电工技术——电路的暂态分析

合集下载

电路的暂态分析

电路的暂态分析

对未来研究的建议
1
进一步研究不同电路元件和结构对暂态过程的影 响,探索新的电路元件和结构,以提高电路的性 能和稳定性。
2
结合现代信息技术和人工智能技术,开发更加高 效、智能的电路暂态分析方法和工具,提高分析 的准确性和效率。
3
加强与相关领域的合作与交流,推动电路暂态分 析在其他领域的应用和发展,促进相关领域的科 技进步。
在电子系统中的应用
01
在电子系统中,电路的暂态分析 主要用于信号处理、高速数字电 路等领域。
02
通过暂态分析,可以研究信号的 传输、放大、滤波等过程中的暂 态行为,优化电路的性能,提高 信号的传输质量和稳定性。
在控制工程中的应用
在控制工程中,电路的暂态分析主要用于研究控制系统的 动态特性和稳定性。
电路的暂态分析
目 录
• 引言 • 电路的暂态过程 • 电路的暂态分析方法 • 电路暂态分析的应用 • 电路暂态分析的挑战与展望 • 结论
01 引言
什么是暂态分析
暂态分析是指对电路在某一特定时刻的电流和电压进行计算和分析的过程。在电 路中,由于开关的闭合或断开,或者由于电路中元件的参数变化,可能会引起电 流和电压的瞬态变化。这些瞬态变化通常只在一段时间内存在,因此被称为暂态 。
04 电路暂态分析的应用
在电力系统中的应用
暂态分析在电力系统中主要用于研究 电力系统中的短路故障、雷击、开关 操作等引起的暂态过程,以确保电力 系统的稳定性和可靠性。
通过暂态分析,可以预测和防止电力 系统中的暂态过电压、电流冲击等对 设备造成损坏的情况,同时也可以优 化保护装置的动作时间和性能。
暂态过程的特点
01
02
03
04
非线性

《电工电子》第3章电路的暂态分析

《电工电子》第3章电路的暂态分析
在直流电路启动过程中,会产生较大的暂态电流和电压,通过暂态分析可以了解启动过程的特性 ,为电路设计和设备选型提供依据。
预测直流电路中的故障
利用暂态分析可以预测直流电路中的短路、断路等故障,从而及时采取维修措施,避免故障扩大 。
优化直流电路的控制策略
通过暂态分析可以了解直流电路在不同控制策略下的响应特性,从而选择最优的控制策略,提高 电路的控制精度和稳定性。
在暂态过程中,电阻的电压和电流会发生变 化,但电阻本身不会储存能量,因此电阻的 暂态响应是被动的,取决于外部电路的变化 。
电阻的阻值决定了电路中电流的大小, 因此在暂态过程中,电阻的阻值会影 响电流的变化速率。
电容的暂态特性
电容的充电和放电过程
当电容两端的电压发生变化时,电容会进行充电或放电, 这个过程需要一定的时间,因此电容的暂态过程相对较长。
稳态过程
电路在稳定状态下的工作过程, 此时电路中各处的电压、电流等 物理量均保持恒定或呈周期性变 化。
暂态分析的重要性
01
02
03
理解电路行为
通过暂态分析,可以深入 了解电路在开关操作、电 源变化等条件下的行为特 性。
优化电路设计
暂态分析有助于优化电路 设计,提高电路的稳定性 和可靠性,减少不必要的 能量损失和电磁干扰。
分析仿真与实验结果之间存在的误差,探 讨误差产生的原因,如元件参数不准确、 测量误差等。
改进建议
总结与反思
根据误差分析结果,提出相应的改进建议 ,如优化仿真模型、提高测量精度等,以 提高暂态分析的准确性。
对整个暂态分析的仿真与实验验证过程进行 总结与反思,总结经验教训,为后续的电路 设计与分析提供参考。
阻尼比与振荡性质
阻尼比是描述振荡衰减快慢的参数。根据阻尼比的大小,二阶电路的振荡可分为过阻尼、 临界阻尼和欠阻尼三种情况。在欠阻尼情况下,电路将呈现持续的振荡现象。

