(完整word版)遗传学复习(刘祖洞_高等教育出版社_第二版)

(完整word版)遗传学复习(刘祖洞_高等教育出版社_第二版)
(完整word版)遗传学复习(刘祖洞_高等教育出版社_第二版)

一.绪论

遗传学:是研究生物遗传和变异的科学

遗传: 亲代与子代之间相似的现象

变异: 亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象

遗传与变异:没有变异,生物界就失去了前进发展的条件,遗传只能是简单的重复;没有遗传,变异不能积累,就失去意义,生物也就不能进化了。

二.孟德尔定律

1. 性状:生物体或其组成部分所表现的形态特征和生理特征称为性状

2. 单位性状:生物体所表现的性状总体区分为各个单位作为研究对象,这些被区分开得每一个具体性状称为单位性状,即生物某一方面

的特征特性。

3. 相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异称为相对性状

显性性状(dominant character ):F1中表现出来的那个亲本的性状。如红花。

隐性性状(recessive character ):F1中没有表现出来的那个亲本的性状。如白花。

F2中,两个亲本的性状又分别表现,称为性状分离。显性个体:隐性个体 = 3:1。

分离规律及其实现的条件?

分离规律

1)(性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含有成对因子中的一个。

2) 杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配子受精结合是随机的,即两种遗传因子是随机结合到

子代中。

实现条件

1) 研究的生物体必须是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。

2) 在减数分裂过程中,形成的各种配子数目相等,或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均

等的机会相互自由结合。

3) 受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。

4) 杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。

三.遗传的染色体学说

1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。答:有丝分裂和减数分裂的区别列于下表:

有丝分裂的遗传意义: 首先:核内每个染色体,准确地复制分裂为二,为形成的两个子细胞在遗传组成上与母细胞完全一样提供了基础。其次,复制的各对染色体有规则而均匀地分配到两个子细胞的核中从而使两个子细胞与母细胞具有同样质量和数量的染色体。 有丝分裂 减数分裂 发生在所有正在生长着的组织中 从合子阶段开始,继续到个体的整个生活周期 无联会,无交叉和互换 使姊妹染色体分离的均等分裂 每个周期产生两个子细胞,产物的遗传成分相同 子细胞的染色体数与母细胞相同 只发生在有性繁殖组织中

高等生物限于成熟个体;许多藻类和真菌发生在合子阶段 有联会,可以有交叉和互换 后期I 是同源染色体分离的减数分裂;后期II 是姊妹染色单体分离的均等分裂 产生四个细胞产物(配子或孢子)产物的遗传成分不同,是父本和母本染色体的不同组合 为母细胞的一半

减数分裂的遗传学意义首先,减数分裂后形成的四个子细胞,发育为雌性细胞或雄性细胞,各具有半数的染色体(n)雌雄性细胞受精结合为合子,受精卵(合子),又恢复为全数的染色体2n。保证了亲代与子代间染色体数目的恒定性,为后代的正常发育和性状遗传提供了物质基础,保证了物种相对的稳定性。

其次,各对染色体中的两个成员在后期I分向两极是随机的,即一对染色体的分离与任何另一对染体的分离不发生关联,各个非同源染色体之间均可能自由组合在一个子细胞里,n对染色体,就可能有2n种自由组合方式。

例如,水稻n=12,其非同源染色体分离时的可能组合数为212 = 4096。各个子细胞之间在染色体组成上将可能出现多种多样的组合。

此外,同源染色体的非妹妹染色单体之间还可能出现各种方式的交换,这就更增加了这种差异的复杂性。为生物的变异提供了重要的物质基础。

染色体超微结构:核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。密集成串的核小体形成了核质中的100埃左右的纤维,这就是染色体的“一级结构”。在这里,脱氧核糖核酸分子大约被压缩了7倍。

染色体的一级结构经螺旋化形成中空的线状体,称为螺线体或核丝,这是染色体的“二级结构”,其外径约300埃,内径100埃,相邻螺旋间距为110埃。螺丝体的每一周螺旋包括6个核小体,因此脱氧核糖核酸的长度在这个等级上又被再压缩了6倍。

300埃左右的螺线体(二级结构)再进一步螺旋化,形成直径为0.4微米(μm)的筒状体,称为超螺旋体。这就是染色体的“三级结构”。到这里,脱氧核糖核酸又再被压缩了40倍。超螺旋体进一步折叠盘绕后,形成染色单体—染色体的“四级结构”。两条染色单体组成一条染色体。到这里,脱氧核糖核酸的长度又再被压缩了5倍。从染色体的一级结构到四级结构,脱氧核糖核酸分子一共被压缩了7×6×40×5=8400倍。例如,人的染色体中脱氧核糖核酸分子伸展开来的长度平均约为几个厘米,而染色体被压缩到只有几个微米长。

四.基因的作用及其与环境的关系

表现型:指生物个体的性状表现,简称表型。

基因型+环境 = 表型

(决定发育的可能性)(可能性实现的条件)(基因型与环境相互作用的结果)

表现度(expressivity):个体间基因表达的变化程度。

外显率(penetrance):某一基因型个体显示其预期表型的比率。

基因型:指生物个体基因组合,表示生物个体的遗传组成,又称遗传型

等位基因:同源染色体上非姊妹染色单体相同位点上的基因,互称等位基因

复等位基因:一个基因存在很多等位形式,称为复等位现象,这组基因就叫复等位基因。

纯合基因型:从基因的组合来看,等位基因相同,这在遗传学上称为纯合基因型

纯合体:具有纯合基因型的个体称为纯合体

回交:子一代和两个亲本的任一个进行杂交的方法叫做回交。

自交:指具有相同基因型的两个个体进行交配的遗传学实验。

测交:用隐性基因纯合体作为杂交亲本之一的实验方法。

杂交:通过不同基因型个体间的交配而取得某些双亲基因重新组合的个体的方法。

致死基因:致死基因是指那些使生物体不能存活的等位基因。

隐性致死:纯合体是致死的。例:镰形细胞贫血

显性致死:致死作用在杂合体中表现。

配子致死:致死基因的作用发生在配子期

合子致死:致死基因的作用发生在胚胎期或成体阶段

返祖现象:后代表现其祖先的野生性状的现象。

多因一效:许多基因影响同一个性状的表现,这称为多因一效

一因多效:一个基因可以影响到若干性状,这就叫一因多效或叫基因的多效性

等位基因间显隐性关系的相对性

完全显性:F1所表现得性状都和亲本之一完全一样,这样的显性表现成为完全显性

不完全显性:有些性状其杂种F1的性状表现是双亲性状的中间型,这称为不完全显性也叫半显性

共显性:如果双亲的性状同时在F1个体上表现出来,这种显性表现为共显性。例:MN 血型

镶嵌显性:双亲的性状在后代的同一个体不同部位表现出来,形成镶嵌图式

互补基因:不同对的两个基因相互作用,出现了新的性状,这两个互作的基因叫做互补基因。

非等位基因间的相互作用有哪几种类型,各类型的表现如何?

互补效应(F1自交得F2为9:7)——两对独立遗传基因分别处于纯合显性或杂合状态时,共同决定一种性状的发育,当只有一对基因是显性,或两对基因都是隐性时,则表现为另一种性状

积加效应(F2为9:6:1)——两非等位基因都为显性表现为中间型,都为隐性时为另一种不同的表现型,单显性表现相同,但不同于纯合基因型的表现;

重叠作用(15:1)——只要有一个显性重叠基因存在,该性状就能表现,但无累积效应;显性上位(12:3:1)——两非等位基因控制不同的表现型,但某一显性非等位基因能抑制另一对基因的表现

隐性上位(9:3:4)---两对互作的基因中,其中一对隐性基因对另一对基因起上位性作用,显现隐性基因

抑制作用(13:3)——两对独立基因中,其中一对显性基因本身并不控制性状的表现,但对另一对基因的表现有抑制,显现显性基因

五.性别决定与伴性遗传

1. 性别决定的方式有几种?

