数值分析3(插值方法)
数值分析插值法
![数值分析插值法](https://img.taocdn.com/s3/m/6489be73590216fc700abb68a98271fe910eaf03.png)
数值分析插值法插值法是数值分析中的一种方法,用于通过已知数据点的函数值来估计介于这些数据点之间的未知函数值。
插值法在科学计算、数据处理、图像处理等领域中得到广泛应用。
插值法的基本思想是通过已知数据点构造一个函数,使得该函数逼近未知函数,并在已知数据点处与未知函数值相等。
插值法的关键是选择适当的插值函数,以保证估计值在插值区间内具有良好的近似性质。
常用的插值法有拉格朗日插值法、牛顿插值法和埃尔米特插值法等。
以下将分别介绍这些插值法的原理及步骤:1. 拉格朗日插值法:拉格朗日插值法通过构造一个多项式函数来逼近未知函数。
假设已知n+1个数据点(x0, y0), (x1, y1), ..., (xn, yn),其中x0, x1, ..., xn为给定的节点,y0, y1, ..., yn为对应的函数值。
拉格朗日插值多项式的一般形式为:L(x) = y0 * l0(x) + y1 * l1(x) + ... + yn * ln(x)其中l0(x), l1(x), ..., ln(x)为拉格朗日基函数,定义为:li(x) = (x - x0)(x - x1)...(x - xi-1)(x - xi+1)...(x - xn) / (xi - x0)(xi - x1)...(xi - xi-1)(xi - xi+1)...(xi - xn)拉格朗日插值法的步骤为:a. 计算基函数li(xi)的值。
b.构造插值多项式L(x)。
c.计算L(x)在需要估计的插值点上的函数值f(x)。
2.牛顿插值法:牛顿插值法通过构造一个差商表来逼近未知函数。
差商表的第一列为已知数据点的函数值,第二列为相邻数据点的差商,第三列为相邻差商的差商,以此类推。
最终,根据差商表中的数值,构造一个差商表与未知函数值相等的多项式函数。
牛顿插值法的步骤为:a.计算差商表的第一列。
b.计算差商表的其他列,直至最后一列。
c.根据差商表构造插值多项式N(x)。
数值分析2-3(牛顿插值法)差商和与牛顿插值
![数值分析2-3(牛顿插值法)差商和与牛顿插值](https://img.taocdn.com/s3/m/58287d927e192279168884868762caaedd33ba2f.png)
确定插值多项式的次数
根据已知数据点的数量确定插值多项式的最高次 数。
计算插值多项式
利用差商表,通过拉格朗日插值公式计算插值多 项式。
3
进行插值
将需要插值的x值代入插值多项式中,得到对应 的y值。
05
牛顿插值法的优缺点分析
优点
计算简单
局部性质好
相比于其他多项式插值方法,牛顿插 值法的计算过程相对简单,不需要求 解高阶方程,降低了计算的复杂度。
数值分析2-3:牛顿 插值法、差商和
目录
• 引言 • 牛顿插值法的基本概念 • 差商的计算方法 • 牛顿插值法的实现步骤 • 牛顿插值法的优缺点分析 • 实际应用案例 • 总结与展望
01
引言
主题简介
数值分析是数学的一个重要分支,主 要研究如何用数值方法解决各种数学 问题。
本章节将介绍牛顿插值法、差商和的 概念及其应用。
03
差商的计算方法
差商的递推公式
差商的递推公式
$f[x_0, x_1, ldots, x_n] = frac{f[x_1, ldots, x_n] - f[x_0, x_1, ldots, x_{n-1}]}{x_n - x_0}$
应用
通过递推公式,我们可以计算任意点之间的差商,从而得到插值多项式的导数。
在数据点附近,牛顿插值具有较好的 局部性质,能够提供较为准确的插值 结果。
适用性强
牛顿插值法适用于各种数据分布情况, 无论是线性还是非线性数据,都能得 到较好的插值结果。
缺点
全局误差较大
由于牛顿插值多项式的构造方式, 其全局误差通常较大,尤其是在 数据点较少的情况下。
对数据点敏感
如果数据点发生微小的变动,牛 顿插值多项式可能会发生较大的 变化,导致插值结果不稳定。
数值分析第五章插值法
![数值分析第五章插值法](https://img.taocdn.com/s3/m/9401d39acf2f0066f5335a8102d276a200296017.png)
数值分析第五章插值法插值法是数值分析中常用的一种数值逼近方法,它的目的是通过已知数据点之间的插值多项式来逼近未知数据点的函数值。
插值法可以在信号处理、图像处理、计算机图形学等领域中广泛应用。
在插值法中,最常用的方法有拉格朗日插值法和牛顿插值法。
拉格朗日插值法是一种利用拉格朗日插值多项式来逼近函数的方法。