电工与电子技术第2章

电工与电子技术第2章
S t=0 + _ US R
+

i
t→∞结束暂态,进入新稳态
uR C
uC 变量值需标明时刻:
uC(0-)、uC(0+)、uC(∞)、uC (t)
例2:求uC(0+)、 iC(0+),设S动作前电路稳定
R2 4 = 12 × = 8V uC (0-) = U S 2+4 R1 + R 2
根据换路定则:uc ( 0 ) = uc ( 0 ) = 8 V
S V R uR
US = 0.5A i L( 0 + ) = i L( 0 − ) = R
uR ( 0 + ) = iL ( 0 + ) × R = 0.5 × 20 = 10V
u(0+ ) = − iL (0+ ) × R0 = 0.5 × 10 × 103 = −5000V
uL (0 + ) = u( 0 + ) − uR (0 + ) = −5000 − 10 = −5010V
RC电路的暂态响应
uC = U 0 e
−t / τ
τ=RC 越大, 暂态过程越长 一阶RC零输入电路的 暂态响应曲线 为RC放电过程
(t ≥ 0) (t>0) (t>0)
i C
U0
uR = −Βιβλιοθήκη 0e−t / τU 0 −t / τ i=− e R
t=0
R uR
0 i U0 uC − R − U 0
+

t=0-
换 路
t=0+
t
换路前后虽电路不同,但换路后 瞬间uC和iL保持不变。
0 暂态过程
换路定则只对uC和iL,其他电量都会发生突变

电工电子学第三章

电工电子学第三章

第三章电路的暂态分析1、研究暂态过程的意义暂态过程是一种自然现象暂态过程是一种自然现象,,对它的研究很重要对它的研究很重要。

暂态过程的存在有利有弊暂态过程的存在有利有弊。

有利的方面有利的方面,,如电子技术中常用它来产生各种波形术中常用它来产生各种波形;;不利的方面不利的方面,,如在暂态过程发生的瞬间态过程发生的瞬间,,可能出现过压或过流可能出现过压或过流,,致使设备损坏备损坏,,必须采取防范措施必须采取防范措施。

设:t =0 时换路---旧稳态的终了瞬间---换路后的初始瞬间0+0-C(4) 由t=0+时的等效电路求所需的u(0+)、i(0+)。

(0+)、C L Ci L(0+)、i R(0+) 、i S(0+) 。

mA 522210)0(=+×=−L imA155)10(0105)0()0(10)0(=−−−−=−+−+−=+C R S i i i mA10V10S断开=−+U u u C R SR+U 0_CC u i21R u U _++_+_合在1,1合到2,根据换路定则)0()0(U u u C C =−=+SR+U 0_CC u i21Ru +_+_SR+U 0_CC u i21Ru +_+_,和工程上工程上,,t =(3~5)τ认为暂态过程结束,电路到达新的稳态新的稳态。

的物理意义: 决定电路暂态过程变化的快慢。

τ的物理意义 决定电路暂态过程变化的快慢。

U0uCτ1 τ 2τ3τ1 < τ 2 < τ3t36.8%U0τ1 τ2 τ321结论: 暂态过程曲线变化越慢, 结论:τ 越大,暂态过程曲线变化越慢,uc 新的稳态所需要的时间越长。

达到 新的稳态所需要的时间越长。

1 SRi+ U0 _2+ uR _uc ( t ) = U 0 eC−t RC+ uC _电路中的电流, 电路中的电流,电阻两 端的电压变化的规律? 端的电压变化的规律?uR = − uC = −U 0 eU0 uR i= e =− R R−t RCt duC U 0 − RC i=C e =− dt Rt − RC或电路中各量的暂态过程同时发生,也同时结束; 电路中各量的暂态过程同时发生,也同时结束; 并且具有相同的时间常数。

电工电子技术第5章一阶电路的暂态分析

电工电子技术第5章一阶电路的暂态分析


dW ≠∞ dt
→W(t) 是连续函数(不能跃变)。
结论 ①具有储能的电路在换路时产生暂态是一种自然现象。 ②无论是直流电路还是交流电路均有暂态。
三、名词术语
激励:电路从电源(包括信号源)输入的信号 统称为激励。 响应:电路在外部激励的作用下,或者在内部 储能的作用下产生的电压和电流统称为响应。 阶跃激励
例5.3 已知 U0 = 18 V, S 合上前电路为稳 态,当 t = 0 时将 S 合上。求 uC (t) 和 i (t) 。
解:(1) 求 uC (t) ∵ S 合上前电路为稳态,
∴ uC (0-) = 0 则 uC (0+) = uC (0-) = 0 原电路等效为右下图,
磁场能量:
WL =∫p dt
=∫u i dt
=
1 2L
i
2
结论
① 当 i = 0 时,WL = 0;当 u = 0 时,WL ≠ 0 。 ② 电感电流是电感的状态变量。
i +- ue L -+
2. 电容(线性电容) q=Cu
dq
du
i = dt = C dt
瞬时功率: du
p = u i = C u dt
iS i2 R2 6
例5.2 图示电路,已知 S 合上前电路为稳
态,当 t = 0 时将 S 合上。求 iL 和 uL 的初始值 和稳态值。
解:(1) 求初始值 对于稳态直流电路
uL (0-) = 0
R1
iL
10 k +
IS
L uL -
S 30 mA
iL (0-) =
RR1+2=IR1S02 mA
p=-
1 RC
时间常数 = RC (s)