1.) 雄杂合型(XY 型)

2)XO 型:

与XY 型相似,但只有一条性染色体X ;雄性个体只有一条X 染色体(XO ,不成对),它产生含X 染色体和不含性染色体两种类型的配子;雌性个体性染色体为XX 。例:蝗虫、蟋蟀。

3)雌杂合型(ZW 型):

两种性染色体分别为Z 、W 染色体;雌性个体性染色体组成为ZW(异配子性别),产生两种类型的配子,分别含Z 和W 染色体;雄性个体则为ZZ(同配子性别),产生一种配子含Z 染色体。性比一般是1 : 1。例:蛾类、蝶类,鸡鸭等。

伴性遗传:性染色体上基因的遗传与性别相联系,这种遗传方式称为伴性遗传。

例:果蝇白眼伴X 隐性;人类血友病,色盲,X 隐

限性遗传:受XY 型中Y 染色体或ZW 型中W 染色体上基因控制或因激素作用使得某些性状只能在某性别表现的现象。

从性遗传:控制性状的基因位于常染色体上,但是在个体上的显隐性表现受性别的影响(羊角遗传)。

六.染色体和连锁群

杂交试验中,原来为同一亲本所具有的两个性状在F2中不符合独立分配规律,而常有连在一起遗传的倾向,这种现象叫做连锁遗传现象。 连锁群:存在于同一染色体上的基因群,称为连锁群

完全连锁:如果连锁基因的杂种F1(双杂合体)只产生两种亲本类型的配子,而不产生非亲本类型的(重组)配子,就称为完全连锁。例如雄果蝇和雌家蚕中通常不发生交换,连锁基因完全连锁,不发生重组。

不完全连锁:指连锁基因的杂种F1不仅产生亲本类型的配子,还会产生重组型配子。

交换:同源染色体非姐妹染色单体在粗线期交换。

交换值的测定方法:(P88)

测交法(Ft 重组型个体数÷Ft 总个体数;因Ft 的的表现型及比例=被测亲本配子的基因型及其比例)

自交法(相引相:交换值=1-2*(F2中双隐性个体频率)开平方;相斥相:交换值=2*(F2中双隐性个体频率)开平方)。

试述交换值、连锁强度和基因距离之间三者的关系。

答:交换值是指同源染色体的非姐妹染色单体间有关基因的染色体片段发生交换的频率,或等于交换型配子占总配子数的百分率。交换值%总配子数

重组型配子数交换值100(%)?=

的幅度变动在0~50%之间。交换值越接近0%,说明连锁强度越大,两个连锁的非等位基因之间发生交换的孢母细胞数越少。当交换值越接近50%,连锁强度越小,两个连锁的非等位基因之间发生交换的孢母细胞数越多。由于交换值具有相对的稳定性,所以通常以这个数值表示两个基因在同一染色体上的相对距离,或称遗传距离。交换值越大,连锁基因间的距离越远;交换值越小,连锁基因间的距离越近。

三点实验计算题!

七.细菌和噬菌体的重组和连锁

转化:指外源DNA片段不经中间媒介体直接进入感受态细胞进行基因重组形成重组体的过程。

转导:指以病毒作为载体把遗传信息从一个细菌细胞转移到另一个细菌的过程。

接合:是指原核生物的遗传物质从供体转移到受体内的过程。

性导:指利用F′因子将供体菌的基因导入受体菌形成部分二倍体的过程。

F因子:又叫性因子或致育因子,是一种能自我复制的、微小的、染色体外的环状DNA分子。

F’因子:指整合态的F因子从Hfr上异常切割下来,携带了细菌个别基因的缺陷型F因子

F-、F′、F+、Hfr的区别?

a.没有F因子,即F-;

b.一个自主状态F因子,即F+,供体;

c.一个整合到自己染色体内的F因子,即Hfr

d.F因子整合到宿主细胞染色体的过程可逆,当发生环出时,F因子又重新离开染色体,并且携带有染色体的一些基因,称F’

性导:

(1) F ’× F- → F’, F’(部分二倍体)

特点:转移Fˊ因子还转移细菌个别基因,F-转变成F’

(2) F+ × F- → F+, F+ (不导入供体菌基因)

特点:转移F因子不转移细菌基因F- 转变成 F+

(3) Hfr × F- → Hfr,F- (很少成为Hfr,导入大量供体菌基因)

特点:极少转移F因子,大量转移细菌基因

八.数量性状遗传

数量性状与质量性状的区别:

质量性状数量性状

变异类型种类上的变化数量上的变化

表现型分布不连续连续

基因数目一个或少数几个微效多基因

对环境的敏感性不敏感敏感

研究方法系谱或概率分析统计分析

质量性状数量性状

显性作用强:F1多为显性显性作用弱:部分、不完全显性,F1表现为中间型。

控制性状的基因少多基因控制

差异明显,个体间变异呈间断性分布,可明确分组归类。差异不明显,个体间变异呈连续分布,不能分组归类。

性状表现受环境影响小受环境影响大于环境互作。

九.染色体变异

缺失:一对同源染色体,一正常一缺失

重复:类别:顺接、反接、臂内、臂间

有重复必有缺失,有缺失不一定有重复

重复环和缺失环的却别:重复:环由不正常的染色体形成;缺失:由正常染色体形成。

遗传效应:剂量效应(果蝇红眼);位置效应(棒眼-16A);P132

倒位:染色体发生两次断裂,染色体片段旋转180度,之后重接。

倒位类别:臂间、臂内

细胞学鉴定:粗线期和双线期的配对情况;后期一:桥和断片

后期一:臂间交换一次无断片;臂内交换一次有断片,形成桥。

遗传效应:部分不育。

易位:染色体的一个断片重接到另一非同源染色体上;即至少两次断裂,涉及至少两对非同源染色体。

类别:简单、相互

易位纯合体:个体内含有两对相互易位的染色体,且每对易位染色体完全相同。

易位杂合体:两对同源染色体各一条发生易位。

细胞学鉴定:粗线期:四价体;终变期、中期:粗线期交换的多少、紧密程度决定终变期或中期四价体的构型。相邻式:(一条易位染色体+一条正常染色体)*2 交替式:两条易位+两条正常

遗传效应:半不育(交替、相邻各50%,相邻式不育);改变基因的连锁关系;降低了易位结合点附近一些基因的重组值;物种进化的因素(曼陀罗果形变化);引起染色体数目变化;致癌基因的表达(原癌基因不表达,易位到启动子附近表达)

T:易位点,看做控制半不育性状的基因,可以用三点或两点检测对其定位。

染色体组:某个物种配子的全部染色体,含有全部的必须基因。

整倍体:单倍体:二倍体;多倍体(同源多倍体、异源多倍体)

非整倍体:缺体:比正常双体缺少一对或多对同源染色体的非整倍体;单缺体;多缺体。

单体;单单体;多单体(三单体):2n-3=(n-3)Ⅱ+Ⅰ+Ⅰ+Ⅰ;双体、三体、四体

异源联会:属于不同染色体组的非同源染色体间的联会。

同源三倍体来源与应用:1N卵细胞和2个精细胞;四倍体与二倍体交;减数分裂不正常形成2n配子。应用:无籽西瓜、香蕉、新疆葡萄、甜菜、茶树

同源四倍体:四体遗传:(前提:中期为Ⅳ或Ⅱ+Ⅱ;后期染色体为二二分离)某基因距着丝粒近——染色体随机分离;远——染色单体随机分离(交换发生在着丝粒和基因之间)。

异源多倍体:偶数倍:来源:由二倍体种间杂交再染色体加倍进化而来;双二倍体普通烟草;异源多倍体中许多性状的遗传表现为独立分配规律。奇数倍异源多倍体:来源:偶数倍多倍体杂交产生;

四体来源:三体自交。

十.基因突变(gene mutation)是指一个基因内部可遗传的结构改变,是基因分子内部在某种条件作用下所发生的一个或几个核苷酸的改变。其结果是形成等位基因。也叫点突变(point mutation)

根据诱发的原因,基因突变可分为以下两个类型:

1.自发突变(spontaneous mutation):由于外界环境的自然作用或生物体内生理或生化变化而诱发的突变。

2.诱发突变:这是指由人工特设物理、化学诱发因素而引起的突变。

两者本质一样,频率不同。

?突变体或突变型(mutant):由于基因突变而表现突变性状的细胞或个体。

根据突变引起的表型特征,可将突变分为:

