光课程设计——光波在介质中界面上的反射及透射特性的仿真

合集下载

光课程设计——光波在介质中界面上的反射及透射特性的仿真教学提纲

光课程设计——光波在介质中界面上的反射及透射特性的仿真教学提纲

光课程设计——光波在介质中界面上的反射及透射特性的仿真西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。

二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。

三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。

由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以p s m E Et E E r imtm m im rm m ,,,0000===分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。

菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。

(1)s 分量和p 分量垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为p s m E Et E E r imtm m im rm m ,,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。

绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。

(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ范围内,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0);在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。

基础光学第4章光波在界面的反射和折射规律课件

基础光学第4章光波在界面的反射和折射规律课件

无论 n1 n2 或 n1 n2
透射光1’和2’振动方
向相同。即无半波损失。
只要光线2存在,光线1
和2的振动方向总是相
反的,即1和2的光程之
间存在半波损失。
光在多层透明介质界面的反射和折射
n1 < n2< n3 或n3 < n2< n1
时,光线1和2之间的光程
没有半波损失。
当折射率不按顺序排列时,
p
s
n2 n1
t p ts
2n1
n2 n1
入射
反射
约定
n1 < n2 n1 > n2
rp
rs
tp
ts
+
+
+
+
+
约定
实际
实际
+
反射
入射
n1
n2
约定
实际
透射
(a) n1 < n2
n1 < n2 时反射光与入射光振动方向相反
n1 > n2 时反射光与入射光振动方向相同
在任何情况下,透射光的方向和入射光相同
中的多次反射,分别求光从空气(折射率为1.0)正入射到玻
璃上表面,以及光从玻璃下表面射出时的振幅反射率、光强
反射率、振幅透射率和光强透射率。
【解】 正入射: i1 i2 0
n n
2n1
rp 2 1 rs , t p ts
n2 n1
n2 n1
2
n2 n1
在反射和折射过程中,p, s两个分量的振动是相互独立的
4.2 菲涅尔反射和折射公式
n cos i1 n1 cos i2

光学光的透射教学设计方案

光学光的透射教学设计方案

感谢观看
THANKS
光学器件设 计
考虑折射与全反 射
应用广泛
光学传感器等
光学成像
影响成像效果
● 06
第6章 光的应用与未来展望
光学技术的发展 历程
光学技术在人类社会 的发展中起着重要作 用。从最早的光学器 件到现代光学通信、 光学成像等技术,光 学技术的进步改变了 人类生活。光学技术 的发展经历了波动理 论、几何光学、光子 学等多个阶段。
反射现象
部分光线会在介质表面发 生反射,反射角等于入射 角。
全反射
当光线由光密介质入射到 光疏介质时,若入射角大 于临界角,则发生全反射 现象。
透射角
透射角是指光线穿过介质 后与法线的夹角,与入射 角和介质折射率有关。
光的透射应用
眼睛成像
光经过眼睛各部 位的透射产生清
晰的像
显微镜原理
通过透射观察微 小物体的精细结
光的折射与全反 射实验
通过折射仪实验和全 反射实验可以观察光 的折射和全反射现象。 调整入射角和介质折 射率可以获得不同结 果,验证了折射定律 和全反射条件。
光的折射与全反射在光学设备中的应用
光纤通信
传输信号稳定 高速传输
显微镜
放大微观物体 观察细微结构
望远镜
观测遥远物体 提供清晰视野
光的折射与全反射的重要性
03 工程领域
光学技术在工程中的应用
了解透射原理的重要性
深入了解透射原理可以帮助我们更好地应用光学 知识,理解光的传播规律,从而在实践中更加得 心应手。透射不仅在日常生活中有应用,也在科 学研究和工程领域发挥着重要作用。
● 02
第二章 光的波动理论
光的波动特性
光既具有波动性也具有粒子性。光的波长和频率 与其波动特性有密切关系,而干涉和衍射现象则 充分证实了光的波动性。

光波在介质中界面的反射及透射的特性仿真实验题

光波在介质中界面的反射及透射的特性仿真实验题

1. 如何确定入射面?答:入射光与反射光以及法线共同构成的平面即入射面2.什么是临界角?临界角是光疏到光密,还是光密到光疏时发生?答:临界角就是全反射角,他指的是光线由光密介质入射到光疏介质时正好发生全反射时的入射角。

3.利用全反射现象能否产生圆偏振光?答;利用全反射现象可以产生圆偏振光,一个偏振光在一定角度上经过两次全反射可以产生圆偏振光,菲涅耳棱镜就是利用这个原理所制成的。