对于n个已知数据点(xi, yi),拉格朗日插值多项式L(x)可以表示为:L(x) = ∑(yi * li(x))其中,li(x)表示拉格朗日基函数,定义为:li(x) = ∏[(x - xj)/(xi - xj)] (j≠i)可以证明,在给定的n个数据点上,拉格朗日插值多项式L(x)满足:L(xi) = yi牛顿插值法是另一种常用的插值方法,它利用差商的概念来逼近函数。
对于n个已知数据点(xi, yi),差商可以定义为:f[xi] = yif[xi, xi+1] = (f[xi+1] - f[xi]) / (xi+1 - xi)f[xi, xi+1, ..., xi+k] = (f[xi+1, ..., xi+k] - f[xi, ...,xi+k-1]) / (xi+k - xi)通过差商的递归定义,可以得到牛顿插值多项式N(x)的表达式,其中:N(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...与拉格朗日插值法类似,牛顿插值多项式N(x)也满足:N(xi) = yi这两种插值方法都有自己的优点和缺点。
拉格朗日插值法简单易懂,计算量小,但当数据点较多时,多项式的次数会很高,容易出现龙格现象。
而牛顿插值法可以通过求差商一次次递推得到插值多项式,计算效率较高,且具备局部逼近性,不易出现龙格现象。
除了拉格朗日插值法和牛顿插值法,还有其他插值方法,如分段线性插值、样条插值等。
分段线性插值是利用线性多项式逼近函数,将数据点之间的区间分为若干段,每段内使用一条线性多项式进行插值。
第4章 插值法(3)
![第4章 插值法(3)](https://img.taocdn.com/s3/m/31f0760002020740be1e9bd6.png)
第4章 插值逼近
相应也要求样条插值函数s(x)也具有周期性,故在端 点要求满足条件
《 数 值 分 析 》
s′( x0 ) = s′( xn ), s′′( x0 ) = s′′( xn )
(4―50)
第4章 插值逼近
hk uk = hk −1 + hk
《 数 值 分 析 》
6 yk +1 + yk yk − yk −1 λk = ( − ) hk −1 + hk hk hk −1
那么
hk −1 1 − uk = hk −1 + hk
(1 − uk )mk −1 + 2mk Байду номын сангаас uk mk +1 = λk k = 1, 2,L , n − 1
(4―44)
第4章 插值逼近
从而解出Ak和Bk,即
yk +1 − yk hk Ak = − ( mk +1 − mk ) hk 6
《 数 值 分 析 》
(4―45)
hk2 Bk = yk − mk 6
(4―46)
由式(4―43)可看出三次样条插值函数s(x)仅与 mk、m k+1有关系,因此只要求得各个mk,则各个子区 间[xk,x k+1]上的三次样条函数也就确定了。下面 介绍求mk的方法。
① 函数y=f(x)在两端点x0及xn处的导数y′0和y′n为已 知。此时要求
′ s′( x0 ) = y0 ,
′ s′( xn ) = yn
由式(4―48)和(4―49)得到
数值分析 插值法
![数值分析 插值法](https://img.taocdn.com/s3/m/1d8721304431b90d6c85c7ba.png)
图形见图2-3. 称 lk ( x) 及 lk 1 ( x) 为线性插值基函数,
11
图2-3
12
பைடு நூலகம் 2.
n次插值多项式
根据插值的定义 Ln ( x) 应满足
Ln ( x j ) y j ( j 0,1, , n).
为构造 Ln ( x), 先定义 n 次插值基函数.
13
定义1 若 n 次多项式 L j ( x ) ( j 0,1, , n) 在 n 1 个节点
L1 ( xk 1 ) yk 1.
8
其几何意义就是通过两点( xk , yk ), ( xk 1 , yk 1 ) 的直线. 如图2-2.
图2-2
9
由 L1 ( x) 的几何意义可得到表达式
L1 ( x ) y k y k 1 y k ( x xk ) xk 1 xk
5
因为线性方程组的系数行列式
1 1 . . 1 xn ...
n xn
x0 x1
... ...
n x0 n x1
0
所以线性方程组 的解存在且唯一。
6
定理1
在次数不超过 n 的多项式集合 H n 中,满足条
件的
插值多项式 L ( x) H是存在唯一的. n n
7
2.3
1. 线性插值
拉格朗日插值
y
k 0
n
k
l k ( x ).
Ln ( x j ) yk lk ( x j ) y j
( j 0,1, , n).