1.形态突变(morphological mutation),基因突变主要影响生物的形态结构,导致形状、大小、色泽改变。

2. 生化突变(biochemical mutation):基因突变主要影响代谢过程,导致某种特定生化功能改变。

致死突变(lethal mutation):基因突变主要影响生活力,导致个体死亡。

条件致死突变(conditional lethal mutation):指在一定条件下表现致死效应,而在其它条件下可以存活的突变。

?突变率:指生物在一个世代中发生突变的概率。一般指每一世代每一配子每个基因座发生突变的概率。

基因突变的一般特征

(一)、突变的重演性

(二)、突变的可逆性

(三)、突变的稀有性

(四)、突变的有害性和有利性

(五)、突变的随机性

(六)、突变的普遍性

十一.遗传的分子基础

DNA遗传物质的直接证据

1)细菌的转化试验

格里费斯(Griffith F.,1928):肺炎双球菌定向转化试验。

①无毒IIR型→小鼠成活→重现IIR型

②有毒IIIS型→小鼠死亡→重现IIIS型

③有毒IIIS型(65℃杀死) →小鼠成活→无细菌

④无毒IIR型→有毒IIIS型(65℃杀死) →小鼠→死亡→重现IIIS型

2)噬菌体的侵染与繁殖:

原理: P存在于DNA,而不存于蛋白质;S 存在于蛋白质,不存于DNA。

①.32P标记T2噬菌体;

②.35S标记T2噬菌体。

结论:进入菌内的是DNA;DNA进入细胞内才能产生完整的噬菌体。

3)烟草花叶病毒的感染和繁殖:

佛兰科尔-康拉特-辛格尔(Framkel-Conrat-Singer)试验:

烟草花叶病毒简称TMV (Tobacco Mosaic Virus)。TMV的蛋白质外壳和单螺旋RNA接种:

TMV蛋白质→烟草→不发病;

TMV RNA →烟草→发病→新的TMV;

TMV RNA + RNA酶→烟草→不发病。

结论:提供RNA的亲本决定了其后代的RNA和蛋白质。在不含DNA的TMV中,RNA就是遗传物质。

中心法则:

基因工程:在分子水平上,采取工程建设方式→按照预先设计的蓝图→借助于实验室技术将某种生物的基因或基因组转移到另一生物中去→使后者定向获得新遗传性状的一门技术。

基因工程的内容

①.从细胞和组织中分离DNA;

②.限制性内切酶酶切DNA分子,制备DNA片段;

③.将酶切DNA分子与载体DNA连接构建能在宿主细胞内自我复制的重组DNA分子;

④.把重组DNA分子引入宿主受体细胞→复制;

⑤.重组DNA随宿主细胞的分裂而分配到子细胞→建立无性繁殖系或发育成个体;

⑥.从细胞群体中选出所需要的无性繁殖系→并使外源基因在受体细胞中正常表达,翻译成蛋白质等基因产物、回收;或筛选出获得定向性状变异的个体。

载体应具备的条件:

1)具有复制原点,能自我复制;

2)具多克隆位点,即有多种限制酶的切点;

3)选择时的遗传标记,如抗生素基因;

4)易从宿主细胞中回收。

细胞质遗传

1.细胞质遗传:由胞质遗传物质引起的遗传现象(又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母性遗传)。

2.细胞质遗传的特点:

①. 正交和反交的遗传表现不同。核遗传:表现相同,其遗传物质由雌核和雄核共同提供;质遗传:表现不同,某些性状表现于母本时才能遗传给子代,故又称母性遗传。

②.连续回交,母本核基因可被全部置换掉,但由母本细胞质基因所控制的性状仍不会消失;

③.由细胞质中的附加体或共生体决定的性状,其表现往往类似病毒的转导或感染,即可传递给其它细胞。

④.基因定位困难:遗传方式是非孟德尔遗传,杂交后代不表现有比例的分离。带有胞质基因的细胞器在细胞分裂时分配是不均匀的。细胞质遗传特点原因①受精卵中的细胞质几乎全部来自卵细胞;

②减数分裂时,细胞质中的遗传物质随机不均等分配

在杂交试验中,出现下列任一情况,就考虑有关性状属于细胞质遗传:

1.正交与反交结果不同;

2.F1通常只表现母性性状;

3.两亲本杂交后代自交或与亲代回交不呈现一定比例的分离;

4.遗传方式是非孟德尔的;

5.不能在某一特定染色体上找到相应基因的位点;

细胞质遗传的物质基础:1、遗传物质的必备条件:独立性、连续性和稳定性。2、细胞质里具备遗传特性的细胞器:例如线粒体、中心粒和质体

3.母性影响

概念:由核基因的产物积累在卵细胞中的物质所引起的一种遗传现象。不属于胞质遗传的范畴。

特点:下一代表现型受上一代母体基因的影响。

母性影响所表现的遗传现象与胞质遗传相似,但其本质不同,因为母性影响不是细胞质遗传,而是F1受母本基因的影响,以后还要分离。

细胞质遗传与母性影响区别:母性影响的表现与细胞质遗传相似,但不是由于细胞质基因组所决定的,而是由于核基因的产物在卵细胞中积累所决定的,不属于细胞质遗传的范畴。

雄性不育:雌蕊发育正常,雄蕊不能产生正常可育花粉的现象。

植物雄性不育主要有几种类型?其遗传基础如何?

答:植物雄性不育主要有核不育性、质核不育性、质不育性三种类型:

⑴.核不育型是一种由核内染色体上基因所决定的雄性不育类型,一般受简单的1-2对隐性基因所控制,纯合体表现雄性不育。也发现由显性雄性不育基因所控制的显性核不育,它只能恢复不育性,但不能保持不育性。

⑵.质核不育型是由细胞质基因和核基因互作控制的不育类型,由不育的细胞质基因和相对应的核基因所决定的。当胞质不育基因S存在时,核内必须有相对应的一对(或一对以上)隐性基因rr存在时,个体才能表现不育,只有细胞质或细胞核存在可育基因时能够表现为可育。根据不育性的败育发生的过程可分为:孢子体不育,指花粉的育性受孢子体(植株)基因型所控制,与花粉本身所含基因无关;配子体不育,指花粉育性直接受雄配子体(花粉)本身的基因所决定。不同类型需特定的恢复基因。

⑶.质不育型是由细胞质基因所控制的不育类型,只能保持不育性,但不能恢复育性。

遗传与进化

基因型频率:任何一个遗传群体都是由它所包含的各种基因型所组成的,在一个群体内某特定基因型所占的比例就是基因型频率。

遗传平衡定律(又称哈迪-温伯格法则):在理想群体中,基因频率和基因型频率逐代将保持不变

?群体遗传平衡的条件:

?无限大群体;

?随机交配;

?无突变;

?无自然选择;

最新遗传学复习(刘祖洞_高等教育出版社_第二版)资料

一.绪论 遗传学:是研究生物遗传和变异的科学 遗传: 亲代与子代之间相似的现象 变异: 亲代与子代之间,子代与子代之间,总是存在不同程度差异的现象 遗传与变异:没有变异,生物界就失去了前进发展的条件,遗传只能是简单的重复;没有遗传,变异不能积累,就失去意义,生物也就不能进化了。 二.孟德尔定律 1. 性状:生物体或其组成部分所表现的形态特征和生理特征称为性状 2. 单位性状:生物体所表现的性状总体区分为各个单位作为研究对象,这些被区分开得每一个具体性状称为单位性状,即生物某一方面 的特征特性。 3. 相对性状:不同生物个体在单位性状上存在不同的表现,这种同一单位性状的相对差异称为相对性状 显性性状(dominant character ):F1中表现出来的那个亲本的性状。如红花。 隐性性状(recessive character ):F1中没有表现出来的那个亲本的性状。如白花。 F2中,两个亲本的性状又分别表现,称为性状分离。显性个体:隐性个体 = 3:1。 分离规律及其实现的条件? 分离规律 1)(性母细胞中)成对的遗传因子在形成配子时彼此分离、分配到配子中,配子只含有成对因子中的一个。 2) 杂种产生含两种不同因子(分别来自父母本)的配子,并且数目相等;各种雌雄配子受精结合是随机的,即两种遗传因子是随机结合到 子代中。 实现条件 1) 研究的生物体必须是二倍体(体内染色体成对存在),并且所研究的相对性状差异明显。 2) 在减数分裂过程中,形成的各种配子数目相等,或接近相等;不同类型的配子具有同等的生活力;受精时各种雌雄配子均能以均 等的机会相互自由结合。 3) 受精后不同基因型的合子及由合子发育的个体具有同样或大致同样的存活率。 4) 杂种后代都处于相对一致的条件下,而且试验分析的群体比较大。 三.遗传的染色体学说 1、有丝分裂和减数分裂的区别在哪里?从遗传学角度来看,这两种分裂各有什么意义?那么,无性生殖会发生分离吗?试加说明。答:有丝分裂 减数分裂 发生在所有正在生长着的组织中 从合子阶段开始,继续到个体的整个生活周期 无联会,无交叉和互换 使姊妹染色体分离的均等分裂 每个周期产生两个子细胞,产物的遗传成分相同 子细胞的染色体数与母细胞相同 只发生在有性繁殖组织中 高等生物限于成熟个体;许多藻类和真菌发生在合子阶段 有联会,可以有交叉和互换 后期I 是同源染色体分离的减数分裂;后期II 是姊妹染色单体分离的均等分裂 产生四个细胞产物(配子或孢子)产物的遗传成分不同,是父本和母本染色体的不同组合 为母细胞的一半

