 2 2u 1) C1, 其中C1为任意常数。

第二章(多自由度系统的运动微分方程)详解

第二章(多自由度系统的运动微分方程)详解

k11 k 21 kN1
k1 j k2 j k Nj
k1N k2 N k NN
刚度影响系数 kij :第 j 个自由度产生单位位移,其他自由度位移为零时, 需要在第i 自由度处沿着位移方向施加的力。
用影响系数法建立系统的运动微分方程
【例】用影响系数法写出图示系统的刚度矩阵。
多自由度振动系统
Piezoelectric actuator
基于压电作动器的垂尾抖振主动抑制 (此系统有一、两千个自由度(3D实体单元) )
Z Y
X
第二章: 多自由度系统的运动 微分方程
第二章:多自由度系统的运动微分方程
第一讲:
1.建立多自由度系统运动微分方程的 各种方法的概述 2.用牛顿第二定律列写系统的运动微 分方程 3.用影响系数法建立系统的运动微分 方程
F1 1
k3
m2
k2 (d11 d21 )
m1
k2 (d11 d21 ) k1d11 1
d 21 k2 (d11 d21 )
F2 0
d11
k3d21
k2 k3 k1k2 k1k3 k2 k3 k2 k1k2 k1k3 k2 k3
m2
d 21
k2 (d11 d21 ) k3d21 0
上次课内容回顾
3.刚度影响系数
刚度影响系数 kij :第 j 个自由度产生单位位移,其他自由度位移为零时, 需要在第 i 自由度处沿着位移方向施加的力。
4.柔度影响系数
柔度影响系数 dij :第 j 个自由度上作用单位力,其他自由度作用力为零时,
在第 自由度上产生的位移。 i
5.刚度矩阵和柔度矩阵的关系

第二章三类典型的偏微分方程

第二章三类典型的偏微分方程

第二章 三类典型的偏微分方程
简化假设:
在弦上任取一小段 (x, x x)它的弧长为:
s
x x x
1
(
u x
)
2
dx
y
M'
s
T'
'
M
gs
T
x
x x x
由于假定弦在平衡位置附近做微小振动, u 很小,从而
x
x x
s x 1dx x
可以认为这段弦在振动中没有伸长,由胡克定律可
知,弦上每一点所受张力在运动过程中保持不变,与时
设场内热源为稳态的,即为 f(x, y, z)
流场温度不随时间变化,即T=T( x, y, z ) 则有
第二章 三类典型的偏微分方程
其中:
2T 2T 2T g(x, y, z,t) x2 y2 z2
g(x, y, z,t) f (x, y, z,t) / a2
这就是稳态方程,称为泊松方程。
c
第二章 三类典型的偏微分方程
☆ 三维热传导方程的推导
根据热学中的傅立叶定律
在dt时间内从dS流入V的热量为:
dQ k T dSdt k T nˆdSdt kT dSˆdt
n 从时刻t1到t2通过S流入V的热量为
S n
M V
S
热场
Q1
t2
t1
S
kT
dSˆ
dt
高斯公式(矢量散度的体积分等于该矢量的沿着该体积的面积分)
t 2 x2
2u t 2
a2
2u x2
0
令:a
E
2u P
t 2 x
第二章 三类典型的偏微分方程
☆ 静止空气中一维微小压力波的传播

第2章 微分方程+传递函数

第2章 微分方程+传递函数

dx
(x x0 )
x x0
写成增量形式:
df f (x) f (x0 ) dx xx0 (x x0 )
y k x
9
2.2.3 微分方程的线性化
例2-15 微分方程线性化
f (h) h
A dh(t) a dt
h(t) qi (t)
其中包含非线性项 h(t) ,单独将其线性化:
df f (x) f (x0 ) dx xx0 (x x0 ) f (x) k x
b1
dr(t) dt
b0r(t)
式中nm, n是系统阶次, r(t), c(t)是系统输入量和输出量。
例2-12 RC无源网络,输入电压ei(t)和输出电压eo(t)
R
解:由基尔霍夫定律
标准式: 左出右入降阶
ei (t) i C
eo (t)
ei (t) i(t)R eo (t)
eo
(t)
1 C
16
知识巩固
传递函数和微分方程一样, 也是用于描述系统的( ); 本课程使用的三种数学模型是( ), 其中( )是最主要的; 传递函数的定义是( ); 传递函数是代数表达式吗? 传递函数的求取方法一般有二种,分别是( ); 传递函数的成立条件是( ); 系统的阶次符号为( ), 它是传递函数的( )多项式的次数; 使传递函数分子为零的点, 称为传递函数的( ); 使传递函数分母为零的点, 称为传递函数的( ), 数学上称为( ),
2
a h0
h(t)
qi (t)
线性化方程已经把系统的工作坐标
从原点移至平衡工作点(h0 , qi0 ) 10
2.2.3 微分方程的线性化
具有两个自变量x、y的非线性函数 z=f (x, y)小偏差线性化的方法:

第二章常微分方程

第二章常微分方程

an (n c)(n c 1)xnc (F0 F1x F2 x2 ) an (n c)xnc
n0
n0
(G0 G1x G2 x2 ) an xnc 0
n0
第二章常微分方程——二阶变系数方程
首项xc的系数为0——指标方程
c2 (F0 1)c G0 0
第n项xn+c的系数为0 ——递推公式
rAs
)
dy dt
y
(rA
rAs )
[Qr (T )
Qr (Ts )]
第二章常微分方程——线性稳定性分析
将反应项与移热项线性展开
dx dt
1
rA cA
s
x
rA T
s
y
dy dt
rA cA
s
x
1
rA T
s
dQr dT
s
y
特征根方程
2 tr 0
detA I 0
从中可解出n个特征根和特征向量,构成基解矩阵
第二章常微分方程——一阶常系数方程组
通解 或
Y t e1t x 1 , e2t x 2 , ,ent x n
y t c1 x 1e1t c2 x 2e2t cn x nent
y=Yc 常数 c 由初始条件确定
y2
y c cc1
➢ 当c1-c2 为整数时,第二解为
y2
c
c
c2
y cc2
第二章常微分方程——二阶变系数方程
推导:设
y(x,c)
an不一定满足指标方程,将其代入
方程后有
x 2 d 2y dx 2
xF
(x
)
dy dx
G(x)y (c c1)(c c2)a0x c

第二章微分方程

第二章微分方程

]
[
]
lim f ( t ) = lim s ⋅ F ( s )
t →0 s →∞ s→0
lim f ( t ) = lim s ⋅ F ( s )
t →∞
2.3
非线性数学模型线性化
实际意义上纯粹的线性系统是不存在的,组成系统的元件或多或少 地存在着非线性特性,对非本质的非线性特性我们要进行线性化处理, 既线性近似。
图2
[解]:这是直线机械位移动力学系统,可 以假定系统采用集中参数,m为质点。 (1)系统的输入为F(t),输出为y(t),弹簧 的弹性阻力为Fk(t),阻尼器的阻尼力 为Ff(t)均为中间变量。 (2)画出m的受力图如左图2。
(3) 由牛顿第二定律(即加速度定律):
d2y ∑ Fi = ma = m 2 dt
或 i L (t ) =
1 ∫ u L (t )dt L
3.弹簧: 弹性力它是一种弹簧的弹性恢复力,其大小与机械变形成正比,
弹性力分平动和旋转两种。 平动弹簧的弹性力:
F = ky = k ∫ vdt
旋转弹簧的弹性力:
1 dF v= k dt
1 dT ω= k dt
T = kθ = k ∫ ω dt
d2y 即 F (t ) - Fk (t ) − Ff (t ) = m 2 dt
(4)列写中间变量Fk(t) 、 Ff(t)表达式:F (t ) = ky (t ), F (t ) = f k f
dy dt
(5)将上述中间变量的辅助方程代入原始方程,消去中间变量 Fk(t) 和Ff(t)
dy d2y F (t ) - ky (t ) − f =m 2 dt dt d2y dy (6)标准化,得到 m 2 +f + ky (t ) = F (t ) dt dt