电路的暂态分析电工课件

电路的暂态分析电工课件

03
CATALOGUE
电路暂态的数学模型
一阶电路暂态的数学模型
微分方程
一阶电路的暂态可以用一 阶常微分方程表示,描述 了电流或电压随时间的变 化规律。
初始条件
描述电路在t=0时刻的电 流和电压状态。
时间常数
决定暂态持续时间的重要 参数,与电路的电阻、电 容或电感值有关。
二阶电路暂态的数学模型
微分方程
电路的暂态分析电工课件
CATALOGUE
目 录
• 电路暂态的基本概念 • 电路暂态的分析方法 • 电路暂态的数学模型 • 电路暂态的响应特性 • 电路暂态的应用实例
01
CATALOGUE
电路暂态的基本概念
定义与特点
定义
电路暂态是指电路从一个稳定状 态过渡到另一个稳定状态所经历 的过程。
特点
电路暂态具有非稳态、不连续和 时间有限的特点,其持续时间通 常很短,但在此期间电路中的电 流和电压会发生显著变化。
高速数字信号处理
在高速数字信号处理中,信号的采样和处理需要精确控制。通过对电路暂态的分析,可以优化采样时 刻和采样频率,从而提高信号处理的准确性和效率。
THANKS
感谢观看
总结词
将电路的微分方程转化为频域中的代数方程,通过求解代数方程得到电流和电 压的频域表示。
详细描述
频域分析法是将电路的微分方程通过傅里叶变换转化为频域中的代数方程,通 过求解代数方程得到电流和电压的频域表示。这种方法能够方便地处理线性电 路,但对于非线性电路需要采用线性化方法进行处理。
复频域分析法
CATALOGUE
电路暂态的分析方法
时域分析法
总结词
通过建立电路的微分方程,直接求解得到电流和电压的时域 响应。

电子电工技术第四章 电路的暂态过程分析

电子电工技术第四章 电路的暂态过程分析

设一阶线性电路中所求变量为 f (t) ,变量的初始值为 f (0 ) ,变量在过渡过程结束后的稳态值为 f () ,时间常
数为 ,则我们可直接写出全响应的表达式为
f (t)
f ' (t)
f "(t)
f () [ f (0 )
t
f ()]e
式中,f '(t) 和 f "(t) 分别表示全响应中对应齐次方程的解和对 应非齐次方程的特解。
uC
t
E(1 e
)
3(1
t
e 2106
)
3(1
e5105 t
)
三、RC电路的全响应
由电容元件的初始储能和外接激励共同作用所产生的电路
响应,称为RC电路的全响应。
在图示电路中,电容元件
已具有初始储能 uC (0 ) U0 <U S
当开关S在 t 0 时刻合向电路 ,根据KVL,列出t ≥ 0 的电路
0
从理论上讲电容二端的电压经过无限长时间才能衰减至零
,但在工程上一般认为换路后,经过4 ~ 5 时间过渡过程即结
束。如图所示曲线分别为 uC 、i 、uR 随时间变化的曲线。
uC,uR
i
U
uC
t
t
uR
-U
US R
例 4-3 在图中,开关S长期合在位置1上,当t 0 时把它
合在位置2上,求换路后电容元件上电压uC和放电电流 i 。
第一节 储能元件和换路定则
由于电路结构(例如电路的接通、断开、短路等)或参
数的变化而引起电路从一种状态转变到另一种状态称之为换路

当初始时刻无储能,电容、电感中储存的能量与任一时刻
电压与电流的关系为

电工电子技术第3章电路的暂态分析

电工电子技术第3章电路的暂态分析

电流通过N匝线圈产生 ψNΦ(磁链) 电感: L ψ NΦ ( H、mH)
ii
线性电感: L为常数; 非线性电感: L不为常数 线圈的电感与线圈的尺寸、匝数以及附近的介质
的导磁性能等有关。 L μ S N 2 l
L μS N2 (H)
i
l
S — 线圈横截面积(m2)
+
-
l —线圈长度(m)
3 .3 .1 RC电路的零输入响应
零输入响应: 无电源激励, 输 入信号为零, 仅由电容元件的 + 初实始质储:能RC所电产路生的的放电电路过的程响应。U -
2 t 0 R
1
S
+
iC
u

R
u
+ C–
c
图示电路
uC(0)U
换t =路0时前开电关路S已 处1稳, 电态容uCC(经0电)阻UR 放电
由于物体所具有的能量不能跃变而造成
在换路瞬间储能元件的能量也不能跃变
∵ C 储能:
WC