刘祖洞遗传学第三版标准答案第9章数量性状遗传

第九章数量性状遗传 1.数量性状在遗传上有些什么特点?在实践上有什么特点?数量性状遗传和质量性状遗传有什么主要区别? 解析:结合数量性状的概念和特征以及多基因假说来回答。 参考答案:数量性状在遗传上的特点: (1)数量性状受多基因支配 (2)这些基因对表型影响小,相互独立,但以积累的方式影响相同的表型。(3)每对基因常表现为不完全显性,按孟德尔法则分离。 数量性状在实践上的特点:(1)数量性状的变异是连续的,比较容易受环境条件的影响而发生变异。 (2)两个纯合亲本杂交,F1 表现型一般呈现双亲的中间型,但有时可能倾向于其中的一个亲本。F2的表现型平均值大体上与F1 相近,但变异幅度远远超过F1。F2 分离群体内,各种不同的表现型之间,没有显着的差别,因而不能得出简单的比例,因此只能用统计方法分析。 (3)有可能出现超亲遗传。数量性状遗传和质量性状遗传的主要区别:(1)数量性状是表现连续变异的性状,而质量性状是表现不连续变异的性状;(2)数量性状的遗传方式要比质量性状的遗传方式复杂的多,它是由许多基因控制的,而且它们的表现容易受环境条件变化的影响。 2.什么叫遗传率?广义遗传率?狭义遗传率?平均显性程度?解析:根据定义回答就可以 了。 参考答案:遗传率指亲代传递其遗传特性的能力,是用来测量一个群体内某一性状由遗传因素引起的变异在表现型变异中所占的百分率,即:遗传方差/总方差的比值。广义遗传 率是指表型方差(Vp )中遗传方差(Ve)所占的比率。狭义遗传率是指表型方差(V p )中加性方差(V A)所占的比率。平均显性程度是指V D /V A 。〔在数量性状的遗传分析中,对于单位点模型,可以用显性效应和加性效应的比值d/a 来表示显性程度。但是推广到多基因

刘祖洞遗传学课后题答案

第二章 孟德尔定律 1、 为什么分离现象比显、隐性现象有更重要的意义 答:因为 (1) 分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的; (2) 只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株(AACC )与真实遗传的绿茎、马铃薯叶植株(aacc )杂交,F2结果如下: 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 247 90 83 34 (1)在总共454株F2中,计算4种表型的预期数。 (2)进行2 测验。 (3)问这两对基因是否是自由组合的 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃 薯叶 观测值(O ) 247 90 83 34 预测值(e ) (四舍五入) 255 85 85 29 454 .129 )2934(85)85583(85)8590(255)255247()(2 22 222 =-+ -+-+ -=-=∑e e o χ 当df = 3时,查表求得:<P <。这里也可以将与临界值81.72 05.0.3=χ比较。 可见该杂交结果符合F 2的预期分离比,因此结论,这两对基因是自由组合的。 11、如果一个植株有4对显性基因是纯合的。另一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少 解:(1) 上述杂交结果,F 1为4对基因的杂合体。于是,F2的类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/28 。 (2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲 本的占1/4。所以,当4对基因杂合的F 1自交时,象显性亲本的为(3/4)4 ,象隐性亲本的 为(1/4)4 = 1/28 。 第三章 遗传的染色体学说

刘祖洞遗传学习题答案13

第七章细菌和噬菌体的重组和连锁 1.为什么说细菌和病毒是遗传学研究的好材料? 2.大肠杆菌的遗传物质的传递方式与具有典型减数分裂过程的生物有什么不同? 3.解释下列名词: (1)F-菌株,F+菌株,Hfr菌株; (2)F因子,F,因子,质粒,附加体; (3)溶源性细菌,非溶源性细菌; (4)烈性噬菌体,温和噬菌体,原噬菌体; (5)部分合子(部分二倍体); 4.部分合子在细菌的遗传分析中有什么用处? 5.什么叫转导、普遍性转导、特异性转导(局限性转导)? 6.转导和性转导有何不同? 7.一个基因型为a+b+c+d+e+并对链霉素敏感的E.coliHfr菌株与基因型为a-b-c-d-e-并对链霉素耐性的F-菌株接合,30分钟后,用链霉素处理,然后从成活的受体中选出e+型的原养型,发现它们的其它野生型(+)基因频率如下:a+70%,b+-,c+85%,d+10%。问a,b,c,d 四个基因与供体染色体起点(最先进入F-受体之点)相对位置如何? 解:根据中断杂交原理,就一对接合个体而言,某基因自供体进入受体的时间,决定于该基因同原点的距离。因此,就整个接合群体而论,在特定时间内,重组个体的频率反映着相应基因与原点的距离。 报据题目给定的数据,a、b、c、d与供体染色体的距离应该是: 8.为了能在接合后检出重组子,必须要有一个可供选择用的供体标记基因,这样可以认出重组子。另一方面,在选择重组子的时候,为了不选择供体细胞本身,必须防止供体菌株的继续存在,换句话说,供体菌株也应带有一个特殊的标记,能使它自己不被选择。例如供体菌株是链霉素敏感的,这样当结合体(conjugants)在含有链霉素的培养基上生长时,供体菌株就被杀死了。现在要问:如果一个Hfr菌株是链霉素敏感的,你认为这个基因应位于染色体的那一端为好,是在起始端还是在末端? 解:在起始端 9.有一个环境条件能使T偶数噬菌体(T-even phages)吸附到寄主细胞上,这个环境条件就是色氨酸的存在。这种噬菌体称为色氨酸需要型(C)。然而某些噬菌体突变成色氨酸非依

遗传学试题 刘祖洞版

第一章绪论 一、选择题: 1.涉及分析基因是如何从亲代传递给子代以及基因重组的遗传学分支是:( ) A) 分子遗传学B) 植物遗传学C) 传递遗传学D) 种群遗传学 2.被遗传学家作为研究对象的理想生物,应具有哪些特征?( ) A)相对较短的生命周期B)种群中的各个个体的遗传差异较大 C)每次交配产生大量的子代D)遗传背景较为熟悉E)以上均是理想的特征 二、名词解释 1.遗传学: 2.遗传: 3.变异: 4.进化遗传学: 5.发育遗传学: 6.免疫遗传学: 7.细胞遗传学: 8.人类遗传 学: 三、问答题 1.简述遗传学研究的对象和研究的任务。 2.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素? 3. 为什么研究生物的遗传和变异必须联系环境? 4.遗传学建立和开始发展始于哪一年,是如何建立? 5.为什么遗传学能如此迅速地发展? 6.简述遗传学对于生物科学、生产实践的指导作用。 7.什么是遗传学?主要研究内容是什么? 8.遗传学研究的对象是什么? 9.遗传学在工农业生产和医疗保健上有何作用? 10.在遗传学发展中大致分为几个阶段?有那些人做出了重大贡献? 11.写出下列科学家在遗传学上的主要贡献。 (1)Mendel (2) Morgan (3) Muller (4) Beadle 和Tatum (5)Avery (6) Watson 和Crick (7)Chargaff (8) Crick (9) Monod 和Jacob 第二章孟德尔定律 一、选择题 1、最早根据杂交实验的结果建立起遗传学基本原理的科学家是:( ) A) James D. Watson B) Barbara McClintock C) Aristotle D) Gregor Mendel 2、以下几种真核生物,遗传学家已广泛研究的包括:( ) A) 酵母B) 果蝇C) 玉米D) 以上选项均是 3、通过豌豆的杂交实验,孟德尔认为;( ) A) 亲代所观察到的性状与子代所观察到相同性状无任何关联 B) 性状的遗传是通过遗传因子的物质进行传递的 C) 遗传因子的组成是DNA D) 遗传因子的遗传仅来源于其中的一个亲本 E) A 和C 都正确 4、生物的一个基因具有两种不同的等位基因,被称为:( ) A) 均一体B) 杂合体C) 纯合体D) 异性体E) 异型体 5、生物的遗传组成被称为:( )