常微分方程第二章 一阶微分方程的初等解法

常微分方程第二章  一阶微分方程的初等解法

du dx 1u2 x
两边积分得: ln u 1 u2 ln x ln c
整理后得 u 1 u2 cx
变量还原得 y 1 ( y )2 cx
x
x
du dx 1u2 x
最后由初始条件 y(1) 0,可定出c 1.
故初值问题的解为 y 1 (x2 1) 2
可2、化d为y 变a量1x 分b1 y离 方c1 法
由对数的定义有
y e p( x)dxc1
y e p( x)dxc1

y ec1e p(x)dx ce p(x)dx.
此外y 0也是方程的解,若在上式中充许c 0, 即知y 0也包括在上式中,
故方程的通解为
y ce p(x)dx , c为任常数.
例4
求初值问题
dy dx
y2
c os x的特解.
例:
y y sin x 0
并求满足条件的 y( ) 2 特解。
2
线性微分方程
例:
1、cos x dy y sin x cos2 x dx
二 伯努利(Bernoulli )方程
形如 dy p(x) y Q(x) yn dx
的方程,称为伯努利方程. 这里P(x), Q(x)为x的连续函数 。
故对应齐次方程通解为 y c(x 1)n
y
ce p(x)dx
ce
n dx x 1
c(x
1)n
其次应用常数变易法求非齐线性方程的通解,
令y c(x)( x 1)n为原方程的通解 , 代入得
dc(x) (x 1)n nc(x)(x 1)n1 nc(x)(x 1)n1 ex (x 1)n dx
解的步骤:
10
解方程组aa21xx

第二章-2.3恰当微分方程与积分因子

第二章-2.3恰当微分方程与积分因子

3
由全微分的定义,有
u u du dx dy x y
因此,当而且仅当存在函数 u u ( x, y ),使得
u u M ( x, y ), N ( x, y ) x y (3.2)
时,方程(3.1 )是恰当微分方程,并可写成下列形式
du ( x, y) 0
结论: 关系式
sin 2 x x 2 y 2 y 2 c,
由初始条件 y(0) 2, 得 c 4,
故所求的初值问题的解为:
sin 2 x x 2 y 2 y 2 4.
18
3 曲线积分法 定理1充分性的证明也可用如下方法: M ( x, y ) N ( x, y) 由于 , y x 由数学分析曲线积分与路径无关的定理知:
§2.3. 恰当方程和积分因子
一阶常微分方程的一般形式为 dy f ( x, y ) dx 可改写成微分的形式(或对称的形式)
f ( x, y)dx dy 0 进一步把 x, y 平等看待,写成下面形式的一阶
微分方程
M(x,y)dx+N(x,y)dy=0
(3.1)
1
2.3.1 恰当微分方程 1.定义
故所给方程是恰当方程.
由于M ( x, y), N ( x, y)在 全平面上连续 ,
故取( x0 , y0 ) (0,0),则
21
M ( x, y ) y cos x 2 xe y N ( x, y ) sin x x 2 e y 2,
u( x, y)
( x, y )
2 y
2 xdx (sin x x e 2)dy
xdx ydy x y
2 2

(整理)微分方程详解

(整理)微分方程详解

第二章 微分方程本章学习目的:本章的主要目的在于:学习微分方程模型的建立、求解方法、分析结果及解决实际问题的全过程。

1.知道求解微分方程的解析法、数值解法以及图形表示解的方法;2.理解求微分方程数值解的欧拉方法,了解龙格——库塔方法的思想;3.熟练掌握使用MATLAB 软件的函数求微分方程的解析解、数值解和图形解;4.通过范例学习怎样建立微分方程模型和分析问题的思想。

§2.1 引例 在《大学物理》中,我们曾学习过简谐振动(如:弹簧振子、单摆)0222=+x dtx d ω,那就是一个典型的二阶常微分方程的模型。

这里我们讨论“倒葫芦形状容 器壁上的刻度问题”。

对于圆柱形状容器壁上的容积刻度,可以利用圆柱体体积公式:4/2H D V π=,其中容器的直径D 为常数,体积V 与相对于容器底部的任意高度H 成正比,因此在容器壁上可以方便地标出容积刻度。

而对于几何形状不规则的容器,比如“倒葫芦形状”的容器壁上如何标出容积刻度呢?如图所示,建立坐标系,由微元法分析可知:dx x D dV 2)(41π=,其中x 表示高度,直径是高度的函数,记为D (x )。

可得微分方程:0)0()(412==V x D dx dV π如果该方程中的函数D(x)无解析表达式,只给出D(x)的部分测试数据,如何求解此微分方程呢?h=0.2;d=[0.04,0.11,0.26,0.56,1.04,1.17];x(1)=0;v(1)=0;for k=1:5x(k+1)=x(k)+h;v(k+1)=v(k)+(h/2)*(pi/4)*(d(k)^2+d(k+1)^2);endx=x(1:6),v=v(1:6),plot(x,v)x =Columns 1 through 50 0.2000 0.4000 0.6000 0.8000 Column 61.0000v =Columns 1 through 50 0.0011 0.0073 0.0373 0.1469 Column 60.3393§2.2 微分方程模型的建立在工程实际问题中,“改变”、“变化”、“增加”、“减少”等关键词提示我们注意什么量在变化,关键词“速率”、“增长”、“衰变”、“边际的”等常涉及到导数。

微分方程和差分方程方法ppt课件

微分方程和差分方程方法ppt课件
但增加是有一定限度的,当产品在市场上趋于 饱和时,销售速度将趋于极限值,这时无论采 取那种形式作广告(不包括其它的促销手段), 都不能使销售速度增加。
ppt精选版
22
设 M 为销售饱和水平,即市场对产品的最 大容纳能力,它对应着销售速度的上限。当 销售速度达到饱和水平之后,广告已不起作 用,销售速度随时间增加而自然衰减,同样 为衰减因子, 0 ,且为常数。
ppt精选版
16
x(t t) x(t) kx(t)t
两边除以t ,令t 0 ,有
lim x(t t) x(t) kx (t)
t 0
t
即 x(t) 满足微分方程
d x kx (t) dt
其解为
(3.7)
x(t) C ekt
若已知t 0 时,x(0) x0 ,则满足初值条件的解为
ppt精选版
12
r(x)
r0
(1
x xm
)
(3.4)
这样 Malthus 模型公式(3.2)变为
d x d t
r0
x (1
x xm
)
x(0) x0
(3.5)
称为阻滞增长模型或 Logistic 模型。由分离
变量法,解得
x(t)
xm
1 ( xm 1) er0 t
x0
(3.6)
ppt精选版
8
这种为了使用数学工具的需要而对离散量进 行连续化处理的方法,在建模中经常使用,如 将道路中运动的车辆群视为连续的“流体”, 动物种群和生产产品当达到一定数量都可以 看作是连续的变量。有时建模中也会作相反的 处理,比如求微分方程近似解时,把连续量进 行离散化,通过数值格式迭代求出数值解。因 此在一定条件下,连续和离散是相对的,可以 转换的,当然这种连续化或离散化的处理必须 是合理和适当的。

微分方程第2章习题解

微分方程第2章习题解

∂( μ(xy)M ) = ∂( μ(xy)N )
∂y
∂x

μ(xy)(∂M − ∂N ) = N ∂μ(xy) − M ∂μ(xy)
∂y ∂x
∂x
∂y
µ(xy)(∂M − ∂N ) = ( yN − xM ) dµ(xy) ,
∂y ∂x
d (xy)
∂M ∂N −
∂y
∂x
dµ ( xy)
=

1
= g(xy) ,
µ(x, y) =
1

xM (x, y) + yN (x, y)
方法 3 用定义求积分因子。
由积分因子的定义,只需证明二元函数 µ(x, y) =
1
满足
xM (x, y) + yN (x, y)
∂(µM ) ∂(µN )
=
即可。为此,我们计算
∂y
∂x
∂( M )
∂(µM ) xM + yN
=
∂y
∂y
仅依赖于 x 的积分因子。 证 必要性。若方程 dy − f (x, y)dx = 0 为线性方程,则方程可写为
dy − (P(x) y + Q(x))dx = 0,令
M = −(P(x) y + Q(x)) , N = 1 ,
∂M ∂N