称为拉格郎日(Lagrange)插值多项式 而线性插值与抛物线插值是 n=1 和 n=2 的特殊情形
若引入记号
常用数值分析方法3插值法与曲线拟合
![常用数值分析方法3插值法与曲线拟合](https://img.taocdn.com/s3/m/b7def399e45c3b3566ec8b81.png)
p1(x)y1yx2 2 xy11(xx1)(变形)
xx1xx22y1xx2xx11y2
A1(x)
A2(x)
插值基函数
X.Z.Lin
3.2.3 抛物线插值
已知:三点(x1,y1)、(x2,y2)、(x3,y3) 求:其间任意 x 对应的 y 值
y (x3, y3)
y=f(x) (x2, y2) y=p2(x)
(1)算术平均值
n
xi
x i1 n
(2)标准偏差
n xi2 N xi 2 n
i1
i1
n1
(3)平均标准偏差
E
n
(4)剔出错误数据??可可疑疑数数 据据
Q 数据排序(升):x1,x2,…,xn;
最大与最小数据之差;
值 可疑数据与其最邻近数据之间的差
法 求Q值:
Qxnxn1 或 Qx2x1
3.1 实验数据统计处理
3.1.1 误差
系统误差 经常性的原因
影响比较恒定
偶然误差
偶然因素
正态分布规律
校正
过失误差
统计分析
-3σ -2σ -σ 0 σ 2σ 3σ 图6.1 平行试验数据的正态分布图
操作、计算失误
错误数据
剔出
21:39 07.02.2021
2/37
X.Z.Lin
3.1.2 数据的统计分析
A3(x)(x(x3 xx11))((xx3xx22))
21:39 07.02.2021
9/37
X.Z.Lin
3.2.4 Lagrange插值的一般形式
已知:n点(x1,y1)、(x2,y2)……(xn,yn) 求:其间任意 x 对应的 y 值
数值分析中的插值算法及其应用
![数值分析中的插值算法及其应用](https://img.taocdn.com/s3/m/8222d10386c24028915f804d2b160b4e767f81b0.png)
数值分析中的插值算法及其应用数值分析是研究解决数学问题的数值方法的一门学科。
其中,插值算法是数值分析中重要的方法之一。
插值是指在给定一些数据点的情况下,用一些方法建立一个函数,该函数可以在给定区间内的任何一点上计算出函数值。
插值方法有很多种,其中比较常用的有拉格朗日插值法、牛顿插值法和埃尔米特插值法。
1. 拉格朗日插值法拉格朗日插值法是一种将一个多项式函数p(x)与一系列已知数据点相联系的方法。
假设给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),其中x1 < x2 < ... < xn,那么可以构造一个次数小于等于n-1的多项式函数p(x)满足p(xi) = yi,i=1,2,...,n。
设p(x)的表达式为:p(x) = Σyi li(x)其中,li(x)为拉格朗日基函数。
每个基函数都满足:li(xi) = 1, li(xj) = 0, j≠i基函数的表达式为:li(x) = Π[j≠i] (x - xj) / (xi - xj)利用拉格朗日插值法,可以在给定数据点的情况下,快速计算函数在其他点上的值。
2. 牛顿插值法牛顿插值法是一种利用差商的方法建立插值多项式的方法。
相比于拉格朗日插值法,牛顿插值法更注重于递推计算。
给定n个数据点(x1, y1), (x2, y2), ..., (xn, yn),牛顿插值法可以建立一个关于x的n次多项式。
首先,定义一个差商:f[xi] = yif[xi, xi+1, ..., xj] = (f[xi+1, ..., xj] - f[xi, ..., xj-1]) / (xj - xi)差商f[xi, xi+1, ..., xj]是由区间(xi, xj)内的函数值f(xi), f(xi+1), ..., f(xj)所计算得到的。
定义一个新的多项式qk(x),其中:qk(x) = f[x0, x1, ..., xk] + (x - xk) qk-1(x)其中q0(x) = f[x0]。
数值分析 插值法
![数值分析 插值法](https://img.taocdn.com/s3/m/ca0ca9c2da38376baf1fae7e.png)
1 1 1
x0 x1 xn
2 x0 2 x1
n x0 n x1
0 i j n
2 xn n xn
( x j xi ) 0
, an .
由克莱默法则知,方程组有唯一解 a0 , a1 ,
§2 Lagrange Polynomial
唯一性的另一证明 满足 P( xi ) yi , i 0, ... , n 的 n 阶插 值多项式是唯一存在的。
f (x)
(x0 ,y0)
(x1 ,y1)
P1(x)
x0
x1
可见 P1(x) 是过 ( x0 , y0 ) 和 ( x1, y1 ) 两点的直线。
§2 Lagrange Polynomial
y1 y0 直线方程为: y y0 x x ( x x0 ) 1 0
记 P 1 ( x) L 1 ( x) ,上式等价变形为:
化简得到
L2 ( x ) l0 ( x ) y0 l1 ( x ) y1 l2 ( x ) y2 l i ( x ) yi .