4.解释反射系数及透射系数的概念。

答:当电磁波由一个磁导率为μ1、介电常数为ε1的均匀介质,进入另一个具有磁导率为μ2、介电常数为ε2的均匀介质时,一部分电磁波在界面上被反射回来,另一分电磁波则透射过去。

反射波与透射波的振幅同入射波振幅之比,分别称之为反射系数与透射系数。

5.根据仿真曲线解释反射及透射光的相位变化规律。

答:图中反应了他们的相位的变化规律,例如图三所示在布儒斯特角处它的相位发生了π的跃变,而根据一个确定的波的表达式来看它是由余弦函数的的变化来确定的,而rp在菲涅耳表达式中是两个确定的余弦函数之比,所以rp由正变为负的时候,其中有一个余弦函数肯定相位发生了变化(奇变偶不变,符号看象限),且在布儒斯特角处,而在全反射角处也会发生变化,而且是逐渐变化的,这是因为当入射角逐渐增大的时候,它满足一个公式tan(fai/2)=-√((sin θ)^2-n^2)/cosθ),从公式可以看出相位会随着入射角的变化而渐变,当θ=π/2时,tan(fai/2)为无穷,所以fai=π。

6.试说明布儒斯特角的概念。

答:布儒斯特角,又称偏振角,是自然光经电介质界面反射后,反射光为线偏振光所应满足的条件。

7.试分析布儒斯特角与临界角哪个大。

答:临界角大于布儒斯特角,我们从它们的公式可以简单的推导出来,布儒斯特角为arctan(n2/n1),全反射角为arcsin(n2/n2), 假设n2/n1=x,因为有光密入射到光疏,所以n2>n1,因此x>1,此时布儒斯特角为arctan(x),全反射角为arcsin(x),我们对它两个同时求导得到:(arctan(x))’=1/(1+x^2),而(arcsin(x))’=1/√(1+x^2),由此我们可以得出全反射角公式的倒数大,也就是说,在相同变量的情况下它的数值大,从而我们也就说明了临界角大于布儒斯特角。

光课程设计——光波在介质中界面上的反射及透射特性的仿真

光课程设计——光波在介质中界面上的反射及透射特性的仿真

西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。

二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。

三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。

由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。

菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。

(1)s分量和p分量p s m E Et E E r imtm m im rm m ,,,0000===垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为p s m E E t E E r imtm m im rm m ,,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。

绘出如下按光学玻璃(n=1.5)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。

(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ范围内,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0);在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。

光波在介质界面上的反射和折射 PPT课件

光波在介质界面上的反射和折射 PPT课件

(2) 大小
i t / 2 n1 sini n2 sint
tan B
n2 n1
n21
(3) 应用
3、全反射

设光波从光密介质射向光疏介质(n1>n2),
折射角θ2大于入射角θ1。当sinθ1=n2/n1时,θ2
为90o,这时折射角沿界面掠过。若入射角再增
大,使sinθ1>n2/n1 ,这时不能定义实数的折射 角。使θ2=90o的入射角θ1称为临界角,记作θc 即
E0ip cosi E0rp cosr=Et0 p cost
2、反射系数和透射系数
rp
E0rp E0ip
n2 cos1 n1 cos2 n2 cos1 n1 cos2
tan(1 2 ) tan(1 2 )
tp
E0tp E0ip
2n1 cos1 n2 cos1 n1 cos2
2 cos1 sin 2 sin(1 2) cos(1 2)
RT 1
四、反射率和透射率
3、反射率随入射角变化关系
R随入射角θ1的变化关系
11日出生于苏格兰杰德伯勒,1800年毕业于爱
丁堡大学,曾任“爱丁堡杂志”、“苏格兰杂 志”、“爱丁堡百科全书”编辑,爱丁堡大学
教授、校长等。1815年被选为皇家学会会员, 1819年获冉福德奖章。

布儒斯特主要从事光学方面的研究。1812
年发现当入射角的正切等于媒质的相对折射率 时,反射光线将为线偏振光(现称为布儒斯特
Ets Eis Ers
n H2 H1 0
n Htp cost Hip cosi Hrp cosr 0
Hip cosi H rp cosr Htp cost
7

光电课程设计_光学仿真

光电课程设计_光学仿真

概述:一、光源在光纤通信系统中,光源器件可实现从电信号到光信号的转换,是光发射机以及光纤通信系统的核心器件,它的性能直接关系到光纤通信系统的性能和质量指标。

光纤通信系统要求光源具有合适的发射波长,处在光纤的低损耗窗口之中;有足够大的输出功率,从而有较长的传输距离;有较窄的发光谱线,可以减少光纤的色散对信号传输质量的影响;易于与光纤耦合,确保更多的光功率进入光纤;易于调制,响应速度要快,调制失真小,带宽大;在室温下能连续工作,可靠性高,寿命至少在10万小时以上。