∂M
∂y
由题有 连续,
∂x = −P(x) ,
∂y
N
由定理 2-2 的结论 1 方程有积分因子 e∫ −P( x) dx ,仅依赖于 x 。
x m{[M (1,u) + N (1, u)u]dx + xN (1,u)du} = 0 ,
可以看出上方程为可分离变量的方程,只要给上式乘以积分因子

第二章(多自由度系统的运动微分方程)详解

第二章(多自由度系统的运动微分方程)详解
f 2 (t )
k3u2
c1u1
m1
c2 (u2 u1 ) c2 (u2 u1 )
m2
c3u2
受力分析时假定两质量块均沿着坐标的正方向运动.因为这样在受力分析 时容易确定所受力的大小和方向,不容易出错.
根据牛顿第二定律,得到系统的运动方程:
m1u1 k1u1 k2 (u2 u1 ) c1u1 c2 (u2 u1 ) f1 (t ) m2u2 k2 (u2 u1 ) k3u2 c2 (u2 u1 ) c3u2 f2 (t )
Mu(t ) Cu(t ) Ku(t ) f (t )
返回
用影响系数法建立系统的运动微分方程
1.总体思路
刚度影响系数 柔度影响系数 影响系数法 阻尼影响系数
K
D
C
M
质量影响系数
用影响系数法建立系统的运动微分方程
2.刚度影响系数
0
Ku f
Mu Cu Ku f
0 第j行 k1 j 0 k 2j 1 0 k Nj 0
0, u2 1
u1 0
u2 1
k12
m1
k2
k2
k22
m2
k3
k12 k2
k22 k2 k3 k1 k2 k2 刚度矩阵: K k 2 k2 k3
k11 K k21
k12 k22
用影响系数法建立系统的运动微分方程
激振力向量
Mu(t ) Cu(t ) Ku(t ) f (t )
多自由度系统运动微分方程的一般形式
建立多自由度系统运动微分方程的各种方法的概述