i 3
成立:
l 0 ( x0 ) 1 l ( x ) 0 0 1 l 0 ( x 2 ) 0
l1 ( x 0 ) 0 l ( x ) 1 1 1 l1 ( x 2 ) 0
l 2 ( x0 ) 0 l ( x ) 0 2 1 l 2 ( x 2 ) 1
将以上思路推广到n+1个节点情形,即可得到类似的 插值基函数和插值多项式表示形式。
§2 Lagrange Polynomial
2-3 Lagrange插值多项式
数值分析中的(插值法)
![数值分析中的(插值法)](https://img.taocdn.com/s3/m/f9675e7f11661ed9ad51f01dc281e53a580251c3.png)
插值法可以与其他数值分析方法结合使用,以获得更准确和可靠的估计结果。例如,可以 考虑将插值法与回归分析、时间序列分析等方法结合,以提高数据分析的效率和精度。
THANKS
感谢观看
多项式的阶数
根据数据点的数量和分布情况,选择适当的多项式阶数,以确保多 项式能够更好地逼近真实数据。
计算多项式的系数
通过已知的数据点和多项式阶数,计算出多项式的系数,从而得到 完整的插值多项式。
计算插值多项式的导数
导数的计算
在某些应用中,需要计算插值多项式的导数,例如在 曲线拟合、数值微分等场景中。
总结词
牛顿插值法是一种基于差商的插值方法,通过构造差商表来逼近未知点的数值。
详细描述
牛顿插值法的基本思想是通过构造差商表来逼近未知点的数值,差商表中的每一 项都是根据前一项和后一项的差来计算的。该方法在数值分析中广泛应用于数据 拟合、函数逼近等领域。
样条插值法
总结词
样条插值法是一种通过已知的离散数据点来构造一个样条函 数,用于估计未知点的数值的方法。
常见的插值法
拉格朗日插值法
总结词
拉格朗日插值法是一种通过已知的离散数据点来构造一个多项式,用于估计未 知点的数值的方法。
详细描述
拉格朗日插值法的基本思想是通过构造一个多项式来逼近已知数据点,使得该 多项式在每个数据点的取值与实际值相等。该方法在数值分析中广泛应用于数 据拟合、函数逼近等领域。
牛顿插值法
增加采样点的数量可以减小离散化误差,提高插值结果的稳定
性。
选择合适的插值方法
02
根据具体情况选择适合的插值方法,如多项式插值、样条插值
等,以获得更好的逼近效果和稳定性。
引入阻尼项
数值分析插值法
![数值分析插值法](https://img.taocdn.com/s3/m/1bb98f9f970590c69ec3d5bbfd0a79563c1ed4e7.png)
解 由上表可得过前三点的二次牛顿插值多项式为
故
又
可得过前四点的三次牛顿插值多项式
可得N3(x)的截断误差
差分与等距节点的牛顿插值多项式
设函数y=fx在等距节点xi=x0+ih i=01 …n上的函数值为fi=fxih为步长
定义2 fi=fi+1-fi 和 fi=fi-fi-1 分别称为函数fx在点xi处的一阶向前差分和一阶向后差分
求f2.8用牛顿后插公式且由 2.8=3+0.5t 得 t= -0.4
第四节 埃尔米特Hermite插值
一、 埃尔米特插值多项式
为了使插值函数能更好的切合原来的函数许多问题不但要求节点上的函数值相等还要求导数值相同甚至高阶导数也相等这类插值问题称为埃尔米特插值
xi[a, b] (i=0,1, …, n) 为n+1个互异节点,考虑函数值 与导数个数相等的情况。
二、误差估计
定理4 设fx在包含x0、x1的区间ab内存在四阶导数则当x∈ab时有
且与x有关)
例1 已知fx=x1/2在X=121和144时的函数值及其一阶导数的数据见下表用埃尔米特插值公式计算1251/2的近似值并估计其截断误差.
得
由
可求得
例2
第五节 分段低次插值
解 (1) 用线性插值
第三节 均差与牛顿插值公式
一、差商及其基本性质
定义1 称
为 f x在x0、x1点的一阶差商.一阶差商的差商
称为函数f x在x0、x1 、x2 点的二阶差商.
一般地n-1阶差商的差商
称为f x在x0 x1 … xn点的 n 阶差商
差商的计算步骤与结果可列成差商表如下
xk
函数值
一阶差商
数值分析-插值法的讲解
![数值分析-插值法的讲解](https://img.taocdn.com/s3/m/f2f885751711cc7931b716ff.png)
称P(x)为f(x)的插值函数,x为插值节 点,[a,b]为插值区间,求插值函数P(x)的 方法为插值法。
若P(x)=a0+a1x+▪▪▪+anxn,称 P(x)为插值多项式。 若P(x)为分段多项式,就称 之为分段插值。
若P(x)为三角多项式,就 称之为三角插值。
枪管膛线----→
1.插值多项式的存在唯一性 P(x)=a0+a1x+▪▪▪+anxn, P(x) ∈Hn a0+a1x0+…+anx0n=y0 a0+a1x1+…+anx1n=y1
. . .
a0+a1xn+…+anxnn=yn
1 x x ... x Vn(x0,x1,…,xn)= 1 x x ... x ... 1 x x ... x
k 1 k 1 k 1 k 1
y
( x xk 1)( x xk 1)
k
( xk xk 1)( xk xk 1)
T H A N K Y O U !