下面简单介绍已广泛应用的两类半导体光源:半导体发光二极管(LED )和半导体激光二极管(LD )。

1 发光二极管(LED )发光二极管(LED )是低速、短距离光波通信系统中常用的光源。

其寿命很长,受温度影响较小,输出光功率与注入电流的线性关系较好,价格也比较便宜。

驱动电路简单,不存在模式噪声等问 题。

发光二极管结构简单,是一个正向偏置的PN 同质结,电子-空穴对在耗尽区辐射复合发光,称为电致发光。

发出的部分光耦合进入光纤供传输使用。

LED 所发出的光是非相干光,具有较宽的谱宽(30~60nm )和较大的发射角(≈100°)。

自发辐射产生的功率是由正向偏置电压产生的注入电流提供的,当注入电流为I ,在稳态时,电子-空穴对通过辐射和非辐射复合,其复合率等于载流子注入率I/q ,其中发射电子的复合率决定于内量子效率ηint ,光子产生率为(I ηint/q),因此LED 内产生的光功率为()int int /P w q η= (2.1)式中,ω 为光量子能量。

假定所有发射的光子能量近似相等,并设从LED 逸出的功率占内部产生功率的份额为ηext ,则LED 的发射功率为()int int /e ext ext P P w q I ηηη== (2.2) ηext 亦称为外量子效率。

由上式可知,LED 发射功率P 和注入电流I 成正比。

光波在各向同性介质界面的反射和折射 ppt课件

光波在各向同性介质界面的反射和折射  ppt课件

ppt课件
17
(2)大角度入射(掠射)的反射特性

由图1-24(a),有
n1<n2,光疏到光密。θ 1≈900的掠射情况。
rs 0, rp 0

在入射点处,反射光矢量Er与入射光矢量Ei方向近似相 反,将产生半波损失。 n1>n2,光密到光疏。掠射θ 1≈900>θ c。全反射。 在入射点处,反射光产生半波损失的条件:
ki sin i kr sin r , ki sin i kt sin t n1 sin i n1 sin r , n1 sin i n2 sin t
反射定律
T 1-21
折射定律

描述光在介质面上的传播方向
ppt课件 3
1.2.2 菲涅耳公式
描述入射光、反射光和折射光 之间的振幅、相位关系。 1.s分量和p分量 垂直入射面的振动分量- -s分量 T 1-23 平行入射面的振动分量- -p分量 规定分量和分量的正方向如图所示 2.反射系数和透射系数 定义:s分量、p分量的反射系数、透射系数分别为
① n1<n2,光疏到光密。先考察θ 1=00的正入射情况。 由图1-24(a),有
rs 0, rp 0
考虑P30 T1-23,有关光场振动正方向的规定,则有
可见:在入射点处,合成的反射光矢量Er相对入射光场Ei反 向,相位发生π突变,或半波损失。 对于θ 1非零、小角度入射时,都将近似产生π相位突变,或 半波损失。

入射光中s分量和p分量的透射率(不相同)为
n2 cos 2 2 sin 21 sin 2 2 Ts ts n1 cos1 sin 2 (1 2 )
n2 cos 2 2 sin 21 sin 2 2 Tp tp 2 n1 cos1 sin (1 2 ) cos2 (1 2 )

平面光波在电介质表面的反射特性仿真研究

平面光波在电介质表面的反射特性仿真研究

1 Байду номын сангаас— 1
《 电子设 计 工程 ) 0 2年 第 1 21 1期
透射波 : E= ,x k(i —o )【 , o pi 2s cs Ee [ n 一o 胡 () 4
12 8 3年 ) 。其 中 , ( 1 和 式 ( 3 是 反 射 公 式 , ( 2 和 式 式 1) 1) 式 1)
E epi 1s 0 — O0y一 t ; x k(i r CSr)t】 [ nx O
() 3
基 金 项 目: 军队 重 点科 研 项 目( J 5 3 ) K 0 18 作 者 简 介 : 昊 鹏 (9 7 ) 男 , 宁 沈 阳人 , 士 研 究 生 。研 究 方 向 : 确 制 导 武 器 的作 战 使 用与 仿 真 。 王 18 一 , 辽 硕 精
c s 矿c s o 0悱 cs 0 o ( 6)
失问题 。
2 平面 光 波在 电 介质 表 面 的 反射 和 折 射
21 电矢 量 平行 入 射 面 .
平 面 光 波 的 电 矢 量 平 行 于入 射 面 , 此 其 电场 只有 P分 因 量 , 磁 场 垂 直 于 入 射 面 , 此 只 有 S分 量 , 面 光 波 传 输 其 因 平 方 向矢 量 | 在 入 射 面 内 , 与 : 平 行 。 以 、 和 曰所 确定 j } 轴 E
csi epi ii0- cs E0 pi ii0-t oO  ̄x ks nr I一 o ,x k s c 】 E [ s ( ) e [s n o = o0  ̄x ksiO- t cs, epi 2 nro] E [ s t 再 结 合 j=  ̄ l 和 k=  ̄ J 代 人 ( ) 简 可 得 : } 2r 1 n 22 n A, 5化