常微分方程第二章

常微分方程第二章

第二章 基本定理我们在第一章主要学习了初等积分法,掌握了几类常微分方程的解法.但是这些解法只适用于某些特殊的类型,很多其它的常微分方程不能用初等解法进行求解.1841年,法国数学家刘维尔(Liouville )证明了里卡蒂(Riccati )方程)0)(()()()(2≠++=x p x r y x q y x p dydx 除了某些特殊的类型外,一般不能用初等积分法求解.例如,很简单的里卡蒂方程22y x dxdy +=就不能用初等积分法求解.自然地,如果一个常微分方程不能用初等积分法求解,那么应该如何处理呢?是否存在解呢?如果存在解,它的解是否唯一呢?解的存在区间是什么呢?初值的微小误差对解有什么影响呢?这些问题在理论的研究和实际应用中,都有着重要的意义.本章将解决这些基本问题. 本章主要介绍解的存在唯一性定理、解的延展定理与比较定理、解对初值的连续依赖性定理以及解对初值的可微性定理,这些定理就回答了我们刚才的疑问,有效的处理解的存在性、唯一性、存在区间、初值对解的影响等问题,为我们使近似解法奠定理论基础,同时这些定理也是常微分方程理论的基础内容,对进一步的学习奠定基础.解的存在唯一性定理对于一般的常微分方程),(y x f dxdy = () 如果给出了初始条件00)(y x y =,我们就得到了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy () 这时,在什么样的条件下,柯西初值问题的解存在且唯一呢?解的存在区间是什么呢?我们有如下的解的存在唯一性定理.2.1.1 存在唯一性定理的叙述定理(存在唯一性定理)如果方程()的右端函数),(y x f 在闭矩形区域b y y b y a x x a x R +≤≤-+≤≤-00002,:上满足如下条件:(1)在2R 上连续;(2)在2R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于2R 上的任何一对点),(y x 和),(y x 有不等式:y y N y x f y x f -≤-),(),(则初值问题()在区间],[0000h x h x +-上存在唯一解00)(),(y x x y ==ϕϕ 其中),(max ),,min(),(0y x f M M b a h R y x ∈==.在给出定理的证明之前,我们先对定理的条件和结论做些说明:1、在两个条件中,条件(2),即李普希兹条件比较难于验证,因为李普希兹常数N 难以确定.但是,我们可以将该条件加强,替换为:如果函数),(y x f 在闭矩形区域2R 关于y 的偏导数),(y x f y '存在且有界.这样,可以推出李普希兹条件成立.事实上,因为),(y x f y '有界,故设N y x f y ≤'),(,对2),(),,(R y x y x ∈∀,由拉格朗日中值定理得:y y N y y x f y x f y x f y -≤-'=-),(),(),(ξ我们验证),(y x f y '在闭矩形区域2R 上有界也不容易,可以进一步将条件加强为:),(y x f y '在闭矩形区域2R 上连续.由闭区域上连续函数的性质知:),(y x f y '在闭矩形区域2R 上有界,所以李普希兹条件成立.因此,有如下的关系式:),(y x f y '在2R 上连续⇒),(y x f y '在2R 上存在且有界⇒李普希兹条件2、在定理的结论中,解)(x y ϕ=的存在区间为],[0000h x h x +-,其中),(max ),,min(),(0y x f M M b a h R y x ∈==.为什么解的存在区间不是],[00a x a x +-呢?这是因为我们研究问题的范围为闭矩形区域2R ,方程的解)(x y ϕ=不能超出2R 的范围,又因为),(max ),(y x f M Ry x ∈=,所以M y x f M ≤≤-),( 即 M dxdy M ≤≤- 由⎪⎩⎪⎨⎧=-=00)(y x y M dx dy 和⎪⎩⎪⎨⎧==00)(y x y M dx dy 得:001)()(y x x M x y +--=,002)()(y x x M x y +-= 因此)()()(21x y x y x y ≤=≤ϕ,即)(x y ϕ=夹在)(1x y 与)(2x y 之间.又,)(1x y 与)(2x y 在2R 上的存在区间为],[0000h x h x +-, 故)(x y ϕ=的存在区间也是],[0000h x h x +-.2.1.2 存在性的证明首先,我们给出柯西初值问题()的等价转化,即求()的解)(x y ϕ=,等价于求解积分方程 ⎰+=xx d y f y y 0))(,(0ξξξ () 事实上,如果)(x y ϕ=是初值问题()的解,即有))(,()(x x f x ϕϕ='且00)(y x =ϕ从0x 到x 积分得:⎰+=xx d f y x 0))(,()(0ξξϕξϕ 即)(x y ϕ=是积分问题()的解.反过来,如果)(x y ϕ=是积分问题()的解,即有⎰+=xx d f y x 0))(,()(0ξξϕξϕ 则00)(y x =ϕ且))(,()(x x f x ϕϕ='即)(x y ϕ=是初值问题()的解.经过等价转化,我们将初值问题()的求解,转化为积分问题()的求解. 下面用皮卡(Picard )逐次逼近来证明积分问题()的解的存在性,分为三个步骤:1、构造近似函数列{})(x n ϕ任取一个满足初值条件00)(y x y =的函数)(0x y ϕ=作为首项(初始项),并要求在2R 上的存在区间为:],[0000h x h x +-,简单起见,取00)(y x =ϕ,将它代入方程()的右端,所得到的函数用)(1x ϕ表示,并称为一次近似,即⎰+=xx d f y x 0))(,()(001ξξϕξϕ 再将)(1x ϕ代入方程()的右端就得到二次近似⎰+=xx d f y x 0))(,()(102ξξϕξϕ 序行此法,可以得到n 次近似⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ 为了保证上述的逐次逼近过程可以一直进行下去,必须有2))(,(R x x n ∈ϕ,即当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ 下面用数学归纳法证明b y x n ≤-0)(ϕ.显然,当],[0000h x h x x +-∈时,有b y y y x ≤=-=-0)(0000ϕ假设,当],[0000h x h x x +-∈时,有b y x n ≤--01)(ϕ,那么,对于)(x n ϕ有⎰-=-xx n n d f y x 0))(,()(10ξξϕξϕ从而有b M b M Mh x x M d f y x x x n n =≤≤-≤≤-⎰-00100))(,()(ξξϕξϕ 由数学归纳法知,当],[0000h x h x x +-∈时,有 ,2,1)(0=≤-n b y x n ϕ这样,我们就可以得到一个近似函数列{})(x n ϕ.2、证明近似函数列{})(x n ϕ在区间],[0000h x h x +-上一致收敛.由于无法得到{})(x n ϕ的通项公式,只知道首项和递推关系式,直接证明函数列{})(x n ϕ的收敛性比较困难,为此我们构造函数项级数+-++-+-)]()([)]()([)(1010x x x x x n n ϕϕϕϕϕ () 它的部分和是)()]()([)]()([)()(10101x x x x x x x S n n n n ϕϕϕϕϕϕ=-++-+=-+因此,证明{})(x n ϕ的收敛性转化为证明级数()的收敛性,下面我们证明级数()在区间],[0000h x h x +-上一致收敛.首先研究级数()的通项)(x n μ⎰=-xx d f x x 0))(,()()(001ξξϕξϕϕ 即⎰=-xx d y f y x 0),()(001ξξϕ 所以00010),()(x x M d y f y x x x -≤≤-⎰ξξϕ 因为⎰+=x x d f y x 0))(,()(001ξξϕξϕ,⎰+=x x d f y x 0))(,()(102ξξϕξϕ,所以 ⎰-≤-x x d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ由李普希兹条件,得 !2)()()()(200011200x x MN d x MN d N x x x x x x -=-≤-≤-⎰⎰ξξξξϕξϕϕϕ 下面用数学归纳法证明!)()(011n x x MN x x nn n n -≤---ϕϕ 显然,2,1=n 的时候,不等式成立(上面已经给出), 假设!)()(011n x x MN x x n n n n -≤---ϕϕ成立,那么对于1+n 的情形有 )!1(!)()())(,())(,()()(100111000+-=-≤-≤-≤-+--+⎰⎰⎰n x x MN d n x MN d N d f f x x n n x x n n xx n n x x n n n n ξξξξϕξϕξξϕξξϕξϕϕ由数学归纳法知,对一切自然数n ,均有!)()(011n x x MN x x nn n n -≤---ϕϕ又00h x x ≤-,所以级数()的通项满足:!)(011n h MN v x n n n n -+=≤μ ( ,2,1=n ) 利用比式判别法,可知以n v 为通项的级数收敛,从而以)(x n μ为通项的级数绝对收敛且一致收敛.又,每一个)(x n μ是连续的,所以级数()的和函数也是连续的,记为)(x ϕ,其存在区间也是],[0000h x h x +-.因此函数列{})(x n ϕ就收敛于)(x ϕ.3、证明)(lim )(x x n n ϕϕ∞→=是积分问题()的解,从而也是初值问题()的解. 在⎰-+=x x n n d f y x 0))(,()(10ξξϕξϕ两端取极限,得到 ⎰-∞→∞→+=xx n n n n d f y x 0))(,(lim )(lim 10ξξϕξϕ 即⎰+=xx d f y x 0))(,()(0ξξϕξϕ 所以)(x ϕ是积分问题()的解,从而也是初值问题()的解.2.1.3 唯一性的证明下面我们证明解的唯一性.在证明唯一性之前,先介绍一个重要的不等式,即贝尔曼(Bellman )不等式.贝尔曼引理 设)(x y 为区间],[b a 上的非负连续函数,b x a ≤≤0.若存在,0≥δ 0≥k ,使得)(x y 满足不等式],[,)()(0b a x d y k x y xx ∈+≤⎰ττδ () 则有],[,)(0b a x e x y x x k ∈≤-δ证明 仅证明0x x ≥的情形,0x x ≤的情形类似.令)(x y 的原函数为⎰=xx d y x R 0)()(ττ,代入()得 δ≤-')()(x kR x R两边同时乘以积分因子)(0x x k e --,得)()(00)]()([x x k x x k e x kR x R e ----≤-'δ从0x 到x 积分得)()(00)(x x k x x k e e x kR -----≤δδ即)(0)(x x k e x kR -≤+δδ 由()知,)()(x kR x y +≤δ,所以],[,)(0b a x e x y x x k ∈≤-δ下面证明积分问题()的解的唯一性.假设积分问题有两个解)(1x y 和)(2x y ,我们只需要证明:)(1x y )(2x y ≡,],[0000h x h x x +-∈事实上,因为 ⎰+=x x d y f y x y 0))(,()(101ξξξ,⎰+=xx d y f y x y 0))(,()(202ξξξ 所以有⎰-≤-x x d y f y f x y x y 0))(,())(,()()(2121ξξξξξ由李普希兹条件知 ⎰-≤-xx d y y N x y x y 0)()()()(2121ξξξ 令N k x y x y x y ==-=,0,)()()(21δ,由贝尔曼引理可知,0)(=x y ,即)(1x y )(2x y ≡.这样,我们就完成了解的存在性与唯一性的证明.2.1.4 三点说明为了更好的理解和掌握解的存在唯一性定理,我们对该定理再做三点说明.1、在存在性的证明过程中,我们利用逐次逼近法构造了近似函数列{})(x n ϕ,其中首项为:00)(y x =ϕ,递推关系式为:⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ.该方法实际上给出了我们一种求初值问题()的近似解的方法,当用n 次近似解逼近精确解时,需要给出它的误差估计.事实上,有∑∑∞+=∞=+-≤-≤-101!)()()()(n k kk n k k k n k x x N N M x x x x ϕϕϕϕ 0)!1()(!)!1()(!10001010Nh n k kk n n k k k e n Nh N M k h N n Nh N M k h N NM +=+<≤+∞=+∞+=∑∑2、如果方程()是线性方程,即)()(x q y x p dxdy +-= 其中)(x p 和)(x q 在区间],[b a 上连续,这时,初值问题()在带型区域+∞<<-∞≤≤y b x a R ,:2满足定理的条件.事实上,)()(),(x q y x p y x f +-=在2R 上连续,而且)(),(x p y x f y -='在2R 上也连续,所以),(y x f 关于变量y 满足李普希兹条件.这时,初值问题()的解存在且唯一,存在区间为],[b a .3、定理中的李普希兹条件是保证解唯一的充分条件,那么这个条件是不是必要条件呢?