1 2
CuC2
∵ L储能:
WL

1 2
L iL2
\ u C 不能突变
iL不能突变
2. 换路定则
设:t=0 — 表示换路瞬间 (定为计时起点) t=0-— 表示换路前的终了瞬间 t=0+—表示换路后的初始瞬间(初始值)
1) 由t =0+的电路求其它电量的初始值; 2) 在 t =0+时的电压方程中 uC = uC( 0+)、
t =0+时的电流方程中 iL = iL ( 0+)。
例1.暂态过程初始值的确定
S C R2
已知:换路前电路处稳态,

《电工电子技术》全套课件第2章电路的暂态分析

《电工电子技术》全套课件第2章电路的暂态分析

04
电路暂态的实验研究
实验目的和实验原理
实验目的
通过实验研究电路暂态过程,加深对电路暂态分析的理解,掌握暂态分析的基本 方法。
实验原理
电路暂态分析是研究电路中非线性元件的动态特性和电路暂态过程的学科。通过 实验,可以观察电路中电压、电流的变化过程,了解暂态分析的基本原理和方法 。
实验步骤和实验结果分析
电机控制
在电机控制中,暂态分析可以帮助理 解电机的启动、停止和调速过程,从 而优化电机的控制策略。
在电机控制中的应用
伺服控制
伺服控制系统需要对电机的位置和速度进行精确控制,通过暂态分析可以更好 地理解和优化控制算法。
变频器
在变频器中,暂态分析可以帮助理解电机的频率变化过程,从而优化变频器的 控制效果。
《电工电子技术》全套课件第 2章电路的暂态分析

CONTENCT

• 电路暂态的基本概念 • 电路暂态的分析方法 • 电路暂态的应用 • 电路暂态的实验研究 • 电路暂态的工程实例
01
电路暂态的基本概念
电路暂态的定义
电路暂态
在电路中,当开关动作或输入信号发生变化时,电路从一个稳定 状态过渡到另一个稳定状态的过程,这个过程称为电路的暂态。
80%
5. 数据分析
对采集到的数据进行处理和分析 ,绘制图表,得出结论。
实验步骤和实验结果分析
1. 电压、电流波形分析
01
根据采集到的电压、电流波形,分析暂态过程中电压、电流的
变化规律。
2. 参数影响分析
02
改变元件参数,观察暂态过程的变化,分析元件参数对暂态过
程的影响。
3. 近似计算分析
03
利用近似计算方法,如三要素法等,对实验数据进行处理和分

电工技术第三章 电路的暂态分析习题解答

电工技术第三章 电路的暂态分析习题解答

第三章 电路的暂态分析含有电感或电容储能元件的电路,在换路时会出现暂态过程。

本章研究了暂态过程中电压与电流的变化规律。

主要内容:1.暂态过程的基本概念。

2.换路定则:在换路瞬间,电容电流和电感电压为有限值的情况下,电容电压 和电感电流在换路前后的瞬间保持不变。

3.RC 电路的零输入响应、零状态响应和全响应。

4.RL 电路的零输入响应、零状态响应和全响应。

5.一阶线性电路暂态分析的三要素法:一阶线性电路在直流激励下的全响应零、 输入响应和零状态响应都可以用三要素法τte f f f t f -+∞-+∞=)]()0([)()(来求出。

6.暂态过程的应用:对于RC 串联电路,当输入矩形脉冲,若适当的选择参数 和输出,可构成微分电路或积分电路。

[练习与思考]解答3-1-1什么是稳态?什么是暂态?解:当电路的结构、元件参数及激励一定时,电路的工作状态也就一定,且电流和电压为某一稳定的值,此时电路所处的工作状态就称为稳定状态,简称为稳态。

在含有储能元件的电路中,当电路的发生换路时,由于储能元件储的能量的变化,电路将从原来的稳定状态经历一定时间变换到新的稳定状态,这一变换过程称为过渡过程,电路的过渡过程通常是很短的,所以又称暂态过程。

3-1-2什么是暂态过程?产生暂态过程的原因是什么?解:含有储能元件的电路从一个稳态转变到另一个稳态的所需的中间过程称为电路的暂态过程(过渡过程)。

暂态过程产生的内因是电路中含有储能元件,外因是电路发生换路。

3-2-1 初始值和稳态值分别是暂态过程的什么时刻的值?解:初始值是暂态过程的+=0t 时刻的值,稳态值是暂态过程的∞=t 时刻的值。

3-2-2 如何求暂态过程的初始值?解:求暂态过程初始值的步骤为:⑴首先画出换路前-=0t 的等效电路,求出-=0t 时刻电容电压)0(-C u 和电感电流)0(-L i 的值。