光在电介质表面的反射和折射PPT课件

光在电介质表面的反射和折射PPT课件

p s
W1'p WW11'sp W1s
Rp Rs
p s
W2 p
WW12ps W1s
cos i2
cos
cos
ii12
cos i1
Tp
Ts
第10页/共48页
4 能量守恒公式:
W1'p W2 p W1p ,W1's W2s W1s
p p 1 ,s s 1
Rp
cos i2 cos i1
第17页/共48页
10 能流关系式
1
设入射光为自然光,且有:
R W1' W1'p W1's
W1p W1s W1'p W1'S
2 W1
W1
W1
2W1p 2W1S
1
1
2 ( p s ) 2 (Rp Rs )
W2 W2 p W2s W2 p W2s
W1
1 2
W1 (p
iB iB
第24页/共48页
rs
P
n1 n2 tan n1 n2 tan
1 [1-( n12
n12
iB iB
n22 n22
n1 n1 )2 ]2
n2 n2
n2 n1 n2 n1 1
n12 n12
n22 n22
(
2n1n2 n12 n22
)4
1 [1 ( n12 n22 )2 ]2 n12 n22
3 具体求解步骤:
(1)建立如图的三套随向(局部)坐标系 和一套固定坐标系
p1 p1'
s1 s1'
k1 k1'
p2 s2 k2
i j k

光波在分界面上的反射与折射

光波在分界面上的反射与折射

δ sn2θ − 2 i n i s tg =− cs i oθ 2 ⇒ 2 i 2 i n p δ =− sn θ − tg 2 2 ncs i oθ
全反射过程中, 波 波具有不同的位相变化; 全反射过程中,S波、P波具有不同的位相变化; 波具有不同的位相变化 反射波中s分量和 分量之间的位相差将引起入射波偏振态的变化 反射波中 分量和p分量之间的位相差将引起入射波偏振态的变化; 分量和 分量之间的位相差将引起入射波偏振态的变化;

Company Logo
1.3.8
全反射
光波由光密 → 光疏介质
rs
rp
rs
rp
ts
t p 随入射角θ i 变化关系
RS、RP随入射角θ i 变化关系
Company Logo

3 2.5
3
2.5 2 2 1.5 1 0.5 1 0 0.5 -0.5 -1 0 0 0 1.5
2 2 ~= rs ~ = ~ eiδ s 1→ eiδ s = cosθi − i sin θi − n rs rs cosθi + i sin 2 θi − n2
欧拉公式: e iδ s + e − iδ s cos δ s = 2
结论: 结论:
e iδ s − e − iδ s sin δ s = 2i
n −i snθ = 1 snθ →o θ = 1 sn2θ i t i i cs t t n 2
n1
θi θ r
θ t = 900
n2
n snθ = 2 i c n 1
π n θ θ时 θ sn t i c 1 cs t 当i = c ,t = ⇒i θ = 1 snθ = ⇒ o θ =0 2 n 2 n = 1 n 2< sn i n θ > 时 i θ = 1 snθ n →i θ > → 实 域 不 立 需 展 复 域 1 sn i i 1 在数中成, 扩到数 当i θ , t c n n 2

第一篇-第二章平面光波在两介质分界平面上的反射与透射.

第一篇-第二章平面光波在两介质分界平面上的反射与透射.

对于S-波偏振,引入介质界面两侧光学 有效导纳
n1 n2 s r n1 n2 2n1 ts n1 n2
(2-19)
(2-20)
1 n1 cos1 , 2 n2 cos2
(2-21)
则式(2-17)和式(2-18)改写为
薄膜光学与薄膜技术基础
1 2 s r 1 2
薄膜光学与薄膜技术基础
则式(2-36)和式(2-37)改写为
2 1 cos 1 tp 1 2 cos 2
1 2 p r 1 2
(2-39) (2-40)
需要注意的是P-波偏振情况下,用光学有效 导纳表示的透射系数与垂直入射情况下的透 射系数公式相差因子 cos1 cos2。 2.2 各向同性吸收介质界面的反射与透射 2.2.1 S-波反射与透射 s 2 ? 0 ,在平面 假设介质电导率 s 1 ? 0,
i
(2-1)
是电场在r=0处的幅值,k 为介质 式中 E 1 1 1 0i 1中的波数,1为介质1的本征阻抗。由图2-1, 在直角坐标下,入射波传播方向的单位矢量。 由图2-1,在直角坐标下,入射波传播方向的 i k 单位矢量 0 写成分量形式,有 ki0 sin 1ex cos1ez (2-2)
(2-25)
同理,可得反射波与透射波电场和磁场 复振幅矢量表达式为
jk1 x sin1 z cos1 Er (r ) e x cos1 e z sin 1 E0r e jk1 x sin1 z cos1 E H r (r ) e y 0 r e 1 (r ) e cos e sin E e jk2 x sin2 z cos2 E t x 2 z 2 0t jk x sin z cos E 0t 2 2 e 2 Ht (r ) e y 2