回答是否定的,即李普希兹条件是解唯一的充分非必要条件.下面我们给出一个例子来说明李普希兹条件是解唯一的非必要条件,也就是说,即使李普希兹条件不成立,初值问题()的解也可能是唯一的.例1 试证方程0,ln ,0≠=⎩⎨⎧=y y y y dx dy 经过xOy 平面上任一点的解都是唯一的.证明 由00,ln ,0≠=⎩⎨⎧=y y y y dx dy 可得:0=y 或x Ce e y ±=. 任给xOy 平面上的一个点),(00y x ,只会对应0=y 或xCe e y ±=中的一个解,也就是说,过xOy 平面上任一点的解都是唯一的.但是,我们有 0ln ln )0,(),(-==-y y y y x f y x f 因为+∞=→y y ln lim 0,所以找不到0>N ,使得 0)0,(),(-≤-y N x f y x f从而方程右端函数在0=y 的任何邻域上不满足李普希兹条件,但是初值问题()的解却是唯一的,这说明李普希兹条件是非必要条件.习 题1.试判断方程y x dxdy tan =在区域 (1)π≤≤≤≤-y x R 0,11:1;(2)44,11:2ππ≤≤-≤≤-y x R上是否满足定理的条件?2.讨论方程3123y dx dy =在怎样的区域中满足定理的条件.并求通过)0,0(的一切解.3.试用逐次逼近法求方程2y x dxdy -=满足初值条件0)0(=y 的近似解: )(),(),(),(3210x x x x ϕϕϕϕ并在闭矩形区域11,11:2≤≤-≤≤-y x R 给出三次近似的误差估计.4.利用逐次逼近法求方程22x y dxdy -=适合初值条件1)0(=y 的近似解: )(),(),(210x x x ϕϕϕ并在闭矩形区域111,11:2≤-≤-≤≤-y x R 给出二次近似的误差估计.5.试证明定理中的n 次近似解)(x n ϕ与精确解)(x ϕ有如下的误差估计式:10)!1()()(+-+≤-n n n x x n MN x x ϕϕ 6.在条形区域+∞<≤≤y b x a ,内,假设方程()的所有解都唯一,对其中任意两个解)(),(21x y x y ,如果有)()(0201x y x y <,则必有b x x x y x y ≤≤<021),()(.7.讨论方程323y dx dy = 解的唯一性.延展定理和比较定理由解的存在唯一性定理,我们知道,初值问题()的解在满足一定条件的情况下存在且唯一,但是解的存在区间不是],[00a x a x +-,而是],[0000h x h x +- 其中),(max ),,min(),(0y x f M M b a h R y x ∈==.如果M 比较大的话,则解的存在区间就非常小,这对我们研究解的性质产生了很大的局限性,只能在很小的范围内有解,当x 超出这个范围时,解的情况就不清楚了.为了解决这个问题,我们有下面的延展定理.2.2.1 延展定理定理(延展定理)如果方程()的右端函数在区域R R D ⨯⊂上连续,且关于变量y 满足局部的李普希兹条件,即对于D 内的任一闭矩形区域都满足李普希兹条件,则对任何一点D y x ∈),(00,初值问题()的解)(x y ϕ=可以向左右无限延展,直到))(,(x x ϕ任意接近区域D 的边界.在给出定理的证明之前,先对“))(,(x x ϕ任意接近区域D 的边界”进行说明.当区域D 有界时,积分曲线向左右延展可以任意接近;当区域D 无界时,积分曲线向左、右延展,或者任意接近区域D 的边界(边界存在的话),或者无限远离坐标原点.证明 首先证明区域D 有界的情形.设区域D 的边界为D D L -=(D 为D 的闭包).对于任意给定的正数ε,记L 的ε邻域为εU ,记L 的2ε邻域为2εU ,记L 的4ε邻域为4εU .则集合22εεU D D -=为闭集,且D D ⊂2ε,所以2εD 有界. 只要证明积分曲线可以到达2εD 的边界2εL ,由ε的任意性知,积分曲线就可以任意接近区域D 的边界L .事实上,以2εD 中的任意一点为中心,以4ε为半径的闭圆区域均包含在区域D 的内部.且在闭区域44εεU D D -=之内.从而,以2εD 中的任意一点为中心,以4221ε=a 为边长的正方形也在闭区域4εD 之内.记 ),(max 4),(1y x f M D y x ε∈=则过2εD 的任意一点),(**y x 的积分曲线,必至少可在区间],[**h x h x +-上存在,其中)82,82min(),min(1111M M a a h εε==. 于是,过点),(00y x 的积分曲线)(x y ϕ=每向左或向右延展一次,其存在区间就伸长一个确定的正数h ,由于2εD 有界,)(x y ϕ=经过有限次延展后一定可以达到2εD的边界2εL .于是也就可以任意接近区域D 的边界L .其次考虑区域D 为无界的情形.这时,我们可以用闭圆区域,2,1},),{(222=≤+=n n y x y x S n与区域D 取交集,令n n S D D =,则 ∞==1n n D D .由于n D 为有界的区域,根据前面的证明,我们可知,过n D 内任一点的积分曲线能够任意接近n D 的边界.因此,过点),(00y x 的积分曲线)(x y ϕ=可以无限接近区域D 的边界.延展定理的证明,关键是第一步证明,也就是区域D 有界的时候,过点),(00y x 的积分曲线)(x y ϕ=向左向右延展的时候,一定要做等速延展,即延展步幅h 是不变的. 例1 试讨论方程2y dxdy=通过点)1,1(的解和通过点)1,3(-的解的存在区间. 解 该题目中研究问题的区域D 为整个坐标平面xOy .方程右端函数满足延展定理的条件.由2y dxdy=可以解得方程的通解为 xC y -=1代入1)1(=y 得:2=C .故通过点)1,1(的解为xy -=21 它可以向左无限延展,而当-→2x 时,+∞→y ,所以通过点)1,1(的解xy -=21的存在区间为)2,(-∞.代入1)3(-=y 得:2=C .故通过点)1,3(-的解为xy -=21 它可以向右无限延展,而当+→2x 时,-∞→y ,所以通过点)1,3(-的解xy -=21的存在区间为),2(+∞.这个例子说明,尽管),(y x f 在整个坐标平面上满足延展定理的条件,解上的点))(,(x x ϕ也能无限接近区域D 的边界,但是延展的方向却不一定是无限向右和向左,可能是向上或向下,从而导致解的存在区间不是),(+∞-∞. 例2 试证明:对任意的0x 及满足条件100<<y 的0y ,方程221)1(y x y y dx dy ++-=的满足条件00)(y x y =的解)(x y y =在),(+∞-∞上存在.证明:令221)1(),(yx y y y x f ++-=,则 222222)1(122),(y x x y y x y y x f y ++--++=' 显然),(),,(y x f y x f y '在xOy 平面上连续,满足解的存在唯一性条件及延展定理的条件,而1,0==y y 是),(y x f dxdy=的解, 因此,满足00)(y x y =,100<<y 的解存在,而且可以无限延展到xOy 平面的边界,且不能穿过1,0==y y ,故只能向左右无限延展,所以,)(x y y =在),(+∞-∞上存在.该例题说明,),(y x f 在整个坐标平面上满足延展定理的条件,当方程的解不能穿过1,0==y y 时,它就不能向上向下无限延展了,只能向左、向右延展,所以解的存在区间就是),(+∞-∞.在这里,1,0==y y 控制了解的延展方向,使它按照我们的要求进行延展,因此就有了下面的比较定理. 2.2.2 比较定理我们在使用延展定理的时候,通常会和比较定理配合使用,从而起到控制延展方向的作用.下面介绍一下比较定理.我们在考察方程()),(y x f dxdy= 时,通常将右端函数),(y x f 进行放缩的处理,比如),(),(),(21y x F y x f y x F <<这时,我们可以同时考察),(1y x F dx dy =和),(2y x F dxdy = 我们有如下的比较定理:定理 (第一比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件; (2)在D 上有不等式),(),(),(21y x F y x f y x F <<设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ<<Φϕ 021),()()(x x x x x <Φ>>Φϕ证明 仅证当0x x >时,)()(2x x Φ<ϕ,其它的情形相类似. 由比较定理的条件(1),初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解在0x 的某一邻域内存在且唯一,分别记为)(x y ϕ=和)(2x y Φ=,它们满足0020)()(y x x =Φ=ϕ令)()()(2x x x h ϕ-Φ=,则0)()()(0020=-Φ=x x x h ϕ且0))(,())(,()()()(0002020020>-Φ='-Φ'='x x f x x F x x x h ϕϕ所以函数)(x h 在0x 的某一右邻域内是严格单调增加的.如果在0x x >时,0)(>x h 不是总成立,则至少存在一点01x x >,使得0)(1=x h ,且当10x x x <<时,0)(>x h ,因此在点1x 的左导数0)0(1≤-'x h ,这与0))(,())(,()()()(1112121121>-Φ='-Φ'='x x f x x F x x x h ϕϕ矛盾.因此当0x x >时,0)(>x h 总成立,即)()(2x x Φ<ϕ.比较定理的应用,关键是),(1y x F 和),(2y x F 的选取,因为初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解)(x y ϕ=的存在区间的延展,受到)(1x y Φ=和)(2x y Φ=的控制,即)(x y ϕ=夹在)(1x y Φ=和)(2x y Φ=之间.因此,我们必须能确定出)(1x y Φ=和)(2x y Φ=的存在区间,这就是我们选取),(1y x F 和),(2y x F 的标准,即⎪⎩⎪⎨⎧==001)(),(y x y y x F dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解)(1x y Φ=和)(2x y Φ=必须能够求得. 下面我们给出第二比较定理.定理 (第二比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件; (2)在D 上有不等式),(),(),(21y x F y x f y x F ≤≤设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ≤≤Φϕ 021),()()(x x x x x <Φ≥≥Φϕ习 题1.设方程为),()(22y x f a y dxdy-= 假设),(y x f 及),(y x f y '在xOy 平面上连续,试证明:对于任意的0x 及a y <0,方程满足00)(y x y =的解都在),(+∞-∞上存在.2.指出方程2)1(2xy e y dxdy-=的每一个解的最大存在区间,以及当x 趋于这个区间的右端点时解的极限.3.讨论方程xx dx dy 1cos 12-= 解的存在区间.4.设),(y x f 在整个平面上连续有界,对y 有连续偏导数,试证明方程),(y x f dxdy=的任一解)(x y ϕ=在区间+∞<<∞-x 上有定义. 5.讨论方程212-=y dx dy 的通过点)0,0(的解,以及通过点)3,2(ln -的解的存在区间.6.在方程)(y f dxdy=中,如果)(y f 在),(+∞-∞上连续可微,且 )0(0)(≠<y y yf ,求证方程满足00)(y x y =的解)(x y 在区间),[0+∞x 上存在,且有0)(lim =+∞→x y x .解对初值的连续依赖性定理和解对初值的可微性定理通过前两节的存在唯一性定理和延展定理,加上比较定理,我们知道了初值问题()在什么样的条件下,解是存在的,是唯一的,而且存在区间比较小的时候,通过延展定理和比较定理可以将解的存在区间变大,从而在实际问题中可以达到我们的要求.但是,在实际问题中,还有一个问题需要解决,那就是误差问题.我们的初始条件0)(y x y =如果产生了微小的偏差,这个偏差对我们的初值问题()的解)(x y ϕ=会有什么影响呢?下面我们来解决这个问题. 我们在研究初值问题()的时候,习惯上把x 和y 当作常数来看待,这样初值问题()的解)(x y ϕ=被看作x 的函数.实际上,如果0x ,y 变化,初值问题()的解)(x y ϕ=也会发生变化.例如方程x y dx dy =经过点),(00y x 的解为x x y y 0=,可以看作0,,y x x 的函数.对于一般的情形,初值问题()的解也可以看作00,,y x x 的函数,记为),,(00y x x y ϕ=,代入0)(y x y =得:0000),,(y y x x =ϕ.如果我们的初始条件00)(y x y =发生了微小的误差,变为了*0*0)(y x y =,初值问题()的解也变化不大的话,称解连续依赖于初值.下面我们给出连续依赖性的严格定义.定义 设初值问题⎪⎩⎪⎨⎧==*0*0)(),(y x y y x f dxdy的解),,(*0*0y x x y ϕ=在区间],[b a 上存在,如果对于任意给定的正数ε,存在正数δ(δ的选取与,ε*0*0,y x 有关),使得对于满足δδ<-<-*00*00,y y x x ()的解),,(00y x x y ϕ=都在],[b a 上存在,且有],,[,),,(),,(*0*000b a x y x x y x x ∈<-εϕϕ则称初值问题()的解),,(00y x x y ϕ=在点),(*0*0y x 连续依赖于初值,0x 0y .