因式分解(完全平方公式)
因式分解中的完全平方公式
对于简单题型,首先要识别出多项式是否符合完 全平方公式的形式,然后确定$a$和$b$的值, 最后按照公式进行因式分解。
复杂题型解析及思路点拨
例题
$4x^2 + 12xy + 9y^2 - 25$
解析
思路点拨
观察该多项式,可以发现前三项 符合完全平方公式$a^2 + 2ab + b^2$的形式,其中$a = 2x, b = 3y$,而最后一项是常数项。因此, 可以将前三项因式分解为$(2x + 3y)^2$,然后与常数项组合进行 进一步的因式分解。
提取公因式法应用
01
在多项式中识别公因式,并将其 提取出来。这有助于简化多项式 ,并使其更容易识别出完全平方 项。
02
对提取公因式后的多项式进行观 察,判断是否可以通过完全平方 公式进行因式分解。
分组分解法应用
将多项式中的项进行分组,使 得每组内部能应用完全平方公 式。分组的方式可以根据多项 式的特点灵活选择。
对每个分组应用完全平方公式 进行因式分解,得到分组内的 因式。
将各分组的因式相乘,得到整 个多项式的因式分解结果。
04 典型例题解析与技巧指导
简单题型解析及思路点拨
1 2 3
例题
$x^2 + 2x + 1$
解析
观察该多项式,可以发现它符合完全平方公式 $a^2 + 2ab + b^2$的形式,其中$a = x, b = 1$。
教师点评和总结归纳
针对学生完成情况,教师给予及时的点评和反馈,指出学生在解题过程中的优点和 不足。
教师总结完全平方公式在因式分解中的应用及注意事项,强调公式运用的灵活性和 多样性。
教师可结合学生实际情况,对部分难题进行详细讲解和示范,帮助学生更好地理解 和掌握完全平方公式。
分解因式公式法---完全平方公式
12(a+b)+36 就是一个完全平方式。即
(a+b)2-12(a+b)+36=(a+b)2-2×(a+b)×6+62 m2 - 2 ×6 +62 解: (a+b)2-12(a+b)+36 ×m = (a+b)2-2×(a+b)×6+62 =(a+b-6)2
现在回头来看看我们上课时提出的问题,
快速口算
完全平方式 a2 2ab b2 (a b)2
左边:① 项数:共三项,即a、b两数的平方项
,a、b两数积的2倍。
② 次数:左边每一项的次数都是二次。
③ 符号:左边a、b两数的平方项必须同号。
右边:是a、b两数和(或差)的平方。
当a、b同号时,a2+2ab+b2=(a+b)2
当a、b异号时,a2-2ab+b2=(a-b)2
∴ 2a2+4b-3=2×(-1)2+4×2-3
=7
考考你
(2)已知a、b、c是△ABC的三边的长,且满 足 a2+2b2+c2-2b(a+c)=0,试判断△ABC的 形状。 温馨提示:将条件a2+2b2+c2-2b(a+c)=0变形 为a2+2b2+c2-2ab-2bc=0,左边与完全平方式 十分相似。可将其奏成两个完全平方式的和, 然后利用非负数性质就能解决问题了。
3、深刻理解
下列各式是不是完全平方式,为什么? 是 (1) x2-4x+4______________ 不是,缺乘积项 (2) x2+16 _________________ 不是,缺乘积项的2倍 (3 ) 9m2+3mn+n2_____________________ 不是,平方项异号 (4)-y2-12xy+36x2 是 __________________ 不是,只有一个平方项 2 (5) -m +10mn-25n2______________ (6 )
完全平方公式因式分解
完全平方公式因式分解
完全平方公式即(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解等)。
完全平方公式:
两数和的平方,等于它们的平方和加上它们的的积的2倍。
(a+b)²=a²﹢2ab+b²
两数差的平方,等于它们的平方和减去它们的积的二倍。
﹙a-b﹚²=a²﹣2ab+b²
扩展:
掌握用完全平方公式因式分解的特征.
(1)完全平方式:形如的多项式称为完全平方式.
(2)完全平方公式:公式中的a,b不仅可以表示数字、_____, 也可以是_____.