( x xk 1)( x xk ) ( xk 1 xk 1)( xk 1 xk )
k k k 1
l
l
2
k
k 1
( x xk )( x xk 1) ( x x )( x x ) y ( )( ) L ( x) yk 1 x x x x ( xk 1 xk )( xk 1 xk 1)
k 1
x
x xk
k 1
k ห้องสมุดไป่ตู้1
k
xk
L1(x)=
x x y x x y x x x x
数值分析中的插值方法应用
![数值分析中的插值方法应用](https://img.taocdn.com/s3/m/fe7ee6bfc9d376eeaeaad1f34693daef5ef713dc.png)
数值分析中的插值方法应用数值分析是一门研究数值计算方法和计算机求解数学问题的学科。
在实际问题中,我们经常需要根据有限的数据估计和预测未知数值,而插值方法就是一种常用的数值计算技术,用来构造未知数据点的函数表达式。
本文将介绍数值分析中的插值方法及其应用。
一、线性插值方法1. 线性插值原理线性插值是一种简单而常用的插值方法,它假设函数在给定的两个数据点之间是线性的。
根据两个已知数据点(x0, y0)和(x1, y1),可以通过以下公式求得在这两个点之间插值的函数表达式:y = y0 + (x - x0) * (y1 - y0) / (x1 - x0)2. 线性插值应用场景线性插值方法适用于对连续函数进行近似估计的场景。
例如,在传感器数据处理中,由于数据采样的时间间隔有限,我们需要通过线性插值方法来估计中间时刻的数据值,以获得更精确的测量结果。
二、拉格朗日插值方法1. 拉格朗日插值原理拉格朗日插值是一种基于多项式的插值方法,它通过构造一个满足已知数据点的多项式函数来进行插值。
给定n个数据点,拉格朗日插值多项式的表达式如下:P(x) = Σ yi * li(x),i=0 to n其中,yi是第i个数据点的函数值,li(x)是拉格朗日基函数,计算公式为:li(x) = Π (x - xj) / (xi - xj),j ≠ i2. 拉格朗日插值应用场景拉格朗日插值方法适用于对离散数据进行高次多项式逼近的场景。
例如,在数据拟合中,我们可利用拉格朗日插值方法构造出一个多项式函数,以逼近已知数据点所代表的曲线,从而进行数据的预测和估计。
三、牛顿插值方法1. 牛顿插值原理牛顿插值是一种利用差商的插值方法,它通过构造一个满足已知数据点的插值多项式来进行插值。
给定n个数据点,牛顿插值多项式的表达式如下:P(x) = f[x0] + Σ f[x0, ..., xi] * Π (x - xj),i=0 to n-1其中,f[x0, ..., xi]是差商,计算公式为:f[x0, ..., xi] = (f[x1, ..., xi] - f[x0, ..., xi-1]) / (xi - x0)2. 牛顿插值应用场景牛顿插值方法适用于对具有大量数据点的函数进行插值和逼近的场景。
数值分析2-3(牛顿插值法)
![数值分析2-3(牛顿插值法)](https://img.taocdn.com/s3/m/7e30c53c3968011ca3009115.png)
f [ xi ] f ( xi )
性质: 1.差商与节点的排列次序无关,称 为差商的对称性
2.高阶差商可由低阶差商反复作一 阶差商得到,计算具有递推性
3.若f(x)在[a, b]上存在n阶导数,则
f [ x 0 , x1 , , x n ] f
( n)
( ) , n!
[a , b ]
∶ ∶ ∶
f[x0,x1,x2] f[x1,x2,x3]
∶ ∶ ∶
f[x0,x1,x2,x3]
∶ ∶ ∶
例 已知函数y= f (x)的观测数据如下, 试构造差商表,并求 f [2,4,5,6]的值
x
0
2
4 9
5
6
f(x) 1 5
-4 13
解 构造差商表如下
xi f(xi) 一阶 二阶 三阶 四阶
0 2 4 5 6
1 5 9 -4 13
2 2 -13 17
0 -5 15
-1 5
1
由表可知
f[2,4,5,6] =5
作业:
习题 7,8
§3
差 商 与 牛 顿 插 值
一、差商及其性质 二、差商的计算
三、牛顿插值公式 四、牛顿插值法举例 五、牛顿插值法特点
一、差商及其性质
1. 差商的定义 函数关于 xi, xj 一阶差商
f [ xi , x j ] f ( x j ) f ( xi ) x j xi
f [ x j , xk ] f [ xi , x j ] xk xi
二阶差商
f [ xi , x j , xk ]
一般的k阶差商定义为
f [ x0 , x1 ,..., x k ] f [ x0 ,..., x k 2 , x k ] f [ x0 , x1 ,..., x k 1 ] x k x k 1
数值分析插值法
![数值分析插值法](https://img.taocdn.com/s3/m/32dd2522dcccda38376baf1ffc4ffe473268fd11.png)
数值分析插值法数值分析是数学的一个分支,用于研究如何使用数值方法来近似和解决数学问题。
插值是数值分析的一个重要概念,它涉及到如何通过已知数据点的信息来估计未知数据点的值。
在本文中,我们将着重讨论插值法。
插值法是一种基于已知数据点的函数值,通过建立适当的插值函数来估计未知数据点的函数值的方法。
插值问题的目标是找到一个函数f(x),使得f(x_i)=y_i(i=0,1,2,...,n),其中x_i是已知的数据点,y_i是相应的函数值,n是已知数据点的数量。
然后,通过插值函数可以近似估计任意一个未知数据点的函数值。
常见的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值等。
下面我们将逐一介绍这些插值方法。
拉格朗日插值是一种利用拉格朗日多项式进行插值的方法。
拉格朗日多项式是一个多项式函数,满足通过已知数据点的函数值。
具体地说,设给定的已知数据点为(x_i,y_i),我们需要找到一个多项式P(x)=y,使得P(x_i)=y_i。