遗传学名解-刘祖洞版

遗传学名解刘祖洞版 1性状(character):遗传学中把生物体所表现的形态特征和生理特征,统称为性状。 2单位性状(unit character):孟德尔在研究豌豆等植物的性状遗传时,把植株所表现的性状总体区分为各个单位作为研究对象,这样区分开来的性状称为单位性状。 3相对性状(contrasting character):不同个体在单位性状上常有着各种不同的表现,例如:豌豆花色有红花和白花、种子形状有圆粒和皱粒。遗传学中同一单位性状的相对差异,称为相对性状。 4基因型(genotype) :个体的基因组合。基因型是性状表现必须具备的内在因素。 5表现型(phenotype):植株所表现出来的红花和白花性状(形态)就是表现型。表现型是指生物体所表现的性状。它是基因型和外界环境作用下具体的表现,是可以直接观测的。而基因型是生物体内在的遗传基础,只能根据表现型用实验方法确定。 6纯合的基因型(homozygous genotype):成对的基因都是一样的基因型。如CC或cc。也称纯合体(h omozygote)。 7杂合的基因型(heterozygous genotype),或称杂合体(heterozygote):成对的基因不同。如Cc。 8随体(Satellite)是指次缢痕区至染色体末端的部分,有如染色体的小卫星。随体主要由异染色质组成,是高度重复的DNA序列。 9无丝分裂(amitosis):细胞核拉长呈哑铃状分裂,中部缢缩形成2个相似的子细胞。分裂中无染色体和纺锤体形成。如:纤毛虫、原生生物、特化的动物组织。 10有丝分裂(mitosis):即体细胞分裂,通过分裂产生同样染色体数目的子细胞。在分裂中出现纺锤体。 11无性生殖(asexual reproduction):通过有丝分裂,从一共同的细胞或生物繁殖得到的基因型完全相同的细胞或生物。也即克隆(clone)。 12有性生殖(sexual reproduction):减数分裂和受精有规则地交替进行,产生子代的生殖方式。 13无融合生殖(apomixis)不经过雌雄配子融合而能产生种子的一种生殖方式。无融合生殖的方式根据无融合生殖最后形成胚是由减数后单倍雌配子直接发育而成,还是由未减数二倍细胞产生的,可以将无融合生殖分成三大类一类是减数胚囊中的无融合生殖另一类是未减数胚囊中的无融合生殖再一类是不定胚生殖 14反应规范(reaction norm):基因型决定着个体对这种或那种环境条件的反应。

遗传学(刘祖洞)下册部分章节答案

遗传学(刘祖洞)下册部分章节答案第九章遗传物质的改变(一)染色体畸变 1.什么是染色体畸变? 答:染色体数目或结构的改变,这些改变是较明显的染色体改变,一般可在显微镜下看到,称为染色体变异或畸变。 2.解释下列名词:缺失;重复;倒位;易位 答:缺失(deletion 或deficiency)——染色体失去了片段。 重复(duplication 或repeat)——染色体增加了片段。 倒位(inversion)——染色体片段作1800的颠倒,造成染色体内的重新排列。 易位(translocation)——非同源染色体间相互交换染色体片段,造成染色体间的重新排列。 3.什么是平衡致死品系,在遗传学研究中,它有什么用处? 答:同源染色体的两个成员各带有一个座位不同的隐性致死基因,由于两个致死基因之间不发生交换,使致死基因永远以杂合态保存下来,不发生分离的品系,叫平衡致死品系(balanced lethsl system)。在遗传研究过程中,平衡致死系可用于保存致死基因。 4.解释下列名词: (1)单倍体,二倍体,多倍体; (2)单体,缺体,三体; (3)同源多倍体,异源多倍体 答:(1)凡是细胞核中含有一个完整染色体组的叫做单倍体(haploid);含有两个染色体组的叫做二倍体(diploid);超过两个染色体组的统称多倍体(polyploid)。 (2)细胞核内的染色体数不是完整的倍数,通常以一个二倍体(2n)染色体数作为标准,在这个基础上增减个别几个染色体,称非整倍性改变。例如:2n-1是单体(monsomic),2n-2是缺体(nullisomic),2n+1是三体(trisomic)。 (3)同源多倍体(autopolyploid)——增加的染色体组来自同一个物种的多倍体。 异源多倍体(allopolyloid)——加倍的染色体组来自不同物种的多倍体,是两个不相同的种杂交,它们的杂种再经过染色体加倍而形成的。 5.用图解说明无籽西瓜制种原理。 答: 亲本西瓜(2n=22) ↓秋水仙素 4n ♀× 2n ♂ 嫩绿色,无条斑,如马铃瓜↓具有深绿色平行条斑,如解放瓜 4n母本上结了西瓜,瓢中长着3n种子,把3n种子种下,所结的无籽 西瓜是无籽的,其果皮有深绿色平行条斑

遗传学课后习题及答案刘祖洞

第二章孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为1、分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条件的;2、只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存在,也就无显性现象的发生。 2、在番茄中,红果色(R)对黄果色(r)是显性,问下列杂交可以产生哪些基因型,哪些表现型,它们的比例如何(1)RR×rr(2)Rr×rr (3)Rr×Rr(4)Rr×RR(5)rr×rr 3、下面是紫茉莉的几组杂交,基因型和表型已写明。问它们产生哪些配子?杂种后代的基因型和表型怎样?(1)Rr× RR (2)rr × Rr(3)Rr×Rr粉红红色白色粉红 粉红粉红 4、在南瓜中,果实的白色(W)对黄色(w)是显性,果实盘状(D)对球状(d)是显性,这两对基因是自由组合的。问下列杂交可以产生哪些基因型,哪些表型,它们的比例如何?(1)WWDD×wwdd (2)XwDd×wwdd(3)Wwdd×wwDd (4)Wwdd×WwDd

2/8WwDd,2/8Wwdd, 1/8wwDd,1/8wwdd 3/8白色、盘状,3/8白色、球状,1/8黄色、盘状,1/8黄色、球状 5.在豌豆中,蔓茎(T)对矮茎(t)是显性,绿豆荚(G)对黄豆荚(g)是显性,圆种子(R)对皱种子(r)是显性。现在有下列两种杂交组合,问它们后代的表型如何?(1)TTGgRr×ttGgrr(2)TtGgrr×ttGgrr 解:杂交组合TTGgRr×ttGgrr: 即蔓茎绿豆荚圆种子3/8,蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚圆种子1/8,蔓茎黄豆荚皱种子1/8。 杂交组合TtGgrr×ttGgrr: 即蔓茎绿豆荚皱种子3/8,蔓茎黄豆荚皱种子1/8,矮茎绿豆荚皱种子3/8,矮茎黄豆荚皱种子1/8。 6.在番茄中,缺刻叶和马铃薯叶是一对相对性状,显性基因C控制缺刻叶,基因型cc是马铃薯叶.紫茎和绿茎是另一对相对性状,显性基因A控制紫茎,基因型aa的植株是绿茎。把紫茎、马铃薯叶的纯合植株与绿茎、缺刻叶的纯合植株杂交,在F2中得到9∶3∶3∶1的分离比.如果把F1:(1)与紫茎、马铃薯叶亲本回交;(2)与绿茎、缺刻叶亲本回交;以及(3)用双隐性植株测交时,下代表型比例各如何?