定理 (解对初值的连续依赖性定理)设),(y x f 在区域D 内连续,且关于变量y 满足李普希兹条件.如果D y x ∈),(*0*0,初值问题()有解),,(*0*0y x x y ϕ=,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,则对任意的正数ε,存在0>δ,使对于满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*000y x x y x x证明 对于任意给定的正数ε,取εδ<<10,使得闭区域}),,(,),{(1*0*0δϕ≤-≤≤=y x x y b x a y x U整个含在区域D 内,这是可以做到的,因为区域D 是开区域,且当b x a ≤≤时,Dy x x x ∈)),,(,(*0*0ϕ,所以,只要1δ的选取足够小,以曲线),,(*0*0y x x y ϕ=为中线,宽度为12δ的带形开区域U 就整个包含在区域D 内, 选取δ满足)(110a b N e M--+<<δδ其中N 为李普希兹常数,),(max ),(y x f M Uy x ∈=,同时还要求δ的选取,必须保证闭正方形δδ≤-≤-*0*02,:y y x x R含于带形开区域U 内.由存在唯一性定理知,对于任一200),(R y x ∈,初值问题()在0x 的某邻域上存在唯一解),,(00y x x y ϕ=,而且),,(00y x x y ϕ=在x 的该邻域上可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(000000⎰+=而),,(*0*0y x x y ϕ=可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(*0*0*0*0*0*⎰+=对上述两式做差得:ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx xx )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-=-所以ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx x x )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-≤-ττϕτττϕττϕτd y x f d y x f y x f y y x x xx |)),,(,(||)),,(,()),,(,(|0000*0*0*00*0*0⎰⎰+-+-≤δττϕττϕτδM d y x f y x f xx +-+≤⎰|)),,(,()),,(,(|00*0*0*0ττϕτϕδd y x y x N M xx |),,(),,(|)1(00*0*0*0-++≤⎰由贝尔曼引理,得εδδδϕϕ<<+≤+≤---1)(*0*000)1()1(),,(),,(*a b N x x N e M eM y x x y x x因此,只要在),,(00y x x y ϕ=有定义的区间上,就有εϕϕ<-),,(),,(*0*000y x x y x x .下面我们证明:),,(00y x x y ϕ=在区间],[b a 上有定义.事实上,因为εϕϕ<-),,(),,(*0*000y x x y x x即解),,(00y x x y ϕ=夹在εϕ+=),,(*0*0y x x y 和εϕ-=),,(*0*0y x x y 之间,而且,初值问题()满足延展定理的条件,所以,解),,(00y x x y ϕ=可以向左向右无限延展,直到无限接近区域D 的边界,于是,它在延展的时候,必须由直线a x =和直线b x =穿出区域U ,从而),,(00y x x y ϕ=在区间],[b a 上有定义. 解对初值的连续依赖性说明,初值),(00y x 无法准确得到,但是我们能得到测量数据),(*0*0y x ,只要误差比较小,即 δδ<-<-*00*00,y y x x .我们就可以用),(*0*0y x 代替),(00y x 去计算,得到初值问题的解),,(*0*0y x x y ϕ=,这个解可以非常接近真实解),,(00y x x y ϕ=,即εϕϕ<-),,(),,(*0*000y x x y x x .同理,如果方程的右端函数),(y x f 不能准确得到,只能得到),(y x f 的近似函数),(~y x f ,即)),((,),(),(~D y x y x f y x f ∈<-δ我们就可以用),(~y x f 代替),(y x f 去计算,得到初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dx dy的解),,(00~y x x y ϕ=,那么),,(00~y x x y ϕ=能否代替),,(00y x x y ϕ=呢?我们有下面的解的连续依赖性定理.定理 (解对被积函数的连续依赖性定理)在区域D 上,),(y x f 和),(~y x f 都连续,而且关于变量y 满足李普希兹条件, 若初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dx dy在b x a ≤≤上有解),,(00~y x x y ϕ=,则对任意给定的正数ε,存在0>δ,只要),(y x f 满足)),((,),(),(~D y x y x f y x f ∈<-δ则初值问题()的解),,(00y x x y ϕ=在b x a ≤≤上存在,且有εϕϕ<-),,(),,(00~00y x x y x x .证明 由解的存在唯一性定理知,初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dx dy的解),,(00~y x x y ϕ=存在,设其存在区间为],[b a ,且有⎰+=xx d y x f y y x x 0))],,(,([),,(00~~000~ξξϕξϕ而初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy的解),,(00y x x y ϕ=也存在,且可以表示为⎰+=xx d y x f y y x x 0))],,(,([),,(00000ξξϕξϕ则⎰⎰-=-xx xx d y x f d y x f y x x y x x 0))],,(,([))],,(,([),,(),,(0000~~0000~ξξϕξξξϕξϕϕ从而有⎰-≤-xx d y x f y x f y x x y x x 0|)),,(,()),,(,(|),,(),,(0000~~0000~ξξϕξξϕξϕϕ⎰-+-=xx d y x f y x f y x f y x f 0|)),,(,()),,(,()),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰-+-≤xx d y x f y x f y x f y x f 0|)),,(,()),,(,(||)),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰+-≤xx d y x y x N 0)|),,(),,((|0000~ξδξϕξϕ⎰-+-≤xx d y x y x N a b 0|),,(),,(|)(0000~ξξϕξϕδ由贝尔曼引理,得)(0000~)(),,(),,(a b N e a b y x x y x x --≤-δϕϕ取)(a b N e ab ---<εδ,则εϕϕ<-),,(),,(0000~y x x y x x .且解),,(00y x x y ϕ=在b x a ≤≤上存在.例1 考虑方程0,ln ,0≠=⎩⎨⎧-=y y y y dx dy解的情况.解 显然1,1,0-===y y y 是方程的解,当1,1,0-≠≠≠y y y 时,有y y dx dyln -=这时解得上半平面的通解为xCe ey -=,下半平面的通解为xCe ey --=.可以看到,对于Ox 轴上的初值)0,(0x ,在任意有限闭区间上解对初值连续依赖,但是,在),0[+∞上,无论),(00y x ,00≠y 如何接近)0,(0x ,只要x 充分大,过),(00y x 的积分曲线就不能与过)0,(0x 的积分曲线(即0=y )任意接近了.这个例子说明,解在有限闭区间上对初值连续依赖,不能推广到无限区间,即,在无限区间上解对初值的连续依赖定理就不成立了. 我们有时不仅要求解对初值连续依赖,而且还要知道解),,(00y x x y ϕ=对初值00,y x 的偏导数0,y x ∂∂∂∂ϕϕ是否存在.下面给出解对初值的可微性定理.定理 (解对初值的可微性定理)如果函数),(y x f 以及),(y x f y '在区域D 内连续,则初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy的解),,(00y x x y ϕ=在它有定义的区间上有连续偏导数0,y x ∂∂∂∂ϕϕ.并且有⎰-=∂∂'xx y d y x f ey x f x y x x 000)),,(,(00000),(),,(ττϕτϕ及⎰=∂∂'xx y d y x f ey y x x 000)),,(,(000),,(ττϕτϕ习 题1.若函数),(y x f ,),(y x R 在区域D 内连续且满足李普希兹条件,设初值问题⎪⎩⎪⎨⎧=+=*0*0)(),(),(y x y y x R y x f dxdy的解为),,(*0*0~y x x y ϕ=,存在区间为],[b a .对任意的正数ε,存在0>δ,使对于满足)),((,),(D y x y x R ∈<δ的),(y x R ,以及满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*0~00y x x y x x2.已知方程)sin(xy dxdy= 试求000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x x y x x y 和0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x y y x x y3.设),,(00y x x ϕ是初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解,试证明0),(),,(),,(00000000=∂∂+∂∂y x f y y x x x y x x ϕϕ欧拉折线法在第一章,我们介绍了方程的初等解法,即用微积分的知识求得常微分方程的函数解.但是绝大多数的方程不能用初等方法求解,在第二章的前三节中,我们给出了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy在什么样的条件下,解存在且唯一;在什么条件下,解的存在区间可以延展;在什么条件下连续依赖于初值;在什么条件下,解对初值是可微的.有了这些准备,我们就可以研究柯西初值问题的近似解.下面我们介绍求近似解的方法,欧拉折线法.假定函数),(y x f 在区域:+∞<<-∞≤≤y b x a ,上连续,且关于变量y 满足李普希兹条件,求柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy在区间],[0b x 上的近似解,我们采用的方法是:(1)等分区间],[0b x ,分点为nk kh x x k ,,1,0,0 =+=;小区间长度n x b h 0-=,(2)第一个小区间上用切线段逼近曲线:))(,(0000x x y x f y y -+=,(3)求出1x 所对应的纵坐标))(,(010001x x y x f y y -+=,(4)依次重复(2),(3)得到每个小区间上的线段,从而得到欧拉折线. 这样,我们就用欧拉折线作为柯西初值问题在区间],[0b x 近似解.欧拉折线法的前提是:柯西初值问题的解存在且唯一,而且解的存在区间是],[0b x .例1试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=1)1(22y y x dxdy的解在4.1=x 时的近似值.解 令22),(y x y x f +=,2)1,1(=f ,这时12-=x y ,代入1.11=x 得:2.11=y ,65.2)2.1,1.1(=f ,这时2.1)1.1(65.2+-=x y , 代入2.12=x 得:465.12=y ,586225.3)465.1,2.1(=f , 这时465.1)2.1(586225.3+-=x y ,代入3.13=x 得:8236225.13=y ,0155990225.5)8236225.1,3.1(=f , 这时8236225.1)3.1(0155990225.5+-=x y ,代入4.14=x 得:53251824022.24=y习 题1. 试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=-=0)0(22y y x dxdy 的解在5.1=x 时的近似值.2.试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=2)1(22y y x dxdy 在区间]4.1,1[上的近似解.。