拉格朗日插值多项式的形式如下:P(x)=Σ(y_i*l_i(x))其中l_i(x)是拉格朗日基函数,它定义为:l_i(x)=Π((x-x_j)/(x_i-x_j))(j≠i)牛顿插值是另一种常用的插值方法。
它通过使用差商来递归地计算插值多项式。
差商是一个递归定义的函数,用于计算多项式的系数。
设给定的已知数据点为(x_i,y_i),我们需要找到一个多项式P(x)=y,使得P(x_i)=y_i。
牛顿插值多项式的形式如下:P(x)=y_0+(x-x_0)*f[x_0,x_1]+(x-x_0)*(x-x_1)*f[x_0,x_1,x_2]+...其中,f[x_i,x_j,...,x_k]是差商的定义,它可以通过递归公式计算得到:f[x_i,x_j,...,x_k]=(f[x_j,...,x_k]-f[x_i,...,x_{k-1}])/(x_k-x_i)埃尔米特插值是一种利用已知数据点及其导数信息进行插值的方法。
数值分析--chapter3 多项式插值与样条插值
![数值分析--chapter3 多项式插值与样条插值](https://img.taocdn.com/s3/m/26f3e7915901020207409ce1.png)
其中Ak 为待定系数。
由条件lk (xk ) = 1 可定Ak ,于是
lk=(xj)=n0=xx(k−x−k(xx−xjj−x0x)0()x(kx−−xx11))······((xxk−−xxkk−−11))((xx−k −xkx+k1+)1·)···(··x(−xkx−n)xn)
(6)
j =k
§3.2 拉格朗日(Lagrange)插值−−拉格朗日插值多项式
基函数法:由线性空间的基出发,构造满足插值条件的多项式方 法。
用基函数法求插值多项式分两步:
(1)定义n + 1个线性无关的特殊代数多项式(插值基函数), 用ϕ0(x), · · · , ϕn(x)表示;
(2)利用插值条件,确定插值基函数的线性组合表示的n次插值多
项式
p(x) = a0ϕ0(x) + a1ϕ1(x) + · · · + anϕn(x)
− −
x0 x0
y1
(8)
用L1(x)近似代替f (x)称为线性插值,公式(8)称为线性插值多项 式或一次插值多项式。
§3.2 拉格朗日(Lagrange)插值−−拉格朗日插值多项式
当n = 2时,拉格朗日插值多项式(7)为
数值分析-插值法
![数值分析-插值法](https://img.taocdn.com/s3/m/1eaca82bcdbff121dd36a32d7375a417866fc148.png)
数值分析-插值法我们能得到⼀个函数f在区间[a,b]上某些点的值或者这些点上的⾼阶导数我们就能通过插值法去得到⼀个函数g,g与f是⾮常相近的⼀般来说g分为三类,⼀类是n次多项式 a n*x n +a n-1*x n-1 + .......+a0,⼀类是三⾓多项式,最后⼀类是分段n次多项式多项式插值这个可以说是最简单的插值了对于a n*x n +a n-1*x n-1 + .......+a0,我们有n+1个未知数,我只需要知道n+1个点的函数值就可以解出这n+1个未知数将解出的值带⼊即可优点:简单粗暴缺点:要解n+1个⽅程,时间复杂度较⾼,n不好确定,若n过⼤,容易过拟合,若n过⼩,容易⽋拟合拉格朗⽇插值先说⼀阶多项式我们有两点式f(x) = y k*(x k+1 - x) / (x k-x k+1) + y k+1*(x-x k) / (x k+1 - x k)此两点式可以看做∂ * y k + (1-∂) * y k+1那么⾃然的在x=x k的时候 ∂=0 在x=x k+1的时候∂=1这⾥的∂其实是与x相关的⼀阶多项式再说⼆阶多项式对于⼀个⼆次函数,我们有三个点(x k-1,y k-1) ,(x k,y k) ,(x k+1,y k+1)我们有l k-1,l k,l k+1f(x) = l k-1*y k-1 + l k*y k + l k+1*y k+1其中l是与x相关的⼆次多项式我们可以把l当作基函数这样的话就有x = x k-1 时l k-1 = 1, l k=0, l k+1 = 0x = x k时 l k-1 = 0, l k=1, l k+1 = 0x = x k+1时l k-1 = 0, l k=0, l k+1 = 1那么这个插值基函数是很好求的因为每个插值函数都有两个零点对于l k-1来说有零点x k,x k+1那么lk-1就可以表⽰为l k-1 = A*(x-x k)*(x-x k+1)因为x=xk-1时l k-1 = 1所以A = 1 / ((x k-1 - x k)* (x k-1 - x k+1) )那么同理l k和l k+1也能求出来了那我们得到⼆阶的拉格朗⽇插值多项式现在将⼆阶推⼴到n阶得到n接的拉格朗⽇插值多项式余项:R n(x) = f(x) - L n(x) R n(x)表⽰n次拉格朗⽇多项式的插值余项R n(x) = f n+1(e)/(n+1)! * w n+1(x) e属于[a,b]且依赖与x w n+1(x) = (x-x0)(x-x1).......(x-x n)优点:算法较为简单缺点:⽆法处理动态增加节点的情况⽜顿插值还是先从⼀阶到⼆阶进⾏说明我先得到了⼀阶差值多项式P1(x),P1(x) 满⾜过点(x1, f(x1)), (x2,f(x2))假设现在有第三个点(x3,f(x3))我们要通过这个点去得到⼆阶差值多项式P2(x) 使得P2(x)过这三个点可以设P2(x) = P1(x) + a2*(x-x0)*(x-x1)通过第三个点解出a2就⾏了推⼴到多阶那么可以得到P n(x) = a0 + a1(x-x0) + a2(x-x0)(x-x1) + a3(x-x0)(x-x1)(x-x2) + ......