遗传学第三版刘祖洞第二章练习题

名词解释5个,选择题10个,解答题5个,问答题2个 一.名词解释 1.细胞:细胞是生物体形态结构和生命活动的基本单位,也是生长发育和遗传的基本单 位。 2.细胞生物:以细胞为基本单位的生物;根据细胞核和遗传物质的存在方式不同又可以 分为真核细胞和原核细胞。 3. 染色质:染色质是在间期细胞核内有由DNA、组蛋白、非组蛋白和少量RNA组成的, 易被碱性染料着色的一种无定形物质 4. 着丝粒:着丝粒是细胞分裂时纺锤丝附着(attachment)的区域,又称为着丝点。 5. 姊妹染色单体:一条染色体的两个染色单体互称为姊妹染色单体。 6. 次缢痕:某些染色体的一个或两个臂上往往还具有另一个染色较淡的缢缩部位,称为 次缢痕,通常在染色体短臂上。 7. 同源染色体:体细胞中形态结构相同、遗传功能相似的一对染色体称为同源染色体 二.选择题 1.在洋葱根尖分生区有丝分裂过程中,染色体数目加倍和DNA数加倍分别发生在( C ) A.间期、间期 B.间期、后期 C.后期、间期 D.前期、间期 2.一个动物细胞周期中,DNA数加倍、染色体数加倍、中心粒复制的时期依次为( C )① 间期②前期③中期④后期⑤末期 A.①②④ B.①③⑤ C.①④① D.②④⑤ 3. 保证两个子细胞中染色体形态和数目与母细胞完全相同的机制是( B ) A.染色体的复制 B.着丝点的分裂 C.纺锤丝的牵引 D.以上三项均起作用 4. 在一个细胞周期中,DNA复制过程中的解旋发生在( A ) A.两条DNA母链之间 B.DNA子链与其互补的母链之间 C.两条DNA子链之间 D.DNA子链与其非互补母链之间 5. 下列有关细胞生命活动的叙述,正确的是( B ) A.分裂期的细胞不进行DNA复制和蛋白质合成 B.免疫系统中的记忆细胞既有分化潜能又有自我更新能力 C.凋亡细胞内的基因表达都下降,酶活性减弱 D.原癌基因突变促使细胞癌变,抑癌基因突变抑制细胞癌变 6. 1.人类l号染色体长臂分为4个区,靠近着丝粒的为( B )。 A.O区B.1区 C.2区D.3区 7. 真核细胞中的RNA来源于( D )。 A.DNA复制B.DNA裂解 C.DNA转化D.DNA转录 E .DNA翻译 8. 染色体不分离( D ) A只是指姊妹染色单体不分离 B.只是指同源染色体不分离

刘祖洞遗传学第三版答案-第9章-数量性状遗传

刘祖洞遗传学第三版答案-第9章-数量性状遗传

第九章数量性状遗传 1.数量性状在遗传上有些什么特点?在实践上有什么特点?数量性状遗传和质量性状遗传有什么主要区别? 解析:结合数量性状的概念和特征以及多基因假说来回答。 参考答案: 数量性状在遗传上的特点: (1)数量性状受多基因支配 (2)这些基因对表型影响小,相互独立,但以积累的方式影响相同的表型。 (3)每对基因常表现为不完全显性,按孟德尔法则分离。 数量性状在实践上的特点: (1)数量性状的变异是连续的,比较容易受环境条件的影响而发生变异。 (2)两个纯合亲本杂交,F1表现型一般呈现双亲的中间型,但有时可能倾向于其中的一个亲本。F2的表现型平均值大体上与F1相近,但变异幅度远远超过F1。F2分离群体内,各种不同的表现型之间,没有显着的差别,因而不能得

出简单的比例,因此只能用统计方法分析。 (3)有可能出现超亲遗传。 数量性状遗传和质量性状遗传的主要区别: (1)数量性状是表现连续变异的性状,而质量性状是表现不连续变异的性状; (2)数量性状的遗传方式要比质量性状的遗传方式复杂的多,它是由许多基因控制的,而且它们的表现容易受环境条件变化的影响。 2.什么叫遗传率?广义遗传率?狭义遗传率?平均显性程度? 解析:根据定义回答就可以了。 参考答案:遗传率指亲代传递其遗传特性的能力,是用来测量一个群体内某一性状由遗传因素引起的变异在表现型变异中所占的百分率,即:遗传方差/总方差的比值。广义遗传率是指表型方差(Vp)中遗传方差(Ve)所占的比率。狭义遗传率是指表型方差(Vp)中加性方差(V A) V V〔在数量 / D A 性状的遗传分析中,对于单位点模型,可以用显性效应和加性效应的比值d/a来表示显性程度。但是推广到多基因系统时,∑d/∑a并不能说明任

刘祖洞遗传学第三版答案_第10章_染色体畸变

第十章遗传物质的改变(1)- 染色体畸变 1 什么叫染色体畸变?解答:染色体畸变是指染色体发生数目或结构上的改变。(1 )染色体结构畸变指染色体发生断裂,并以异常的组合方式重新连接。其畸变类型有缺失、重复、倒位、易位。( 2 )染色体数目畸变指以二倍体为标准所出现的成倍性增减或某一对染色体数目的改变统称为染色体畸变。前一类变化产生多倍体,后一类称为非整倍体畸变。 2 解释下列名词: (1)缺失;(2)重复;(3)倒位;(4)易位。 解答:缺失:缺失指的是染色体丢失了某一个区段。重复:重复是指染色体多了自己的某一区段倒位:倒位是指染色体某区段的正常直线顺序颠倒了。易位:易位是指某染色体的一个区段移接在非同源的另一个染色体上。 3 什么叫平衡致死品系?在遗传学研究中,它有什么用处?解答:紧密连锁或中间具有倒位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以产生非等位基因的双杂合子,这种利用倒位对交换抑制的效应,保存非等位基因的纯合隐性致死基因,该品系被称为平衡致死系。平衡致死的个体真实遗传,并且它们的遗传行为和表型表现模拟了具有纯合基因型的个体,因此平衡致死系又称永久杂种。 平衡致死品系在遗传学研究中的用处: 1)利用所谓的交换抑制子保存致死突变品系- 平衡致死系可以检测隐形突变 (2)用于实验室中致死、半致死或不育突变体培养的保存( 3 )检测性别 4解释下列名词: (1)单倍体,二倍体,多倍体。 (2)单体,缺体,三体。

(3)同源多倍体,异源多倍体。 解答: (1)单倍体(haploid):是指具有配子体染色体数目的个体。 二倍体(diploid):细胞核内具有两个染色体组的生物为二倍体。 多倍体(polyploid):细胞中有3个或3个以上染色体组的个体称为多倍体。 (2)单体(monosomic):是指体细胞中某对染色体缺少一条的个体(2n -1 )缺体(nu llosomic):是指生物体细胞中缺少一对同源染色体的个体(2n —2),它仅存在于多倍体生物中,二倍体生物中的缺体不能存活。 三体(trisomic):是指体细胞中的染色体较正常2n个体增加一条的变异类型,即某一对染色体有三条染色体(2n + 1 )。 (3)同源多倍体:由同一染色体组加倍而成的含有三个以上的染色体组的个体 称为同源多倍体。 异源多倍体:是指体细胞中具有2个或2个以上不同类型的染色体组。 5用图解说明无籽西瓜制种原理。 解答:优良二倍体西瓜品种 1,人工加倍 早四倍体X二倍体$ 早三倍体X二倍体$ 样联会紊乱 三倍体无籽西瓜 6异源八倍体小黑麦是如何育成的? 解答:普通小麦X黑麦

刘祖洞遗传学第三版答案 第13章 细胞质和遗传

第十三章细胞质和遗传 1.母性影响和细胞质遗传有什么不同? 答: 1)母性影响是亲代核基因的某些产物或者某种因子积累在卵细胞的细胞质中,对子代某些性状的表现产生影响的现象。这种效应只能影响子代的性状,不能遗传。 因此F1代表型受母亲的基因型控制,属于细胞核遗传体系; 细胞质遗传是细胞质中的DNA或基因对遗传性状的决定作用。由于精卵结合时,精子的细胞质往往不进入受精卵中,因此,细胞质遗传性状只能通过母体或 卵细胞传递给子代,子代总是表现为母本性状,属于细胞质遗传体系,2)母性影响符合孟德尔遗传规律;细胞质遗传是非孟德尔式遗传。 3)母性遗传杂交后代有一定的分离比, 只不过是要推迟一个世代而已;细胞质遗传杂交后代一般不出现一定的分离比。 2.细胞质基因和核基因有什么相同的地方,有什么不同的地方? 答: 1)相同:细胞核遗传和细胞质遗传各自都有相对的独立性。这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因与核基因一样,可以自我复制,可以控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性。 2)不同: A. 细胞质和细胞核的遗传物质都是DNA分子,但是其分布的位置不同。细胞核遗 传的遗传物质在细胞核中的染色体上;细胞质中的遗传物质在细胞质中的线粒体 和叶绿体中。 B. 细胞质和细胞核的遗传都是通过配子,但是细胞核遗传雌雄配子的核遗传物质相 等,而细胞质遗传物质主要存在于卵细胞中; C. 细胞核和细胞质的性状表达都是通过体细胞进行的。核遗传物质的载体(染色体) 有均分机制,遵循三大遗传定律;细胞质遗传物质(具有DNA的细胞器如线粒 体、叶绿体等)没有均分机制,是随机分配的。 D. 细胞核遗传时,正反交相同,即子一代均表现显性亲本的性状;细胞质遗传时, 正反交不同,子一代性状均与母本相同,即母系遗传。 3.在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样的:先把雄性不育自交系A【(S)rfrf】与雄性可育自交系B【(N)rfrf】杂交,得单交种AB,把雄性不育自交系C【(S)rfrf】与雄性可育自交系D【(N)RfRf】杂交,得单交种CD。然后再把两个单交种杂交,得双交种ABCD,问双交种的基因型和表型有哪几种,它们的比例怎样? 解: A【(S)rfrf】? B【(N)rfrf】C【(S)rfrf】? D【(N)RfRf】 ↓↓ AB【(S)rfrf】?CD【(S)Rfrf】 ↓ 基因型:1/2【(S)rfrf】1/2【(S)Rfrf】 表型:雄性不育雄性可育 4.“遗传上分离的”小菌落酵母菌在表型上跟我们讲过的“细胞质”小菌落酵母菌相似。 当一个遗传上分离的小菌落酵母菌与一个正常酵母菌杂交,二倍体细胞是正常的,以后形成子囊孢子时,每个子囊中两个孢子是正常的,两个孢子产生小菌落酵母菌。用