对直流电路,如果换路前电路处于稳态,则电容相当于开路,电感相当于短路。

电工学(上)第三章电路的暂态分析讲解

电工学(上)第三章电路的暂态分析讲解
第3章 电路的暂态分析
教学要求: 1. 理解电路的暂态和稳态、零输入响应、零状 态响应、全响应的概念,以及时间常数的物 理意义。 2. 掌握换路定则及初始值的求法。 3. 掌握一阶线性电路分析的三要素法。
稳定状态: 在指定条件下电路中电压、电流已达到稳定值。
暂态过程: 电路从一种稳态变化到另一种稳态的过渡过程。
一阶电路暂态过程的求解方法 一阶电路
仅含一个储能元件或可等效为一个储能元件的线性 电路, 且由一阶微分方程描述,称为一阶线性电路。
求解方法 1. 经典法: 根据激励(电源电压或电流),通过求解 电路的微分方程得出电路的响应(电压和电流)。
2. 三要素法 求
初始值
稳态值 (三要素) 时间常数
总目录 章目录 返回 上一页 下一页
t =0+时的电流方程中 iL = iL ( 0+)。
总目录 章目录 返回 上一页 下一页
例1.暂态过程初始值的确定
S C R2
已知:换路前电路处稳态,
+ t=0
U
R1
-
L
C、L 均未储能。
试求:电路中各电压和电
流的初始值。
(a)
解:(1)由换路前电路求 uC (0 ), iL(0 )
由已知条件知 uC (0 ) 0, iL(0 ) 0
当电容元件两端加以恒定电压时,其中电 流i为零,故电容元件可视为开路。
总目录 章目录 返回 上一页 下一页
当电容元件两端加以恒定电压时,其中电
流i为零,故电容元件可视为开路。
将式: i dq C du dt dt
两边乘以u,并积分,则得:
t uidt
u Cudu 1 Cu2

电工电子技术3

电工电子技术3

(3~5)τ 的时间,可认为暂态结束。
返回
当t = τ时
uC(t)=Us(1-e -1)=0.632Us
u Us
0.632Us
uC(t)
τ
t
返回
例、已知R=103KΩ ,US=100V,C=10μF,
求开关闭合后5、10、30秒时的uC值,并
画出uC曲线。
解:
u(V)
+
100 US -
uC ut C=(50)= 0u(C初=始39条.4V件)
全响应=零输入响应+零状态响应
可分别求零输入响应(令电源为零); 零状态响应(令初始值为零),然后求叠 加。
返回
例、已知R1=R2 =10Ω ,US=80V,C=10μF,
t=0开关S1闭合,0.1ms后,再将S2断开,求
uC的变化规律.(C上初始能量为零)
解:(12) 0t<>t0<.10m.1sms
τ值越小,暂态过程进行得越快. τ值越大,暂态过程进行得越慢. 当t=τ时
uC(τ)=USe-τ/τ = USe-1 =0.368US
也就是说,零输入响应的初始值经过 一个τ ,衰减为原来的36.8%。
一般在t=(3~5)τ时 uC(t)的值已很小,
可认为暂态结束。
返回
uC Us
0.368Us
τ1 τ2
τ3
t
τ1 < τ2 < τ3
返回
二.零状态响应
与零输入相反,如果在换路前储能元 件没有能量储存,这种状态称为零状态。
因此,将电路中输入信号作用时, 所产生的响应称为零状态响应。
返回
1.换路后的微分方程
S在2位置
1

电工学-第三章 电路的暂态分析

电工学-第三章 电路的暂态分析

⑵令: 5 = 10(1− e−105 t )
得:
t
=

ln 0.5 105
=
6.93×10−6 (S )
3.3.5 在图 3.09 所示电路中,I=10mA,R1=3kΩ,R2=处于稳态。求在 t≥0 时的 uC 和 i1,并作出它们随时间的变化曲线。
+
U1

R2
L
U2

解: 三要素:
iL (0+ )
= iL (0− )
=
U2 R3
=
20 40
=
0.5( A)
2
iL (∞)
=
U1 R1
+ U2 R3
=
24 60
+
20 40
=
0.4 + 0.5
=
0.9( A)
τ=L=
L
=
4
= 0.2(S)
R R1 // R2 // R3 60 //120 // 40
第三章 电路的暂态分析(B 基本题)
3.3.3 在图 3.07 所示电路中,已知 uC (0-)=0,试求:⑴t≥0 时的 uC 和 i;⑵uC 到达 5V 时 所需时间。
S
10Ω
+
t =0
10V

+i u−C 1μF
图3.07 习题3.3.3的图
解:⑴由题意为零状态响应问题。
−t
uC = U (1− e τ )
解: 三要素:
uC (0+ ) = uC (0− ) = 1× 20 −10 = 10(V )
uC (∞)
=
20
10 + 10