微分方程数值解法(李荣华3版)第二章习题答案(大)

微分方程数值解法(李荣华3版)第二章习题答案(大)

第二章习题课(2007.4.28)习题1.求两点边值问题22sin , 0142(0)0, (1)0xLu u u x u u ππ⎧''=-+=<<⎪⎨⎪'==⎩(1.1)的线性有限元解函数(区间等距剖分成2段或3段),要求在计算总刚度矩阵和总荷载向量时,所涉及的定积分用两种方法: 1. 精确求解;2. 用中矩形公式近似计算。

解:第一步:写出原问题(1.1)的等价变分形式(基于虚功原理)试探函数空间和检验函数空间均为:11(){ |(), ()0 }E H I u u H I u a =∈=.在(1.1)的第一个式子两边同时乘以检验函数空间1()E H I 中的任意元素v ,再在区间(0,1)I =上积分,可得21112sin42xu vdx uvdx vdx ππ''-+=⎰⎰⎰ (1.2)其中111011[(1)(1)(0)(0)]u vdxu v dx vu u v dx v u v u u v dx'''''-=-''''=--''=⎰⎰⎰⎰分部积分(1.3)将(1.3)代入(1.2),可得211()2sin42xu v uv dx vdx ππ''+=⎰⎰记21010(,)()4()2sin 2a u v u v uv dx x f v vdxππ⎧''=+⎪⎪⎨⎪=⎪⎩⎰⎰ 则可以得到原问题(1.1)的等价变分问题:求1()E u H I ∈,使得1(,)(), ()Ea u v f v v H I =∀∈. (1.4)第二步:线性有限元空间的构造1.网格剖分(这里以等距剖分3段为例)2.一次Lagrange 有限元空间的定义1{ ():|(),1,2,3, (0)0 }E i h h h e i h V u C I u P e i u =∈∈==.3. Lagrange 节点基函数的构造113, [0,]312()23, [,]330,x x x x x φ⎧∈⎪⎪⎪=-∈⎨⎪⎪⎪⎩在别处 ; 21231, [,]332()33, [,1]30,x x x x x φ⎧-∈⎪⎪⎪=-∈⎨⎪⎪⎪⎩在别处; 3232, [,1]()30,x x x φ⎧-∈⎪=⎨⎪⎩ 在别处.4.空间E hV 中元素的(整体)表示记 (), 1,2,3i h i u u x i ==,则对E hh u V ∀∈,有31()()h j j j u x u x φ==∑ (1.5)第三步:写出线性有限元方程将原变分问题(1.4)中1()EHI 的试探函数子空间和检验函数子空间均取为E h V ,则可以得到原问题(1.1)的近似变分问题:求 E hhu V ∈,使得 (,)(), E h h h h h a u v f v v V =∀∈. (1.6)利用(1.5)并将 h v 取为(), 1,2,3i x i φ=则上述近似变分问题等价于求123,,u u u R ∈,使得31(,)(), 1,2,3j j i i j a u f i φφφ===∑⇔ 31(,)(), 1,2,3j i j i j a u f i φφφ===∑⇔ 31(,)(), 1,2,3i j j i j a u f i φφφ===∑ 写成矩阵形式AU b =其中111213212223313233(,)(,)(,)(,)(,)(,)(,)(,)(,)a a a A a a a a a a φφφφφφφφφφφφφφφφφφ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,123u U u u ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 123()()()f b f f φφφ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中(a ) 精确求解以11(,)a φφ和1()f φ的计算为例:212211110122222223311111031222222233103(,)[()]4[()][()]44[3(3)][(3)(23)]44a dxdx dxx dx x dx πφφφφππφφφφππ'=+''=+++=++-+-=⎰⎰⎰⎰⎰1221(,)(,)a a φφφφ==,1331(,)(,)a a φφφφ==,22(,)a φφ=2332(,)(,)a a φφφφ==,33(,)a φφ=11101233103()2sin2 2sin (3)2sin (23)22xf dxx x x dx x dx πφφππ==+-=⎰⎰⎰(b )中矩形公式近似求解中矩形公式:()()()2baa bg x dx b a g +≈-⎰.以11(,)a φφ和1()f φ的计算为例:222222112221111(,)[3(3)][(3)(23)]34634211 (9)(9)3163162 (9)316a ππφφπππ≈++-+-=+++=+ 111111162()2sin (3)2sin (23)32632222 sin sin32438f ππφππ≈+-=+习题2.导出下面边值问题1122(), ()(), ()()d du Lu p qu f a x bdx dx u a u a u b u b αβαβ⎧=-+=<<⎪⎨⎪''+=+=⎩ (2.1)的线性有限元方程。