刘祖洞的遗传学(第二版)笔记

遗传学总复习 第一章绪论 遗传学及分支学科 遗传学的发展、任务 第二章孟德尔定律 key words: 反应规范(reaction norm)、等位基因(allele)、复等位基因(multiple alleles)、表型模写(phenocopy)、外现率(penetrance)、互补基因(complementary gene)、抑制基因(suppress gene)、表现度(expressivity)、抑制基因(inhibitor)、上位效应(epistatic effect )、叠加效应(duplicate effect) 一、积加概率卡平方测验三大定律系谱符号概率的应用 二、遗传的染色体学说 三、细胞分裂中染色体的变化核型染色体形态分析 四、基因的作用及与环境的关系 五、基因与环境 六、一因多效、多因一效 七、显、隐性的相对性 八、致死基因 九、ABO血型、Rh血型、HLA血型、血型不亲和、孟买型与类孟买型 十、非等位基因间的作用:互补、抑制、显性上位、隐性上位 第三章连锁遗传分析与染色体作图 key word: 伴性遗传(sex-linked inheritance)、从性遗传(sex-condition inheritance)、 限雄遗传(holandric inheritance)、基因组印迹(genomic imprinting)、 Lyon 假说、动态突变(dynamic mutation)、拟常染色体基因(pseudoautosomal gene)、性分化(sex differentiation)、脆性X综合症(fragile X syndrome )、睾丸决定因子(testis-determining factor ) 一、性别决定与伴性遗传

刘祖洞遗传学第三版答案 第10章 染色体畸变

第十章遗传物质的改变(1)-染色体畸变 1 什么叫染色体畸变? 解答:染色体畸变是指染色体发生数目或结构上的改变。(1)染色体结构畸变指染色体发生断裂,并以异常的组合方式重新连接。其畸变类型有缺失、重复、倒位、易位。(2)染色体数目畸变指以二倍体为标准所出现的成倍性增减或某一对染色体数目的改变统称为染色体畸变。前一类变化产生多倍体,后一类称为非整倍体畸变。 2 解释下列名词: (1)缺失;(2)重复;(3)倒位;(4)易位。 解答: 缺失:缺失指的是染色体丢失了某一个区段。 重复:重复是指染色体多了自己的某一区段 倒位:倒位是指染色体某区段的正常直线顺序颠倒了。 易位:易位是指某染色体的一个区段移接在非同源的另一个染色体上。 3 什么叫平衡致死品系?在遗传学研究中,它有什么用处? 解答:紧密连锁或中间具有倒位片段的相邻基因由于生殖细胞的同源染色体不能交换,所以可以产生非等位基因的双杂合子,这种利用倒位对交换抑制的效应,保存非等位基因的纯合隐性致死基因,该品系被称为平衡致死系。平衡致死的个体真实遗传,并且它们的遗传行为和表型表现模拟了具有纯合基因型的个体,因此平衡致死系又称永久杂种。 平衡致死品系在遗传学研究中的用处: (1)利用所谓的交换抑制子保存致死突变品系-平衡致死系可以检测隐形突变(2)用于实验室中致死、半致死或不育突变体培养的保存(3)检测性别 4 解释下列名词: (1)单倍体,二倍体,多倍体。 (2)单体,缺体,三体。 (3)同源多倍体,异源多倍体。 解答: (1)单倍体(haploid):是指具有配子体染色体数目的个体。

二倍体(diploid):细胞核内具有两个染色体组的生物为二倍体。 多倍体(polyploid):细胞中有3个或3个以上染色体组的个体称为多倍体。(2)单体(monosomic):是指体细胞中某对染色体缺少一条的个体(2n-1)。 缺体(nullosomic):是指生物体细胞中缺少一对同源染色体的个体(2n -2),它仅存在于多倍体生物中,二倍体生物中的缺体不能存活。 三体(trisomic):是指体细胞中的染色体较正常2n个体增加一条的变异类型,即某一对染色体有三条染色体(2n+1)。 (3)同源多倍体:由同一染色体组加倍而成的含有三个以上的染色体组的个体 称为同源多倍体。 异源多倍体:是指体细胞中具有2个或2个以上不同类型的染色体组。 5 用图解说明无籽西瓜制种原理。 解答:优良二倍体西瓜品种 人工加倍 ♀三倍体×二倍体♂ 联会紊乱 三倍体无籽西瓜 6 异源八倍体小黑麦是如何育成的? 解答:普通小麦×黑麦 (42) AABBDD RR(14) ABDR 染色体加倍 AABBDDRR(56) 异源八倍体小黑麦 7 何以单倍体的个体多不育?有否例外?举例。 解答:单倍体个体多是不育的,因为单倍体在减数分裂时,由于染色体成单价体存在,没有相互联会的同源染色体,所以最后将无规律地分离到配子中去,结果极大多数不能发育成有效配子,因而表现高度不育。有时也存在特殊的情况,例如四

刘祖洞遗传学第三版答案_第9章_数量性状遗传

第九章数量性状遗传 1、数量性状在遗传上有些什么特点?在实践上有什么特点?数量性状遗传与质量性状遗传有什么主要区别? 解析:结合数量性状的概念与特征以及多基因假说来回答。 参考答案: 数量性状在遗传上的特点: (1)数量性状受多基因支配 (2)这些基因对表型影响小,相互独立,但以积累的方式影响相同的表型。 (3)每对基因常表现为不完全显性,按孟德尔法则分离。 数量性状在实践上的特点: (1)数量性状的变异就是连续的,比较容易受环境条件的影响而发生变异。 (2)两个纯合亲本杂交,F1表现型一般呈现双亲的中间型,但有时可能倾向于其中的一个亲本。F2的表现型平均值大体上与F1相近,但变异幅度远远超过F1。F2分离群体内,各种不同的表现型之间,没有显着的差别,因而不能得出简单的比例,因此只能用统计方法分析。 (3)有可能出现超亲遗传。 数量性状遗传与质量性状遗传的主要区别: (1)数量性状就是表现连续变异的性状,而质量性状就是表现不连续变异的性状; (2)数量性状的遗传方式要比质量性状的遗传方式复杂的多,它就是由许多基因控制的,而且它们的表现容易受环境条件变化的影响。 2、什么叫遗传率?广义遗传率?狭义遗传率?平均显性程度? 解析:根据定义回答就可以了。 参考答案:遗传率指亲代传递其遗传特性的能力,就是用来测量一个群体内某一性状由遗传因素引起的变异在表现型变异中所占的百分率,即:遗传方差/总方差的比值。广义遗传率就是指表型方差(Vp)中遗传方差(Ve)所占的比率。狭义遗传率就是指表型方差(Vp)中加性方差 (V A)所占的比率。〔在数量性状的遗传分析中,对于单位点模型,可以用显性效应与加性效应的比值d/a来表示显性程度。但就是推广到多基因系统时,∑d/∑a并不能说明任一位点上基因的显性性质。因为∑d与∑a都可能因为有正有负而相消,