平面光波在平界面层状介质薄膜中反射和透射

平面光波在平界面层状介质薄膜中反射和透射

2
n0 n0
n12 n1取偶数,式(3-34)化为
B 1 0 1
C
0
1
nG

(3-47)
B 1, C nG
(3-48)
代入式(3-39),有
R
Rs
Rp
n0 n0
nG nG
2
(3-49)
(1)当m取奇数时,由式(3-42)可知,
1
2
n1d1
cos1
2
n1d1
m
2
(3-41)

n1d1 m 4
(3-42)
即薄膜的光学厚度 n1d1取四分之一波长的整数
倍,此时
cos 1
0, 1,
m 1,3,5, m 2, 4,6,
,
sin
1
1, 0,
m 1,3,5, m 2, 4,6,
(3-43)
因此,当 m 取奇数,式(3-34)化为
为了引入光学有效导纳的概念,首先定义 切向阻抗)。定义为平面电磁波在分界平面上 电场切向分量与磁场切向分量之比,即
t
Et Ht
(3-1)
注意此处的下标 t 指切向分量,而不是透射分
量。显然,法向阻抗与本征阻抗 具有相同
的量纲。那么,在斜入射S-波偏振的情况下,
对入射波,由图2-1可知
E1t Ei , H1t Hi cos1
Er cos1
Hr
1 cos1 ip
(3-9)
如果不考虑场矢量的方向性(反射系数和透射
系数已考虑场矢量的方向性),可定义S-波偏
振界面上侧介质1中的法向阻抗为
1s
1 cos1
(3-10)
而P-波偏振界面上侧介质1中的法向阻抗为

第1章 波动光学基础 1-5 光在介质界面的反射与折射 物理光学课件

第1章   波动光学基础 1-5 光在介质界面的反射与折射 物理光学课件

1.5.7 反射光与透射光的能量分配
1 波动光学基础
1.5 光在介质界面的反射与折射
• 1.5.8 光在吸收介质界面上的反射和折射
R r 2 1n 1 n
n n 1 i
• 1.5.9光的吸收、色散和散射
• 1、吸收介质内
E
A exp
i
n
z c
t
A exp
i
n 1
i
z c
t
A
exp
1 波动光学基础
1.5.1 光在介质界面的反射与折射
二、反射和折射定律 •设(如图):入射、反射、折射光波的电场矢量的S-分量分别为:
E1s E1y A1s exp[i(k1 r t)] A1s exp{i[k1(x sin i1 z cos i1) 1t]} E1's E1'y A1's exp[i(k1' r 1' t)] A1' s exp{i[k1' (x sin i1' z cos i1' ) 1' t]} E2s E2y A2s exp[i(k2 r 2t)] A2s exp{i[k2 (x sin i2 z cos i2 ) 2t]}
2、入射波透入介质2约一个波长的深度, 透射波沿界面传播约半个波长, 然后返回介质1。
1 波动光学基础
• 三、近场扫描光学显微镜(NSOM)
• NSOM原理:
1.5.6 全反射现象与应用
1 波动光学基础
1.5.6 全反射现象与应用
• NSOM独特功能:
• 1、高分辨 • 突破衍射极限(200nm), 实现12nm分辨。 • 2、样品宽容 • 固、液、绝缘体、金属、半导体,无需特殊加工。 • 3、环境宽松 • 无需真空环境。 • 4、照明方式多样,倏逝波广泛存在。

光学课程设计 光波在介质中界面上的反射及透射特性的仿真

光学课程设计  光波在介质中界面上的反射及透射特性的仿真

西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。

二、任务与要求对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律三、课程设计原理根据麦克斯韦电磁理论,利用电矢量和磁矢量来分析光波在两介质表面的反射特性,把平面光波的入射波、反射波和折射波的电矢量分成两个分量:一个平行于入射角,另一个垂直于入射角,对平面光波在电介质表面的反射和折射进行分析,推导了菲涅尔公式,并结合MATLAB研究光波从光疏介质进入光密介质,以及光波从光密介质进入光疏介质时的反射率、透射率、相位等随入射角度的变换关系。