《电路与电工技术》第4章 电路的暂态分析

《电路与电工技术》第4章  电路的暂态分析
第4章 电路的暂态分析
4.1 电路稳态和暂态的基本概念 4.2 换路定律及初始值的确定 4.3 RC电路的暂态分析 4.4 RL电路的暂态分析 4.5 求解一阶电路的三要素法 4.6 LC振荡电路 4.7 应用举例
第4章 电路的暂态分析
本章内容提要:
本章主要介绍动态电路的基本概念,并介 绍了RC、RL的时域分析过程和方法,及求解一 阶电路的三要素法。
的变量,获得电路的电压、电流值。
电容C指的是在一定的电位差下储存的电荷量,根据电容特性可
知,在有限的电容电流下,电容电量不能跳变。
因此,在任意时间t,电荷与电流的关系为:
qt
qt0
t
t0
iC
d
电容电压则为:
uC
t
qt
C
qt0
C
1 C
t t0
iC
d
uC t0
1 C
t t0
iC
d
4.2 换路定律及初始值的确定
4.1 电路稳态和暂态的基本概念
在前几章的学习中,若电路中涉及到的元件都是电阻 特性时,电源一旦接通或断开,电压电流马上产生跳变, 电路在此瞬间直到下一次结构或参数变化,保持同一状 态不再改变,这种状态称为稳定状态,即稳态。
当电路中含有储能元件如电感、电容元件,且电路结 构或参数改变时,由于它们的记忆惯性,储能元件的能 量不能突变,也即电容电压和电感电流不能跃变,其值 与初值有关,电路需逐渐稳定,从旧的稳定状态达到新 的稳定状态需要持续一段时间,即存在一个暂态的过程, 这种过渡过程定义为动态过程。而电路结构或参数的突 然改变,如电闸的开、关,称为换路,一般默认在t=0时 刻发生。
4.1 电路稳态和暂态的基本概念
开关S在t=0时刻闭合,假设电容元件C原来没有能量储存,试分析下 图电路在换路前后的状态。

电工电子学_电路的暂态分析

电工电子学_电路的暂态分析



5


3. 暂态分析的基本概念
分析电路的暂态过程就是根据激励,求电路的响应。按照产生响 应的原因,可将响应分为零输入响应、零状态响应和全响应。 (1) 零输入响应 电路发生换路前,内部储能元件中已储有原始能量。换路时,外部输 入激励等于零,仅由内部储能元件中所储存的能量引起的响应,称为 零输入响应。
18

4.3 一阶RL电路的暂态分析 4.3.1 RL电路的零状态响应 图4.3.1(a)所示电路是一个RL串联电路。换路前电感中的电流 为零,即iL(0-)=0。设在t=0时开关S闭合,则换路后RL电路与直 流电源接通,所以电路中电流、电压的响应是零状态响应。根据换路 定则,换路后t=0+瞬间 iL (0 ) iL (0 ) 0 。

(4)将上述求得的三要素代入式(4.4.1),即可求得一阶电路任意 响应。
27

[例4.4.1] 电路如图4.4.1(a)所示。已知US=12V,R1=3k, R2=6k,C=20F ,t=0时开关闭合。换路前电路已处于稳态。求 换路后电容上的电压uC 。
28


3

1.产生暂态过程的条件 电路产生暂态过程必须具备一定的条件。一是电路有换路存在; 二是电路中存在储能元件(电感L或电容C)。 电路的接通、断开、改接、电源或电路参数的改变等所有电路 状态的改变,统称为换路。 换路只是产生暂态过程的外因,产生暂态过程的内因是电路中 存在储能元件——电感和电容。电感和电容上会有一定的储能,由于 能量不能突变,能量的储存和释放都需要一定的时间,否则意味着无 穷大功率的存在,即 dW 。
4.4 一阶线性电路暂态分析的三要素法

电子电工学第2章电路的暂态分析的教案

电子电工学第2章电路的暂态分析的教案

微分方程式:
L R
d iL dt
iL
IS
US
S
最后求得:
Rt
t
iL IS(1 e L ) IS(1 e τ )
uL
L d iL dt
t
RIS e
t
US e
时间常数:
L
R
R
iL
uL
返回
上一节
下一节
上一页
下一页
第2章 电路的暂态分析
(三) RL 电路的全响应 a
S
R
b
iL
U0
US
直流电路中 U = 常数
I =0 C 相当于开路,隔直流作用
返回
上一节
下一节
上一页
下一页
电容串联
u1
u
u2
1 1 1 C C1 C2
u1
C2 C1 C2
u
u2
C1 C1 C2
u
第2章 电路的暂态分析
电容并联
C1 C2
u
C1 C2
C C1 C2
上一节
下一节
上一页
第2章 电路的暂态分析
(二) 电感
t
e
R
t
(IS I0)e
返回
上一节
下一节
上一页
下一页
第2章 电路的暂态分析
uC、iC 变化规律与 U0 和 US 相对大小有关。
O
O
返回
上一节
下一节
上一页
下一页
第2章 电路的暂态分析
2.4 RL电路的暂态分析
(一) RL 电路的零输入响应
t = 0 时换路
换路前,S 合在a端