求这个插值多项式的值可以通过递推⼀步⼀步的求这样就实现了动态增删可以看到计算a k需要计算(k-1)2次,那么⽜顿插值法就是⼀个快速的计算⽅法均差⼀阶均差 f[x0, x k] = ( f(x k) - f(x0) ) / (x k - x0)⼆阶均差 f[x0, x1, x2] = (f[x0, x2] -f[x0, x1] ) / (x2 - x1)可以看到⼀阶均差就是简单的求斜率⼆阶均差就是对⼀阶均差求斜率那么k阶均差就是f[x0, x1,,,,,,x k] = (f[x0,,,,,x k-2, x k] -f[x0, ,,,,,,,x k-2,x k-1] ) / (x k - x k-1)f[x0, x1,,,,,,x k] = f n(ε) / n!均差的性质k阶均差可表⽰为f(x0),f(x1), f(x2),,,,,,,,, f(x k)的线性组合⽜顿插值中的a就是均差,可以从⼀阶开始推,然后使⽤数学归纳法证明那么⽜顿插值多项式就是:在计算f[x0,x1,,,,,,,,,,x n]时,⼀般使⽤均差表均差表的计算⽅式为a[i,j] = ( a[i-1][j] - a[i-1][j-1] ) / (末尾的x - 最开始的x)误差:误差为最后⼀阶的均差 * w(x)优点:可动态增删节点缺点:⽆法处理要求导数相同的情况埃尔⽶特插值法实验报告⼀个点,多个导数:⽜顿插值中的均差在xi->x0时其实分别是i阶导数,这样就是我们熟悉的泰勒多项式此时的插值函数就是泰勒多项式两个点,⼀个导数我们有三个条件,也就是说我们能求出三次插值多项式这时我们先写出过这两个点的⽜顿插值多项式在这个多项式的基础上我们再加上⼀个三次项搞定,可以观察到,这三个项数其实可以算是正交的,因为当x=x1或者x=x2时最后⼀项是0满⾜条件的两个点,两个导数这也是题⽬所要求的情况因为有两个导数,所以⽜顿插值法⽆法解决,这⾥只能使⽤基函数⽅法设插值函数为H(x), 点与导数分别为(x1,y1,m1),(x2,y2,m2)H(x)满⾜:H(x1) =y1, H(x2) = y2, H(x1)’ = m1,H(x2)=m2H(x) = a1*x1 + a2*x2 + b1*m1 + b2*m2其中 a1, a2, b1, b2均为三层插值多项式X=x1时 a1(x1) = 1,a2(x1) = 0, b1(x1) = 0,b2(x1) = 0,a1’(x1) = 1,a2’(x1) = 0X=x2时 a1(x2) = 0,a2(x2) = 1, b1(x2) = 0,b2(x2) = 0,a1’(x2) = 1,a2’(x2) = 0X=x1时 b1’(x1) = 1,b2’(x1) = 0X=x2时b1’(x1) = 0,b2’(x1) = 1然后⽤了⼀个很巧妙的⽅法设基函数,解出来值和就是这样⼦的R3(x) = 1/4! * (x-x k)2(x-x k+1)2*f4(ε)两个点,两个导数2直接使⽤泰勒多项式,并把将余项改为未知数,使⽤多余的⼀个条件去求余项的值例如:求次数⼩于等于3的多项式P(x),使满⾜条件P(x0)=f(x0),P'(x0)=f'(x0),P"(x0)=f"(x0),P(x1)=f(x1)。
数值分析常用的插值方法
![数值分析常用的插值方法](https://img.taocdn.com/s3/m/f90d963d7ed5360cba1aa8114431b90d6c8589a8.png)
数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。
下面将对这些插值方法进行详细介绍。
一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。
线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。
二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。
它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。
拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。
通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。
分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。
四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。
利用差商的概念来构造插值多项式。
Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。
数值分析课件-第02章插值法
![数值分析课件-第02章插值法](https://img.taocdn.com/s3/m/cd28e5cfb8d528ea81c758f5f61fb7360b4c2bff.png)
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。
数值分析——插值法
![数值分析——插值法](https://img.taocdn.com/s3/m/ff5c4d1a87c24028915fc3ff.png)
然而,方程组的求解也并不是一件容易的事。
对于线性插值的两种形式解进行适当的分析, 从中寻求规律而得到启发,就有了所谓的拉格朗日 插值法(公式)和牛顿插值(公式).
我们先来看看如何得到二次拉格朗日插值公式 (和牛顿插值公式(为讨论方便,留待后述)).
称为拉氏基函数 ,满足 li(xj)=ij 首先, 线性插值的两点式可看作是两个特殊的一次式 的一种线性组合. 两点式 P1 ( x ) =
x - x1 y + x 0 - x1 0 x - x0 y = x1 - x 0 1
1.2.2 基函数法
l ( x) y
i =0 i
1
i
l0(x) l1(x) 这里, l0(x)和l1(x)具有如下性质: 显然有l0(x)+ l0(x)≡1. 实质上 l( ( 0 x)和 l 1 x)即是满足函数表
g(x) f(x)
x0
x1
x2
x
x3
x4
根据实际需要,可以用各种不同的函数来近 似原来的函数。
最常用的插值函数是 多项式: …?