(3)公式的特征:左边由三项组成,其中有两项分别是某两个数(或式)的平方,另一项是上述两数(或式)的_____,符号可正可负;右边是两项和(或差)的平方.
【解析】
完全平方公式:.公式中的a,b,不仅可以表示数字、单项式,也可以是多项式.
(公式的特征:左边由三项组成,其中有两项分别是某两个数(或式)的平方,另一项是上述两数(或式)的乘积的倍,符号可正可负;右边是两项和(或差)的平方. 【答案】
(2)单项式,多项式.(3)乘积的倍.。
3因式分解---完全平方公式
师航教育一对一个性化辅导讲义3因式分解---完全平方公式一、目标要求1.理解完全平方公式的意义。
2.能运用完全平方公式进行多项式的因式分解。
二、重点难点完全平方公式的意义及运用。
1.完全平方公式的意义:公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2意义:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
2.完全平方公式的应用:用完全平方公式分解因式时要先判断是否是完全平方公式,再运用公式分解因式。
知识点一:因式分解---完全平方公式用完全平方公式因式分解:即两个数(整式)的平方和加上(减去)这两个数(整或式)的积的,等于这两个数(整式)的和(差)的平方.如:,其中叫做完全平方式。
注:①与整式乘法中完全平方公式正好相反.②形式和结构特征:左边是一个三项式,其中两项同号且均为一个整式的平方(平方项),另一项是平方项幂的底数的2倍(乘积项),符号可正也可负,右边是两个整式的和(或差)的平方,中间的符号同左边的乘积项的符号3、用公式法进行因式分解的关键要在这个多项式中找出符合公式(平方差公式,完全平方公式)的条件.这就要求必须清楚每个公式的结构特点.不要忽视完全平方公式的中间项,而错误的认为:a2±b2=(a±b)2。
4、理解公式中的字母a、b不仅可以表示数,而且还可以表示单项式,多项式等。
.【例1】把4a2-12ab+9b2分解因式。
分析:多项式4a2-12ab+9b2共有三项,第一项是(2a)2,第三项是(3b)2,4a2+9b2是2a、3b的平方和,第二项正好是2a与3b的积的2倍,所以4a2-12ab+9b2是一个完全平方式,可分解为(2a-3b)2。
解:原式=(2a)2-2·2a·3b+(3b)2=(2a-3b)2。
【例2】把16-8xy+x2y2分解因式。
分析:多项式16-8xy+x2y2共有三项,第一项是42,第三项是(xy)2,而第二项正好是4与xy乘积的2倍,所以16-8xy+x2y2是一个完全平方式,可分解为(4-xy)2。
14.3.2公式法_因式分解(完全平方公式)
a 2ab b a 2ab b
2 2
2
2
完全平方式的特点: 1、必须是三项式 2、有两个“项”的平方 3、有这两“项”的2倍或-2倍
2 2 首 2首尾 尾
判别下列各式是不是完全平方式
1x 2 xy y 2 2 2A 2 AB B 2 2 3甲 2 甲乙 乙 2 2 4 2
a 2ab b a b
2 2
2
a 2ab b a b
2 2
2
这两个多项式有什么特征?
2 2 2 2 a +2ab+b 与a -2ab+b
这两个多项式是两个数的平方和加上(或 减去)这两个数的积的2倍,这恰是两个 数和或差的平方。
我们把 2 2 和 2 2 a +2ab+b a -2ab+b 这样的式子叫做完全平方式。
1. 因式分解:9x2-y2-4y-4=_____. 2 2 【解析】9x -y -4y-4
= 9x2-(y2+4y+4) = 答案: 2. 分解因式:2a2–4a+2 2 【解析】 2a – 4a+2 = 2(a 2 – 2a +1) = 2(a – 1) 2
需要我们掌握: 1:如何用符号表示完全平方公式?
(1) (2) 1 6 a 4 + 2 4 a 2 b 2 + 9 b 4 2 2 解:(1)x - 12xy+36y 2 2 = x -2· x· 6y+ ( 6y ) = ( x - 6y ) 2 ( 2 ) 16a 4 +24a 2 b 2 +9b 4
2. 因式分解.