电工技术-电路的暂态分析

电工技术-电路的暂态分析

u'C (t) = uc(∞) = U
u"C (t) = AePt = [uC (0+ ) − uC (∞)]e− t RC
−t
= −Ue RC
37
uC (t) = u'C + u"C
−t
= uC (∞) + [uC (0+ ) − uC (∞)]e RC
−t
= U − Ue RC
= uC (∞)(1 − e−t /τ ) uC t
定义: τ = − 1 = RC
P
R: 欧姆
τ 称为时间常数
单位
C: 法拉
τ:秒38
5.2.3 RC电路的全响应
u ( 零状态响应 +零输入响应) i
U
ui
R C
t T
uC
u C在 i加入 前未充电
t
零状态 零输入 响应 响应
39
例 已知:开关 K 原处于闭合状态,t=0时打开。
求: u C (t )
2k
3k
E + R1 1µ
_ 10V C
R2
u C K t =0
uC (0− )
=
R2 R1 + R2
E
=
6
V
40
解: 全响应=零状态响应+零输入响应
2kΩ
3kΩ
E + R1 1µ
_ 10V C
R2
uC K
零状态 2kΩ
E
+ R1 _ 10V

C
u C′
+
零输入
2kΩ
R1 1μ uC′′
= 20 mA

电工学电路的暂态分析

电工学电路的暂态分析

分析RC电路旳零输入响应,实际上就是分析它旳放电过程。
1S i
t=0 +
+2 U -
R -uR +
C -uC
图所示是一RC串联电路,当电容元件充 电到uC=U0时,即将开关S从位置1合到 2, 使电路脱离电源,输入为零。此时电容元 件上电压旳初始值uC(0+)=U0,于是电容元 件经过电阻 R 开始放电。
+
u-L L
t=0+ 旳电路
R1 i
2
+U -6V
iC + uC-
R2 4
C
iL
R3 4
+
u-L L
iL(0+)iL(0-)0 uC(0+)uC(0-)0
i(0+) iC(0+)1A uL(0+)4V
3·3 RC电路旳响应
3·3·1 RC电路旳零状态响应
所谓RC电路旳零状态响应,是指换路前电容元件末有能量, uC(0-)=0。在此条件下,由电源鼓励所产生旳电路旳响应,称为 零状态响应。
C
6 6
3 3
10310001012
2106s
所以 uC 3(1et / ) 2106 V 3(1e5105t ) V
3·3 RC电路旳响应
3·3·2 RC电路旳零输入响应
所谓RC电路旳零输入响应,是指无电源鼓励,输入信号为零。 由电容元件旳初始状态 uC(0+) 所产生旳电路旳响应,称为零输入 响应。
1 2
Cu2
不能跃变,这反应在电容元件上
旳电压 uC不能跃变:
可见:
电路旳暂态过程是因为储能元件旳能量不能跃变而产生旳。
3·2 储能元件和换路定则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设开关 K 在 t = 0 时打开。
R 求: K打开的瞬间,电压表两的 电压。
解: 换路前
iL
(0
)
U R
20 20mA 1000
换路瞬间 iL (0 ) iL (0 ) 20mA
(大小,方向都不变) 14
K UV
L
iL (0 ) iL (0 ) 20 mA
iL
R
uV (0 ) iL (0 ) RV
7
§6.1 换路定理与电压和电流初 始值的确定
换路: 电路状态的改变。如:
1 . 电路接通、断开电源 2 . 电路中电源的升高或降低 3 . 电路中元件参数的改变
…………..
8
换路定则: 在换路瞬间,电容上的电压、 电感中的电流不能突变。
设:t=0 时换路
0 --- 换路前稳态终了瞬间
0 --- 换路后暂态起始瞬间
时t=的0等+ V 20103 500103
效电路
10000 V
V
IS IS iL (0 ) 20 mA
注意:实际使用中要加保护措施, 加续流二极管或先去掉电压表再 打开开关S。
15
例3:
2
K
R
1 2k +
E _
6V
i i2
i R1 R2
1 2k 1k
uL
uC
已知: K 在“1”处停留已久,在t=0时合向
则: uC (0 ) uC (0 )
iL (0 ) iL (0 )
9
换路瞬间,电容上的电压、电感中的电流不能突
变的原因解释如下:
* 自然界物体所具有的能量不能突变,能量的积累或
释放需要一定的时间。所以
电容C存储的电场能量(Wc
1 2
CuC 2)
WC 不能突变
uC 不能突变
电感 L 储存的磁场能量(WL
的大小。 求解要点:
1. uC (0 ) uC (0 ) iL (0 ) iL (0 )