刘祖洞遗传学第三版答案-第13章-细胞质和遗传

刘祖洞遗传学第三版答案-第13章-细胞质和遗传

第十三章细胞质和遗传 1.母性影响和细胞质遗传有什么不同? 答: 1)母性影响是亲代核基因的某些产物或者某种因子积累在卵细胞的细胞质中,对 子代某些性状的表现产生影响的现象。 这种效应只能影响子代的性状,不能遗 传。因此F1代表型受母亲的基因型控 制,属于细胞核遗传体系; 细胞质遗传是细胞质中的DNA或基因对遗传性状的决定作用。由于精 卵结合时,精子的细胞质往往不进入 受精卵中,因此,细胞质遗传性状只 能通过母体或卵细胞传递给子代,子 代总是表现为母本性状,属于细胞质 遗传体系, 2)母性影响符合孟德尔遗传规律;细胞质遗传是非孟德尔式遗传。 3)母性遗传杂交后代有一定的分离比, 只不过是要推迟一个世代而已;细胞质遗 传杂交后代一般不出现一定的分离比。 2.细胞质基因和核基因有什么相同的地方,

的细胞器如线粒体、叶绿体等)没有均 分机制,是随机分配的。 D. 细胞核遗传时,正反交相同,即子一 代均表现显性亲本的性状;细胞质遗 传时,正反交不同,子一代性状均与 母本相同,即母系遗传。 3.在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样 的:先把雄性不育自交系A【(S)rfrf】与 雄性可育自交系B【(N)rfrf】杂交,得单 交种AB,把雄性不育自交系C【(S)rfrf】 与雄性可育自交系D【(N)RfRf】杂交, 得单交种CD。然后再把两个单交种杂交, 得双交种ABCD,问双交种的基因型和表 型有哪几种,它们的比例怎样? 解: A【(S)rfrf】?B【(N)rfrf】C【(S)rfrf】? D【(N)RfRf】 ↓ ↓ AB【(S)rfrf】?

遗传学————刘祖洞chapter10

第十章 遗传物质的改变(二)基因突变 1.名词解释: 基因突变,自发突变,诱发突变,可见突变,生化突变,致死突变,回复突变,突变率。 2.进行Muller-5测验时,要检验的雄蝇与Muller-5雌蝇交配得到F 1后,一定要做单对交配(Pair mating ),看F 2的分离情况。为什么一定要做单对交配? 3.何以多倍体可以阻止基因突变的显现?同源多倍体和异源多倍体在这方面有什么不同? 解:多倍体有剂量效应和补偿效应,以同源多倍体为甚,异源多倍体类似二倍体。 4.在鸽子中,有一伴性的复等位基因系列,包括 B A =灰红色 B =野生型(蓝) b =巧克力色 显性可以认为是完全的,次序从上到下。我们已经知道鸟类的性别决定是:♂ZZ ,♀ZW 。 基因型B A b 的雄鸽是灰红色的,可是有时在它们的某些羽毛上出现巧克力斑点。 请对这现象提出两个说明,一个从染色体方面,一个从基因方面。 解:雄鸽的基因型是:b B Z Z A ,灰红色雄鸽的某些羽毛上出现了巧克力色的斑点的原因,从染色体方面可能是带有B A 基因的一条Z 染色体失活了;从基因方面的原因可能是发生了基因突变。 5.如果在遗传型B A 的雌鸽中出现斑点,这斑点往往是巧克力色,但在这类鸽子中有时也可看到蓝色斑点。这个事实对你的上述两个解释中的哪一个有利? 解:雌鸽的基因型是:W Z A B 。蓝色斑点可能是发生了回复突变的结果,这个事实支持从基因突变的角度对上一题的解释。 6.在一牛群中,外貌正常的双亲产生一头矮生的雄犊。这种矮生究竟是由于突变的直接结果,是由于隐性矮生基因的“携带者”的偶尔交配后发生的分离,还是由于非遗传(环境)的影响?你怎样决定? 解: (1)如果是突变的直接结果,只有显性突变才在当代表现,并且是杂合体。用这头矮 牛与正常牛交配。其后代矮牛与正常牛呈1;1。 (2)如果是隐性矮生基因携带者交配而分离的隐性纯合体,则矮牛与正常牛交配,后 代全部正常:矮牛(aa)♂?正常牛(AA)♀→正常牛(Aa)。 (3)如果是环境影响,必须是小牛或怀孕母牛饲养在异常的条件下才能产生,并且当 改变小牛的饲养条件后,这一性状应有改变。 7.一野生型的雄果蝇与一个对白眼基因是纯合的雌果蝇杂交,子代中发现有一只雌果蝇具有白眼表型,你怎样决定这个结果是由于一个点突变引起的,还是由于缺失造成的?

刘祖洞遗传学课后题答案

第二章 孟德尔定律 1、为什么分离现象比显、隐性现象有更重要的意义? 答:因为 (1)分离规律是生物界普遍存在的一种遗传现象,而显性现象的表现是相对的、有条 件的; (2)只有遗传因子的分离和重组,才能表现出性状的显隐性。可以说无分离现象的存 在,也就无显性现象的发生。 9、真实遗传的紫茎、缺刻叶植株(AACC )与真实遗传的绿茎、马铃薯叶植株(aacc )杂交,F2结果如下: 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 247 90 83 34 (1)在总共454株F2中,计算4种表型的预期数。 (2)进行2 测验。 (3)问这两对基因是否是自由组合的? 紫茎缺刻叶 紫茎马铃薯叶 绿茎缺刻叶 绿茎马铃薯叶 观测值(O ) 247 90 83 34 预测值(e ) (四舍五入) 255 85 85 29 454 .129 )2934(85)85583(85)8590(255)255247()(2 22 222 =-+ -+-+ -=-=∑e e o χ 当df = 3时,查表求得:0.50<P <0.95。这里也可以将1.454与临界值81 .72 05.0.3=χ比较。 可见该杂交结果符合F 2的预期分离比,因此结论,这两对基因是自由组合的。 11、如果一个植株有4对显性基因是纯合的。另一植株有相应的4对隐性基因是纯合的,把这两个植株相互杂交,问F2中:(1)基因型,(2)表型全然象亲代父母本的各有多少? 解:(1) 上述杂交结果,F 1为4对基因的杂合体。于是,F2的类型和比例可以图示如下: 也就是说,基因型象显性亲本和隐性亲本的各是1/28 。 (2) 因为,当一对基因的杂合子自交时,表型同于显性亲本的占3/4,象隐性亲本的 占1/4。所以,当4对基因杂合的F 1自交时,象显性亲本的为(3/4)4,象隐性亲本的为(1/4)4 = 1/28 。 第三章 遗传的染色体学说 2、水稻的正常的孢子体组织,染色体数目是12对,问下列各组织的染色体数目是多少? (1)胚乳;(2)花粉管的管核;(3)胚囊;(4)叶;(5)根端;(6)种子的胚;(7)颖片;

遗传学(第3版) 刘祖洞、乔守怡、吴燕华、 赵寿元 高等教育出版社 (2013-01)课后习题答案8

Chapter 8 DNA Methylation in the Pathogenesis of Head and Neck Cancer Zvonko Magi?, Gordana Supi?, Mirjana Brankovi?-Magi? and Neboj?a Jovi? Additional information is available at the end of the chapter https://www.360docs.net/doc/9713083272.html,/10.5772/51169 1. Introduction Head and neck cancer is the sixth most common cancer worldwide and one of the most ag‐gressive malignancies in human population. The most common histologic type among the head and neck tumors are the squamous cell carcinomas (SCC). Despite the significant ef‐forts committed during the last decades in its early detection, prevention and treatment, head and neck cancer prognosis remains very poor with the rising incidence in developed countries and younger population. Carcinogenesis of Head and Neck Squamous Cell Carci‐noma (HNSCC) is a multistep process, which arises through an accumulation of genetic and epigenetic alterations. Although the impact of genetic changes in oral carcinogenesis is well-known, over the last decade it has been demonstrated that epigenetic changes, especially aberrant DNA methylation, play a significant role in HNSCC. 1.1. Head and neck cancer – Etiology and risk factors Head and Neck Squamous Cell Carcinoma is the sixth most common cancer in males and tenth in females worldwide [1]. Despite the fact that significant results have been achieved during the last decades in its early detection, prevention and treatment, the survival rate has remained less than 40%, and HNSCC remains one of the most aggressive malignancies. Fur‐thermore, the incidence of this carcinoma is rising in developed countries and younger pop‐ulation, particularly young women [2, 3]. Early stages of the disease are associated with minimal symptoms, thus small percentage of HNSCC has been diagnosed at an early clinical stage. Advanced stages respond poorly to current cancer therapies, with high incidence of local and regional relapse and lymph node metastasis [2, 4, 5]. ? 2013 Magi? et al.; licensee InTech. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://www.360docs.net/doc/9713083272.html,/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

相关文档
最新文档