2 2 x - 12xy+36y
因式分解-完全平方公式
a2 + 2·a ·b +b2 解:(1)16x2 - 24x+9 = (4x)2-2·4x·3+32
=(4x - 3)2.
(1) x2+14x+49
解 :
原式 x2 2 x 7 72
(x 7) 2
例、把下列多项式分解因式。
⑴、25-10x+x2 解:原式=52-2×5·x+x2
请补上一项,使下列多项
式成为完全平方式
1 x2 ___2_x_y__ y2 2 4a2 9b2 __1_2__a_b_ 3 x2 ___4_x_y_ 4 y2
4 a2 ___a_b___ 1 b2
4
5 x4 2x2 y2 ____y_4_
1.计算:(1) (x-1)2 x2 2x1
因式分解—完全平方公式
我们前面学习了利用平方差公式来分
解因式即:a2-b2=(a+b)(a-b)
例如: 4a2-9b2= (2a+3b)(2a-3b)
用平方差公式因式分解的多项式特征:
①有且只有两个平方项;
②两个平方项异号(一正一负);
下面的多项式能分解因式吗?
(1) a2+2ab+b2 (2) a2-2ab+b2
练一练 因式分解:
(1)25x2+10x+1 解:原式=(5x)2+2×5x×1+12
=(5x+1)2
(2)-a2-10a -25
解:原式=-(a2+2×a×5+52)
例题
(5) 4a2 12ab 9b2
解:原式 (2a) 2 2(2a) (3b) (3b)2
因式分解(完全平方公式)
完全平方公式的形式
1 一般形式
对于平方三项式\(ax^2 + bx + c\),完全平方公式的形式为\((mx + n)^2\)。
2 m和n的计算
通过比较系数,我们可以确定m和n的值。具体计算步骤在下个部分介绍。
完全平方公式的用途
1 求解方程
通过因式分解和完全平方公式,我们可以解决一些复杂的二次方程。
因式分解(完全平方公式)
因式分解是将一个多项式拆分成两个或多个全新的多项式的过程。完全平方 公式是因式分解中的一种重要工具,用于拆分平方三项式。
因式分解概述
因式分解是一种数学方法,用于将多项式拆分成简化形式。它有助于解决复杂的数学问题,并提 供更深入的理解。
完全平方公式 (简介)
完全平方公式是因式分解中的一种特殊形式。它适用于拆分平方三项式,并 帮助我们轻松地进行因式分解。
金融问题
在金融领域,完全平方公式可以帮助我们计算和分析复杂的财务模型。
结论和要点
完全平方公式是因式分解中一种重要的工具,它适用于拆分平方三项式。它 可以用于解决方程,简化表达式,并应用于几何学、物理学和金融学等领域。
2 简化表达式
将多项式使用完全平方公式进行因式分解可以简化表达式,使其更易处理和计算。
完全平方公式示例
示例一
将\(x^2 + 6x + 9\)使用完全平方公式进行因式 分解。
示例二
将\(4x^2 - 4x + 1\)使用完全平方公式进行因式 分解。
完全平方公式计算步骤
1
Step 1
将多项式按照平方三项式的形式排列。
2
Step 2
确定m和n的值,使得(mx + n)^2等于原始多项式。
14.3 因式分解--完全平方公式
2x2 18
解:原式 2x2 9
2x 3x 3
探索完全平方公式
多项式 a2+2ab+b2 你能用提公因式法或平方差公式来 分解因式吗?