同时对光波在不同介质中传播时的特性变化进行仿真研究,根据仿真结果分析了布鲁斯特角、全反射现象及相位变化的特点。

有关各量的平行分量与垂直分量依次用指标p和s来表示,s分量、p分量和传播方向三者构成右螺旋关系。

假设界面上的入射光,反射光和折射光同相位,根据电磁场的边界条件及S分量,P分量的正方向规定,可得Eis+Ers=Ets. 由著名的菲涅耳公式:rs=E0rs/E0is=-(tanθ1-tanθ2)/(tanθ1+tanθ2);rp=E0rp/E0ip=(sin2θ1-sin2θ2)/ (sin2θ1+sin2θ2);ts=E0ts/E0is=2n1cosθ1/n1cosθ1+n2cosθ2;tp=E0tp/E0ip=2n1cosθ1/n2cosθ1+n1cosθ2;反射与折射的相位特性1.折射光与入射光的相位关系S分量与P分量的透射系数t总是取正值,因此,折射光总是与入射光同相位。

2.反射光与入射光的相位关系1)光波由光疏介质射向光密介质n1<n2时,反射系数rs<0,说明反射光中的s分量与入射光中的s分量相位相反,即存在一个π的相位突变。

(整理)光电课程设计_光学仿真.

(整理)光电课程设计_光学仿真.

概述:一、光源在光纤通信系统中,光源器件可实现从电信号到光信号的转换,是光发射机以及光纤通信系统的核心器件,它的性能直接关系到光纤通信系统的性能和质量指标。

光纤通信系统要求光源具有合适的发射波长,处在光纤的低损耗窗口之中;有足够大的输出功率,从而有较长的传输距离;有较窄的发光谱线,可以减少光纤的色散对信号传输质量的影响;易于与光纤耦合,确保更多的光功率进入光纤;易于调制,响应速度要快,调制失真小,带宽大;在室温下能连续工作,可靠性高,寿命至少在10万小时以上。

下面简单介绍已广泛应用的两类半导体光源:半导体发光二极管(LED )和半导体激光二极管(LD )。

1 发光二极管(LED )发光二极管(LED )是低速、短距离光波通信系统中常用的光源。

其寿命很长,受温度影响较小,输出光功率与注入电流的线性关系较好,价格也比较便宜。

驱动电路简单,不存在模式噪声等问 题。

发光二极管结构简单,是一个正向偏置的PN 同质结,电子-空穴对在耗尽区辐射复合发光,称为电致发光。

发出的部分光耦合进入光纤供传输使用。

LED 所发出的光是非相干光,具有较宽的谱宽(30~60nm )和较大的发射角(≈100°)。

自发辐射产生的功率是由正向偏置电压产生的注入电流提供的,当注入电流为I ,在稳态时,电子-空穴对通过辐射和非辐射复合,其复合率等于载流子注入率I/q ,其中发射电子的复合率决定于内量子效率ηint ,光子产生率为(I ηint/q),因此LED 内产生的光功率为()int int /P w q η= (2.1)式中,ω 为光量子能量。

假定所有发射的光子能量近似相等,并设从LED 逸出的功率占内部产生功率的份额为ηext ,则LED 的发射功率为()int int /e ext ext P P w q I ηηη== (2.2) ηext 亦称为外量子效率。

由上式可知,LED 发射功率P 和注入电流I 成正比。

光波及其在各向同性介质界面的反射和折射

光波及其在各向同性介质界面的反射和折射

2020年2月8日
7
光学教程专题 光波及其在各向同性介质界面的反射和折射
菲涅耳公式: 反射比与透射比关系:
rp t p 1; rs ts 1
正入射时:
rp

rs

n2 n2
n1 n1
tp

ts

2n1 n2 n1
2020年2月8日
8
光学教程专题 光波及其在各向同性介质界面的反射和折射
沿z轴方向传播的一维平面简谐波的波函数:
E(
p, t )

A c os [ (t

z) v
0
]
E hv,T 2 , h / 2 , P h /
k 2 , v
E(
p, t )

A exp
i [Et

P
r0 ]
2020年2月8日
2
E
2020年2月8日
A
exp
i[
(t

z v
)