常微分方程第2章

常微分方程第2章

(u ) u
两边积分, 得
积分后再用

du
(u ) u

代替 u, 便得原方程的通解.
例1. 解微分方程 y
解: 令 u
y
y x
tan
y x
.
x u x u u tan u
, 则 y u x u , 代入原方程得
分离变量 两边积分 得
cos u sin u cos u
说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但在
例3. 在制造探照灯反射镜面时, 要求点光源的光线反 射出去有良好的方向性 , 试求反射镜面的形状. 解: 设光源在坐标原点, 取x 轴平行于光线反射方向, 则反射镜面由曲线 绕 x 轴旋转而成 . 过曲线上任意点 M (x, y) 作切线 M T,
dX X
积分得
arctan u
2 1 ln (1 u ) 2
ln C X
代回原变量, 得原方程的通解:
y 5 ln C ( x 1) ln 1 arctan x 1 2 x 1
y5
1
2
得 C = 1 , 故所求特解为
u

ln (1 e
x y
(1 e ) e 1 e
u
u
u
du
所求通解:
) y C ( C 为任意常数 )
解法2 分离变量
e
y
e C
y
x

(e C )e 1 0
x
(C<0 )
例4. 已知放射性元素铀的衰变速度与当时未衰变原
子的含量 M 成正比, 已知 t = 0 时铀的含量为 衰变过程中铀含量 M(t) 随时间 t 的变化规律.

第二章动力学系统的微分方程模型

第二章动力学系统的微分方程模型

第⼆章动⼒学系统的微分⽅程模型第⼆章:动⼒学系统的微分⽅程模型利⽤计算机进⾏仿真时,⼀般情况下要给出系统的数学模型,因此有必要掌握⼀定的建⽴数学模型的⽅法。

在动⼒学系统中,⼤多数情况下可以使⽤微分⽅程来表⽰系统的动态特性,也可以通过微分⽅程可以将原来的系统简化为状态⽅程或者差分⽅程模型等。

在这⼀章中,重点介绍建系统动态问题的微分⽅程的基本理论和⽅法。

在实际⼯程中,⼀般把系统分为两种类型,⼀是连续系统;其数学模型⼀般是⾼阶微分⽅程;另⼀种是离散系统,它的数学模型是差分⽅程。

§2.1 动⼒学系统统基本元件任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。

1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或⾓加速度)产⽣单位变化所需要的⼒(或⼒矩)。

惯量(质量)=)加速度(⼒(2/)s m N 惯量(转动惯量)=)⾓加速度(⼒矩(2/)s rad m N ?2 弹性元件:它在外⼒或外⼒偶作⽤下可以产⽣变形的元件,这种元件可以通过外⼒做功来储存能量。

按变形性质可以分为线性元件和⾮线性元件,通常等效成⼀弹簧来表⽰。

对于线性弹簧元件,弹簧中所受到的⼒与位移成正⽐,⽐例常数为弹簧刚度k 。

x k F ?=这⾥k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性⼒的⽅向总是指向弹簧的原长位移,出了弹簧和受⼒之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受⼒和弹簧变形之间的关系是⼀⾮线性关系。

3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,⽽不储存能量,可以形象的表⽰为⼀个活塞在⼀个充满流体介质的油缸中运动。

阻尼⼒通常表⽰为:αxc R = 阻尼⼒的⽅向总是速度⽅向相反。

当1=α,为线性阻尼模型。

否则为⾮线性阻尼模型。

应注意当α等于偶数情况时,要将阻尼⼒表⽰为:||1--=αx xc R 这⾥的“-”表⽰与速度⽅向相反§2.2 动⼒学建模基本定理1 动⼒学普遍定理对于⼤多数⼒学问题,可以使⽤我们熟知的⽜顿动⼒学基本定理来解决,动⼒学普遍定理包括动量定理、动量矩定理和动能定理,以及其他变形形式,普遍定理的特点是⽐较直观,针对不同的问题可以选择不同的⼒学定理,在⼀般情况下利⽤普遍定理可以得到⼤多数动⼒学系统的数学模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u1 uR1 uR 2 u2 i R1R1 i R 2R2 u2
d( u R 2 u 2 ) du 2 du 2 i R1 i C2 i R 2 C1 C2 i R 2 i C 2 C2 dt dt dt du 2 d( C 2 R 2 u2 ) du 2 dt C1 C2 dt dt
d( u R 2 u 2 ) du 2 du 2 i R1 i C2 i R 2 C1 C2 i R 2 i C 2 C2 dt dt dt du 2 d( C 2 R 2 u2 ) du 2 dt C1 C2 dt dt
d u2 du2 C1C2R1R 2 2 [(C1 C2 )R1 C2R 2 ] u2 u1 dt dt
2
第二章 物理系统的微分方程
学习要点: 2.能建立系统的微分方程(以R-C电路为例) 【例2】试列图P2-5所示R-C电路微分方程式。u1为输入量, u2为输出量。 uR du C iR iC C R 根据R、C的电流与电压关系 dt 由克希荷夫定律,列出电压方程式:
1 di u 2 i R2 C dt
第二章 自动控制系统的数学模型
学习要点: 2.能建立系统的微分方程(以R-C电路为例) 【例3】试列图P2-4所示R-C电路微分方程式。u1为输入量, u2为输出量。 uR du C iR iC C R 根据R、C的电流与电压关系 dt 由克希荷夫定律,列出电压方程式:
u1 uR1 uR 2 u2 i R1R1 i R 2R2 u2
Ri uo ui
这就是R-C串联电路微分方程式,是一阶微分方 程。
第二章 物理系统的微分方程
学习要点: 2.能建立系统的微分方程(以R-C电路为例) 【例2】试列图P2-5所示R-C电路微分方程式。u1为输入量, u2为输出量。 uR du C iR iC C R 根据R、C的电流与电压关系 dt 由克希荷夫定律,列出电压方程式:
第二章 物理系统的微分方程
学习要点:
2.能建立系统的微分方程(以R-C电路为例) 记住R-C元件电流和电压的关系:
uR iR R
du C iC C dt
第二ቤተ መጻሕፍቲ ባይዱ 物理系统的微分方程
学习要点: 2.能建立系统的微分方程(以R-C电路为例) 【例 1】试求如图所示RC电路的微分方程式。 根据克希荷夫定律,列出电压方程式: Ri+uo=ui 消去中间变量i,
u1 uR1 u2 i R1R1 u2
i i C1 i R1
d(u1 u2 ) u1 u2 C1 dt R1
第二章 物理系统的微分方程
学习要点:
1.术语解释: 数学模型 数学模型的形式——微分方程 2.能建立电气系统的微分方程(以R-L-C电路为例) 列写系统微分方程式的一般步骤: ①确定系统和各元件或部件的输入量与输出量。 ②根据基本定律,列写系统中每个元件的输入与输出 的原始方式或微分方程式。 ③确定输入与输出量,消去中间变量,求出系统输入 与输出的微分方程式。
相关文档
最新文档