追问2 这两个多项式有什么共同的特点?
a2 2ab b2 a2 2ab b2
分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3, 所以16x2+24x+9是一个完全平方式,即 16x2+24x+9= (4x)2+ 2·4x·3 +32
a2 + 2 ·a ·b + b2 解:(1)16x2+24x+9=(4x)2+2·4x·3+32
=(4x+3)2
分解因式:(1) –x2+4xy–4y2 3ax2+6axy+3ay2
解: –x2+4xy-4y2
(2) 解: 3ax2+6axy+3ay2
= –(x2-4xy+4y2) = –[x2-2·x·2y+(2y)2]
= – (x-2y)2
=3a(x2+2xy+y2) =3a(x+y)2
分解因式: 4 -12(x-y) + 9(x-y)2
4 -12(x-y) + 9(x-y)2 解:原式= 22 - 2·3(x-y)·2+[3(x-y)]2
=[2-3(x-y)]2 =(2-3x+3y)2
• m2-12mn+36n2 • -a2 +8ax- 16x2 • a2 +2a(b+c) + (b+c)2 • -a3 +2a2 - a
因式分解--完全平方公式
两数和的平方公式: 两数和的平方公式:
字母表示: 字母表示:
2=a2+2ab+b2 (a+b)
语言叙述: 语言叙述: 两数和的平方, 两数和的平方,等于这两个 数的平方和加上这两数积的2倍 数的平方和加上这两数积的 倍。
平方差公式: 平方差公式:
字母表示: 字母表示:
2-b2 (a+b)(a-b)=a
3、下列各式中,能用完全平方公式 下列各式中, 分解的是( 分解的是( D ) +2xyA、x2+2xy-y2 B、x2-xy+y2 C、1 x 2 -2xy+y 2 D、 1 x 2 -xy+y 2
4 4
4、下列各式中,不能用完全平方公 下列各式中, 式分解的是( 式分解的是( D ) A、x4+6x2y2+9y4 B、x2n-2xnyn+y2n C、x6-4x3y3+4y6 D、x4+x2y2+y4
5 、把
1 2 2 x + 3 xy + 9 y 分解因式得 4 B ( )
2
1 A、 4 x + 3 y
1 B、 x + 3 y 2
2
6 、把
4 2 4 2 分解因式得 x + y − xy ( ) 9 3 A
2
A、 2 x − y
3
运用完全平方公式
证明公式
(a+b)2
(a-b)2 =(a-b)(a-b) =a(a-b)-b(a-b) =a2-ab-ab+b2 =a2-2ab+b2
=(a+b)(a+b) =a(a+b)+b(a+b) =a2+ab+ab+b2 = a2+2ab+b2
用完全平方公式分解因式课件
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
详细描述
完全平方项是因式分解中的重要部分,可以通过观察多项式的各项,寻找是否存在一个整数的平方, 并且这个整数的两倍的平方根是另一个整数。例如,在多项式$x^2 + 2x + 1$中,$x^2$和$1$分别 是整数1的平方和其两倍的平方根的平方,因此这是一个完全平方项。
识别平方差项
总结词
平方差项是指一个多项式中,有一项是两个整数的平方差,并且这两个整数之间 相差1。
详细描述
平方差项也是因式分解中的重要部分,可以通过观察多项式的各项,寻找是否存 在两个整数的平方差,并且这两个整数之间相差1。例如,在多项式$x^2 - 1$中 ,$x^2$和1分别是整数x和x+1的平方,因此这是一个平方差项。
识别常数项
总结词
常数项是指一个多项式中,没有变量的一项。
详细描述
常数项在因式分解中也非常重要,可以通过观察多项式的各项,寻找是否存在常数项。常数项可以作为因式分解 的一部分,帮助我们简化多项式。例如,在多项式$2x^2 + 4x + 2$中,常数项是2。
实例三:$x^2 + 8x + 16$
总结词
完全平方公式分解
详细描述
$x^2 + 8x + 16$ 可以使用完全 平方公式分解为 $(x + 4)^2$。
01
完全平方公式分解 因式的练习题
练习题一
详细描述:该练习题是一个完全 平方的因式分解,可以直接使用 完全平方公式$(a+b)^2 = a^2 + 2ab + b^2$进行分解,其中 $a=x$,$b=5$。
因式分解完全平方公式课件