0
E* Aexp{i[(t
] z
v
)

0
]}
4
光学教程专题 光波及其在各向同性介质界面的反射和折射
波函数的复数表达 复振幅:
当略去含有时间的指数因子时:
E~

Aexpi[k
r 0
]
称为复振幅。而根据复函数的运算法则:
相位突变 对入射波和反射波而言,则因:
rp

E1p ' E1 p

n2 n2
cosi1 cosi1
n1 cosi2 n1 cosi2
rs

光的传播教案:光的电磁波性质的探究

光的传播教案:光的电磁波性质的探究

光的传播教案:光的电磁波性质的探究一、教学目标1. 让学生了解光的传播的基本概念,理解光是一种电磁波。

2. 通过实验和观察,让学生掌握光的干涉、衍射和偏振等现象。

3. 培养学生的实验操作能力,提高学生的科学探究能力。

二、教学内容1. 光的传播概述光的传播速度光在介质中的传播2. 光的电磁波性质麦克斯韦电磁理论光的波动性3. 光的干涉现象干涉的定义双缝干涉实验干涉条纹的观察与分析4. 光的衍射现象衍射的定义单缝衍射实验衍射条纹的观察与分析5. 光的偏振现象偏振的定义偏振片的应用偏振现象的观察与分析三、教学方法1. 采用讲授法,讲解光的传播的基本概念,光的电磁波性质,以及光的干涉、衍射和偏振现象的原理。

2. 采用实验法,指导学生进行双缝干涉实验、单缝衍射实验和偏振现象观察实验,让学生直观地了解光的干涉、衍射和偏振现象。

3. 采用讨论法,引导学生探讨光的干涉、衍射和偏振现象背后的物理原理,提高学生的思考和分析能力。

四、教学准备1. 教室内的多媒体设备,用于展示PPT和视频资料。

2. 实验器材:双缝干涉实验装置、单缝衍射实验装置、偏振片等。

3. PPT和视频资料:关于光的传播、干涉、衍射和偏振现象的讲解和实验过程。

五、教学过程1. 导入:通过展示PPT和视频资料,引入光的传播和电磁波性质的概念,激发学生的兴趣。

2. 讲解:讲解光的传播速度、光在介质中的传播,以及光的电磁波性质。

3. 实验:指导学生进行双缝干涉实验、单缝衍射实验和偏振现象观察实验。

4. 讨论:引导学生探讨光的干涉、衍射和偏振现象背后的物理原理。

5. 总结:对本节课的内容进行总结,强调光的电磁波性质及其在日常生活和科学技术中的应用。

6. 作业:布置相关习题,让学生巩固所学知识。

六、光的折射与反射现象1. 教学目标让学生理解光从一种介质进入另一种介质时的折射现象。

让学生掌握光在界面上的反射现象。

培养学生运用光的折射和反射原理解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安邮电大学光学报告学院:电子工程学生姓名:专业名称:光信息科学与技术班级:光信1103班设计名称:光波在介质中界面上的反射及透射特性的仿真一、课程设计目的1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律;3.掌握布儒斯特角和全反射临界角的概念。

二、任务与要求对n1=1、n2=及n1=、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。

三、课程设计原理光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。

由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。

菲涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。

ps m E Et E E r imtm m im rm m ,,,0000===(1)s 分量和p 分量垂直入射面的振动分量- -s 分量平行入射面的振动分量- -p 分量定义:s 分量、p 分量的反射系数、透射系数分别为(2)反射系数和透射系数定义:s 分量、p 分量的反射系数、透射系数分别为m E Et E E r imtm m im rm m ,,0000===(3)菲涅耳公式已知界面两侧的折射率21n n 、和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。

绘出如下按光学玻璃(n=)和空气界面计算,在21n n <(光由光疏介质射向光密介质)和21n n >(光由光密介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。

(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :反射光中的s 分量与入射光中的s 分量相位相反;反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ϕ=π); p 分量的反射系数p r :在1θ<B θ范围内,p r >0,反射光中的p 分p 量与入射光中的分量相位相同(rp ϕ=0);在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);(2)n1>n2时,光密入射光疏s 分量的反射系数s r :入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。

反射光中的s 分量与入射光中的s 分量同相位,rs ϕ=0;入射角1θ>C θ时,发生全反射,1212cos sin 2tan θθϕn rs--=(21/n n n =); p 分量的反射系数p r :在1θ<B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ϕ=π);在B θ<1θ<C θ范围内,p r >0,反射光中的p 分量与入射光中的p 分量相位相同(rp ϕ=0);入射角1θ>C θ时,发生全反射,12122cos sin 2tan θθϕn n rp--=; 四、课程设计步骤(流程图)(1)定义变量n1,n2,f1.(2)给变量赋值,其中n1=1,n2=,还有一种情况其中n1=,n2=1(3)设计for 循环,使f1每循环一次加/1000,实现在f1每变化一次下,得出相应的反射系数,透射系数的值,从而得出程序的循环(4)根据程序仿真结果五、仿真结果分析-10.51Fn1<n2s/p 分量与相位的关系010203040506070809001234Ff r s010203040506070809001234Ff r p-11234n1>n2s/p 分量与相位的关系F01020304050607080901234Ff r s01020304050607080901234Ff r p结论:光在介质面上的反射、透射特性有三个因素决定:入射光的偏振态,入射角,界面两侧介质的折射率。