2. 根据电路的基本定律和换路后的等效
电路,确定其它电量的初始值。
12
例1
K
t=0 U
uR iL
uL
已知: R=1kΩ, L=1H , U=20 V、
开关闭合前 iL 0 A
设 t 0 时开关闭合
UC
UL
提示:先画出 t=0- 时的等效电路
uC (0 )、iL (0 ) uC (0 )、iL (0 )
画出 t =0+时的等效电路(注意
第六章
电路的暂态分析
1
概述
“稳态”与 “暂态”的概念:
KR
R
+
E
_
uC
C
+
_E
uC
电路处于旧稳态
电路处于新稳态
过渡(暂态)过程 :
旧稳态
新稳态
uC 暂态
E
稳态 t
2
产生过渡过程的电路及原因?
电阻电路
K
t=0
+
I
I
U
R
_
无过渡过程
电阻是耗能元件,其上电流随电压比例变化, 不存在过渡过程。
3
电容电路
6
说明:
讲课重点:直流电路、交流电路都存在过渡过程。 我们讲课的重点是直流电路的过渡过程。
研究过渡过程的意义:过渡过程是一种自然现 象, 对它的研究很重要。过渡过程的存在有利有弊。 有利的方面,如电子技术中常用它来产生各种波形; 不利的方面,如在暂态过程发生的瞬间,可能出现过 压或过流,致使设备损坏,必须采取防范措施。
0
2
因为能量的存储和释放需要一个过程,所以有电
感的电路存在过渡过程。
5
结论
有储能元件(L、C)的电路在电路状态发生 变化(换路)时(如:电路接入电源、从电源断 开、电路参数改变等)存在过渡过程;
没有储能作用的电阻(R)电路,不存在过渡 过程。
电路中的 u、i 在过渡过程期间,从“旧稳态”进 入“新稳态”,此时u、i 都处于暂时的不稳定状态, 所以过渡过程又称为电路的暂态过程。
i t=0 + 时的等效电路
i2
i1(0 ) iL (0 ) iL (0 ) 1.5 mA
+ i1
_E 1.5mA
R1 2k +
uL -
R2 1k 3V
i2 (0 )
E
uC (0 ) R2
3 mA
iL (0 ) u(C 0) i(0 ) i1(0 ) i2 (0 )
4.5 mA
uL (0 ) E i1(0 ) R1 3 V 18
计算结果
2
K
R
1 2k +
E _
6V
i i2
i R1 R2
1 2k k
uL
uC
电量 i
i1 iL
i2 uC uL
t 0 1.5mA 1.5mA 0 3V 0
t 0 4.5mA 1.5mA 3mA 3V 3V
19
小结
u 、i 1. 换路瞬间, C
L 不能突变。其它电量均可
能突变,变不变由计算结果决定;
“2” 求:
i、i1、i2、uC、uL
的初始值,即 t=0+时刻的值。
16
解:
2
K
R
+ 1 2k E
_
6V
i i2
i R1 R2
1 2k 1k
uL
uC
换路前的等效电路
+ R R1 R2
_E
i1 uC
E iL (0 ) i1(0 ) R R1 1.5 mA
uC (0 ) i1(0 ) R1 3 V 17
1 2
LiL 2)
WL 不能突变
i 不能突变 L
10
* 从电路关系分析
K Ri
+
_U
uC
C
u 若 c 发生突变,
则 duc
dt
K 闭合后,列回路电压方程:
i 一般电路
U
iR uC
RC duC du dt
uC
不可能!
(i C )
所以电容电压
dt
不能突变
11
初始值的确定:
初始值(起始值):电路中 u、i 在 t=0+ 时
KR
储能元件
uC
+ _U
uC C
E
t
电容为储能元件,它储存的能量为电场能量 ,
其大小为:
WC t uidt 1 cu2
0
2
因为能量的存储和释放需要一个过程,所以有电
容的电路存在过渡过程。
4
电感电路
KR
储能元件
+ t=0
U _
iL
iL
t
电感为储能元件,它储存的能量为磁场能量,
其大小为:
WL t uidt 1 Li2
求 : iL (0 ), uL (0 )
解: 根据换路定理
iL (0 ) iL (0 ) 0 A
iL 不能突变
换路时电压方程 :
U i(0 )R uL (0 )
uL 发生了突跳
uL (0 ) 20 0 20V
13
例2
K .
UVLຫໍສະໝຸດ iL已知:U 20V、R 1k、L 1H 电压表内阻 RV 500 k
2. 换路瞬间,uC (0 ) U 0 0,电容相当于恒压 源,其值等于 U0 ;uC (0 ) 0,电容相当于短
路;
3. 换路瞬间,iL (0 ) I0 0 电感相当于恒流源, 其值等于I0 ;iL (0 ) 0 ,电感相当于断路。
20
例4:
iK 10mA
iR
iC
iL
K R1
R2 R3
相关文档
最新文档