将一个多项式化为几个整式的积的形式。
平方差公式
$a^2 - b^2 = (a+b)(a-b)$
因式分解完全平方公式的难点解析
如何识别和应用完全平方公式
在解决数学问题时,需要观察和识别出符合完全平方公式结 构的特点,然后正确应用公式进行因式分解。
如何处理复杂的多项式
在因式分解过程中,需要正确处理多项式的各项,确保每项 都符合因式分解的规则,同时保持等式的平衡。
因式分解完全平方公式的应用前景展望
在数学教育中的应用
因式分解完全平方公式是中学数学的重 要内容,对于培养学生的逻辑思维和数 学能力具有重要意义。随着教育改革的 深入,因式分解完全平方公式的应用将 更加广泛。
VS
在其他领域的应用
因式分解完全平方公式不仅在数学领域有 广泛应用,还在物理学、工程学等领域中 有所应用。例如,在解决物理问题时,可 以利用因式分解完全平方公式简化复杂的 物理表达式;在计算机科学中,因式分解 完全平方公式也可以用于算法优化和数据 结构的设计。
完全平方公式的特点
完全平方公式展开后,各项的次数均 为2,且常数项是首项和末项系数之积 的二倍。
因式分解的定义
因式分解
将一个多项式表示为几个整式的积的形式,称为因式分解。因式分解是代数式 的一种重要恒等变形,通过因式分解可以将复杂的表达式简化。
因式分解的方法
提取公因式法、分组分解法、十字相乘法、公式法等。
04
因式分解完全平方公式的 练习题及解析
基础练习题及解析
总结词:掌握基础
解析:这些题目考察了完全平方公式的 基础应用,需要掌握公式结构,理解每 一项的含义。
练习题3:(a+b)^2=多少
练习题1:x^2+4x+4=多少 练习题2:a^2+2ab+b^2=多少
公式法因式分解2(完全平方公式)
用完全平方公式分解因式的关键是:在判断一个多项式 是不是一个完全平方式。 做一做:下列多项式中,哪些是完全平方式?
(1) x2 6x 9 (2) (3) m2n2 4 4mn
x2 x1
4
(4)4x2 2xy y2
已知a+b=7,a2+b2=29,求 (a-b)2 值。
已知a、b、c是三角形的三边,请你判断 a2-b2+c2-2bc的值的正负
解: a2-b2+c2-2bc=a2-(b+c)2
=(a-b-c)(a+b+c) a-b-c<0,a+b+c﹥0 ∴ (a-b-c)(a+b+c) <0
将4x2+1再加上一项,使它成为完全 平方式,你有几种方法?
完全平方公式: 完全平方公式
(a+b)2 = a²+2ab+ b² 反过来就是:
(a-b)2 = a²-2ab+ b²
两个数的平方 和,加上(或减
去)这两数的积
整式乘法
的2倍,等于这
a²+2ab+ b²= (a+b)2 两数和(或差)的 平方。
a²-2ab+ b²= (a-b)2
因式分解
我们把多项式a²+2ab+b²和 a²-2ab+b²叫做完全平方式。
(4)(2x+y) 2-6 (2x+y)+9
注意啦!首先要考虑能不能提取公因式!
灵活地把(2x+y)看成一个整体,这需要你 的智慧哟。
(3)ax2 2a2 x a3 (4) 3x2 6xy 3y2
(5) (a+b)4-10(a+b)2+25
Байду номын сангаас3.用简便方法运算。
用完全平方公式进行因式分解
我们称之为:运用完全平 方公式分解因式
例题:把下列式子分解因式
4x2+12xy+9y2
2x2 22x3y 3y2 2x 3y2
首2 2首尾 尾2 =(首±尾)2
5、把 1 x2 3xy 9 y分2 解因式得
4
( B)
A、
1 4
x
3y
2
a2 2abb2 a2 2abb2
我们把以上两个式子叫做完全平 方式
“头” 平方, “尾” 平方, “头” “尾” 两倍中间放.
判别下列各式是不是完全平方式
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
a2 2ab b2 a2 2ab b2
完全平方式的特点:
1、必须是三项式 2、有两个平方的“项” 3、有这两平方“项”底数的2倍或-2倍
首2 2首尾尾2
下并列分各解式因是式不是完全平方式
1 a2 b2 2ab 是
22xy x2 y 2 是 3 x2 4xy4 y 2 是 4a2 6abb2 否
5x2 x 1
是
4
6 a2 2ab 4b2 否
运用公式法
把乘法公式反过来用,可以把符合公式 特点的多项式因式分解,这种方法叫公式法.