(1)光波由光疏介质射向光密介质(n1<n2)a.n1<n2时,反射系数rs<0,说明反射光中的s分量与入射光中的s 分量相位相反。

(即frs=)b.而p分量的反射系数rp在f1<fb范围内,rp>0,说明反射光中的p 分量与入射光中的p分量相位相同。

(即frp=0)c.在f1>fb范围内,rp<0,说明反射光中的p分量与入射光中的p分量相位突变。

(即frp=)(2)光波由光密介质射向光疏介质(n1>n2)a.入射角f1在0到fc的范围内,s分量的反射系数rs>0,说明反射光中s分量与入射光中的s分量同相位。

(即frs=0)分量的反射系数rp在f1<fb范围内,rp<0,说明反射光中的p分量相对入射光中的p分量有相位突变。

(即frp=)c.在fb<f1<fc范围内,rp>0,说明反射光中的p分量与入射光中的p分量相位相同。

六、仿真小结光在介质界面上的反射、透射特性由三个因素决定:(1)入射光的偏振态;(2)入射角;(3)界面两侧介质的折射率。

由rs、rp、ts、tp随入射角的变化曲线可知,在入射角从0度到90度的变化范围内,不论光波以什么角度入射至界面,也不论界面两侧折射率大小如何,s分量和p分量的透射系数t总是取正值,因此,折射光总是与入射光同相位。

通过本次实验,掌握了反射系数及透射系数的概念,反射光与透射光振幅和相位的变化规律,布儒斯特角和全反射临界角的概念。

七、程序clear all;%n1=1;%n2=;n1=;n2=1;n=n2./n1;if n1<n2subplot(1,3,1)qa=0:pi/100:pi/2;qb=asin(n1.*sin(qa)./n2);rs=-sin(qa-qb)./sin(qa+qb);rp=tan(qa-qb)./tan(qa+qb);ts=2.*cos(qa).*sin(qb)./sin(qa+qb);tp=2.*cos(qa).*sin(qb)./sin(qa+qb)./cos(qa-qb);plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi,tp,'g')legend('rs','rp','ts','tp')%rssubplot(1,3,2)for qa=0:pi/1000:pi/2qb=asin(n1.*sin(qa)./n2); rs=-sin(qa-qb)./sin(qa+qb); if rs<=0Frs=pi;elseFrs=0;endplot(qa*180./pi,Frs,'r')hold onendlegend('Frs')%rpsubplot(1,3,3)for qa=0:pi/1000:pi/2qb=asin(n1.*sin(qa)./n2); rp=tan(qa-qb)./tan(qa+qb); if rp<=0Frp=pi;elseFrp=0;endplot(qa*180./pi,Frp,'b')hold onendlegend('Frp')elsesubplot(1,3,1)qc=asin(n2./n1);qa=0::qc;qb=asin(n1.*sin(qa)./n2);rs=-sin(qa-qb)./sin(qa+qb);rp=tan(qa-qb)./tan(qa+qb);ts=2.*cos(qa).*sin(qb)./sin(qa+qb);tp=2.*cos(qa).*sin(qb)./sin(qa+qb)./cos(qa-qb);plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')hold onqa=qc::pi/2;tp=0;ts=0;rs=1;rp=1;plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')hold onlegend('rs','rp','ts','tp')%rsqc=asin(n2./n1);subplot(1,3,2)for qa=0:pi/1000:qcqb=asin(n1.*sin(qa)./n2);rs=-sin(qa-qb)./sin(qa+qb);if rs<=0Frs=pi;elseFrs=0;endplot(qa*180./pi,Frs,'r')hold onendqa=qc:pi/1000:pi/2;Frs= 2.*atan(sqrt(sin(qa).^2-(n.^2))./cos(qa)); plot(qa*180./pi,Frs,'r')hold onlegend('Frs')%rpsubplot(1,3,3)for qa=0:pi/1000:qc;qb=asin(n1.*sin(qa)./n2);rp=tan(qa-qb)./tan(qa+qb);if rp<=0Frp=pi;elseFrp=0;endplot(qa*180./pi,Frp,'b')hold onendqa=qc:pi/1000:pi/2;Frp= 2.*atan(sqrt(sin(qa).^2-(n.^2))./cos(qa)./n.^2); plot(qa*180./pi,Frp,'b')hold onlegend('Frp')end。

相关文档
最新文档