完全平方公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
现在我们把这个公式反过来
a2 2abb2 ab2
a2 2abb2 ab2
很显然,我们可以运用以上这
x
3
y
2
6、把
4 9
x2
y2
用完全平方公式分解因式
用完全平方公式分解因式。 用完全平方公式分解因式。 提取公因式法 (2)因式分解通常考虑______________方法。 因式分解通常考虑______________方法。 ______________方法 彻底 (3)因式分解要_________ 因式分解要_________
说能出你这节课的收获和体验让大家 与你分享吗? 与你分享吗?
用完全平方公式分解因式
(a + b ) = a + 2ab + b
2 2
2 2
(a − b ) = a − 2ab + b
2 2
两数和(或差)的平方, 两数和(或差)的平方,等于这两个数的平方 和,加上(或减去)这两数的积的2倍。 加上(或减去)这两数的积的2
两数的平方和,加上(或减去)这两数的积的2 两数的平方和,加上(或减去)这两数的积的2 倍,等于这两个数和(或差)的平方。 等于这两个数和(或差)的平方。
2 2
(4) 4 y + 2 xy + y
2
2
练一练:按照完全平方公式填空: 练一练:按照完全平方公式填空:
(1) a − 10a + ( 25 ) = ( a − 5 )
2
2 2
2
(2) ( a y ) + 2ay + 1 = ( ay + 1 )
2
(3)
1 1 2 2 2 − ( rs ) + r s = ( − rs ) 4 2
例1:把下列各式分解因式
(1) 4a + 12ab + 9b
2
2
1 2 (2) a + ab + b 4
2
(3) − x + 4 xy − 4 y
因式分解——完全平方公式
因式分解——完全平方公式
完全平方公式(Quadratic Formula),是一类中学数学问题,它用来求解格式为ax2+bx+c=0,a≠0 的二次方程的根(即x)的一种方法。
它的公式是:
x1 = [-b+√(b2-4ac)]/2a;
x2 = [-b-√(b2-4ac)]/2a。
二、完全平方分解
完全平方分解是一种方法对一个数进行因式分解,以求得它最原始的因式。
它让我们将一个数分解到最简单的形式,比如n²或者n²+2n+1、常见的完全平方分解公式如下:
a² +2ab +b² = (a+b)²;
a² -2ab +b² = (a-b)²;
a² +2ma + m²= (a+m)²。
它可以用于分解多项式,因为它可以有效地将多个项分解成一个项并求得它们的乘积;如果需要相减,完全平方分解也可以将一个含有两个负号的多项式分解成两部分,使其易于求和。
完全平方分解的步骤如下:
步骤一:将原式拆分成平方项的和;
步骤二:比较、选择两个数,使其和等于未被拆分的系数;
步骤三:选出两个数的积,使其和等于已被拆分的平方项;
步骤四:将拆分的平方项的和写成完全平方式;
步骤五:最后,将原式分解为完全平方式形式。
示例:
令x²-4x+4=0。
步骤一:将原式拆分成平方项的和,即x²=4x-4;
步骤二:比较、选择两个数,使其和等于未被拆分的系数;x可以选择2,4;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.3 因式分解——完全平方式
翠英中学
蔡妙璇
教学目标:
1.知识与技能:领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法:经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观:培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
教学重、难点与关键:
1.教学重点:理解完全平方公式因式分解,并学会应用.
2.教学难点:灵活地应用公式法进行因式分解.
3.教学关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.
教学方法:
采用自主探究教学方法,在教师适当指导下完成本节课内容.
教学过程:
一、回顾交流,巩固知识.
(设计意图:承前启后,为本节内容的引入作铺垫,让学生进一步了解因式分解和乘法公式的关系.)
1、什么是分解因式?(把一个多项式化成几个整式的乘积的形式的式子变形)
2、你能回答已学过的因式分解法吗?(提公因式法和平方差公式法)
3、计算下列各式:
2
a+=
)
(b
2
(b
a-=
)
2
(y
x+=
)
4
2
x-=
2(y
)
3
二、创设情境,引入新课.
(设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中认识因式分解的本质属性——将完全平方式化为乘积的式子变形.)
问题:灰太狼总没抓到羊,为了表示惩罚,红太狼要求它站在门外口算出992
+198+ 1的值才可进家门,可怜的灰太狼在门口冻了半天,你能帮助它吗?
此处运用了什么公式? 2222)(b ab a b a +±=±
这个公式反过来222)(2b a b ab a ±=+±
就像平方差公式一样,逆用完全平方公式可以把一些多项式因式分解,从而应用它可以进行一些简便计算等.
三、分析讨论,探究新知.
(设计意图:通过教学,引导学生掌握找完全平方式的方法,提出“口诀”.) 我们可以利用完全平方公式来分解因式,这种方法称为“完全平方公式法”.
1.公式 222)(2b a b ab a ±=+±
2.文字 两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和
(或差)的平方.形如222b ab a ++和222b ab a +-的式子叫做完全平方式.
3.特点:(教师引导学生说出它的特点)
(1)必须是三项式(或可以看成三项式的)
(2)有两个是同号的平方项
(3)另一项是这两项的乘积的2倍或-2倍
口诀: “首” 平方, “尾” 平方, “首” “尾”两倍在中间.
4.师生辨认:下列多项式是不是完全平方式?
(1)962++x x ;(2)2244y x x ++;(3)229124y xy x +-
随堂练习1:找出完全平方式
(1)222y xy x +-;(2)ab b a 222++;(3)2244y xy x ++;
(4)226b ab a +-;(5) ;(6)222y x xy --. 四、范例点击,应用所学
(设计意图:通过具有一定典型性、代表性和层次性的例题与练习,提高学生对因式分解的完全平方公式法的认识,积累经验.)
例1 分解因式:92416)1(2++xy x ;2244)2(y xy x -+-. 4
12++x x
思路:(1)直接用公式;(2)添括号后直接用公式.
强调:因式分解过程就是把一个多项式化成几个整式的乘积的形式.
随堂练习2:分解因式:
12)1(2++a a ;3612)2(2++x x ;
144)3(2+-x x ;222)4(y x xy ---.
例2 分解因式:22363)1(ay axy ax ++ ;36)(12))(2(2++-+b a b a
(1)步骤:一提(提公因式);二套(用公式);三查(是否彻底);
(2)教学思想方法:整体代入思想.
随堂练习3:分解因式:
242)1(2++x x ;3222)2(a x a ax ++;
22363)3(y xy x -+-;9)(6))(4(2++++y x y x
五、课堂延伸,拓展提高
(设计意图:进一步让学生巩固运用完全平方公式进行因式分解,感受因式分解给计算带来的便捷,体会此方法的教学价值.)
随堂练习4:选择题
(1)如果224y kxy x ++可以分解为2)2(y x -,则k 的值是( )
A 、4
B 、-4
C 、2
D 、-2
(2)如果92++mx x 是一个完全平方式,则m 的值是( )
A 、6
B 、6±
C 、3
D 、3±
(3)多项式25)(10)(2++-+b a b a 分解因式的结果是( )
A 、2)10(++b a
B 、2)25(-+b a
C 、2)5(++b a
D 、2)5(-+b a
随堂练习5:现在你能快速口答出119989992++的值吗?
六、课堂总结,发展潜能.
(设计意图:通过小结,帮助学生梳理本节课所学内容.)
1、到目前为止我们学习了几种因式分解的方法?
(1)提公因式法;(2)公式法(平方差公式、完全平方公式).
2、什么是完全平方式?
(1)必须是三项式(或可以看成三项的);
(2)有两个同号的平方项;
(3)另一项是这两项的乘积的2倍或-2倍.
简记口诀:“首”平方, “尾”平方, “首”“尾”两倍在中间.
3、因式分解基本步骤
一提(提公因式);二套(用公式);三查(是否彻底).
七、布置作业,专题突破.
(设计意图:考查学生运用完全平方公式进行因式分解的应用情况.)暗线本作业:课本P119习题14.3复习巩固第3题.
《南方新课堂》P77-78
八、教学反思,不断提高.(略)。