代数多项式最简单,计算其值只需用到加、减乘运 算,且积分和微分都很方便; 所以常用它来近似表示表格函数(或复杂函数),这样 的插值方法叫做代数插值法,简称插值法。
§1 拉格朗日多项式
求 n 次多项式 Pn ( x) = a0 a1 x an x n 使得
数值分析第2章插值法
![数值分析第2章插值法](https://img.taocdn.com/s3/m/ea27a713f11dc281e53a580216fc700aba685211.png)
数值分析第2章插值法插值法是数值分析中常用的一种数值逼近方法,用于在给定一组有限数据点的情况下,通过构造合适的数学模型来估计这些数据点之间的未知数值。
插值法的应用广泛,包括图像处理、计算机辅助设计、数值计算等领域。
常见的插值方法有拉格朗日插值、牛顿插值、埃尔米特插值以及样条插值等。
这些方法都是基于多项式的插值形式,通过构造一个多项式函数来逼近数据点,并据此对未知点进行估计。
拉格朗日插值是一种基于拉格朗日多项式的插值方法。
对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值构造了一个n次多项式Ln(x),满足:Ln(x) = y0L0(x) + y1L1(x) + ... + ynLn(x)其中,L0(x),L1(x),...,Ln(x)是拉格朗日基函数,定义为:Lk(x) = ∏(i≠k)(x - xi)/(xk - xi) (k = 0, 1, ..., n)拉格朗日插值方法的优点是简单易用,但随着数据点数量的增加,拉格朗日多项式的计算复杂度也会大大增加。
牛顿插值是另一种基于多项式的插值方法,它使用差商的概念来构造插值多项式。
对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),牛顿插值构造了一个n次多项式Nn(x),满足:Nn(x) = y0 + c0(x - x0) + c1(x - x0)(x - x1) + ... + cn(x -x0)(x - x1)...(x - xn-1)其中,c0 = Δy0/(x0 - x1),ci = Δyi/(xi - xi+1) (i = 0, 1, ..., n-1),Δyi = yi+1 - yi。
牛顿插值方法相比于拉格朗日插值方法,在计算多项式时具有更高的效率,尤其是在需要更新数据点时。
此外,牛顿插值方法还可以通过迭代的方式得到更高次数的插值多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x0 ) y0
f ( x0 ) m0
f ( x1 ) y1 f ( x1 ) m1
插值函数 H(x)= a0 + a1x + a2x2 + a3x3
H ( x0 ) y0 , H ( x1 ) y1, H ( x0 ) m0 , H ( x1 ) m1
10/19
插值问题研究包括如下三个方面:
4/19
插值函数L10(x)选 取等距节点插值
插值函数L10(x)选取 切比雪夫节点插值
5/19
分段线性插值(piecewise-linear)
插值节点满足: x0<x1<······<xn 已知 yj=f (xj) ( j= 0,1,2,···,n)
x∈[xj, xj+1]时, 线性插值函数
Lh( x)
a0
a1
aa23
y0
Hale Waihona Puke y1m0 m11 x0 x02 x03
1 0
x1 1
x12 2 x0
x13 3 x02
( x1 x0 )4
0 1 2 x1 3 x12
12/19
Hermite插值的基函数(Building Block)
H ( x) y00 ( x) y11( x) m00 ( x) m11( x)
《数值分析》 13
切比雪夫插值 分段插值函数 Hermite插值
1/19
插值误差
选取插值结点 a≤x0<x1<······<xn≤b
满足插值条件Ln(xk)=f(xk)的 n 次多项式插值余项
Rn ( x)
f ( x) Ln ( x)
f (n1) (n
(
1)
n
!
)
n1
(
x
)
其中 n1( x) ( x x0 )( x x1 )( x xn )
hold on, v2=piecelin(x,y,u); plot(u,v2,'r-')
分段线性插值函数是连续函数, 但它的一阶导数不 连续。在每个子区间内导数为常数, 但在节点(break point)上它的值发生跳变。
7/19
程序片段1:
Matlab Code : 分段线性插值 function v = piecelin(x,y,u) %PIECELIN Piecewise linear interpolation. % v = piecelin(x,y,u) finds the piecewise linear L(x) % with L(x(j)) = y(j) and returns v(k) = L(u(k)). % First divided difference delta = diff(y)./diff(x); % Find subinterval indices k so that x(k) <= u < x(k+1) n = length(x); k = ones(size(u)); for j = 2:n-1
k(x(j) <= u) = j; end % Evaluate interpolant s = u - x(k); v = y(k) + s.*delta(k);
8/19
多项式插值是一个极端, 它可以进行无限次的微分, 但它通常不能保持 给定数据所描述的形状, 特别是在端点附近。分段线性插值是另一个极端, 它几乎没有任何光滑性。它连续但一阶导数存在跳变。另一方面它保持了 给定数据的局部单调性。
x x0 x1 0(x) 1 0 0 ( x) 0 0 1(x) 0 1 1( x) 0 0
x x0 x1 0(x) 0 0 0( x) 1 0 1(x) 0 0 1( x) 0 1
13/19
0 ( x) C( x x0 )( x x1 )2
0(
x)
(
x
x0
)(
f ( x) L10 ( x)
f
(11) ( n
11 !
)
11 (
x)
11(x)=(x+5)(x+4)(x+3)(x+2)(x+1)x(x-1)(x-2)(x-3)(x-4)(x-5)
11(x)
3/19
在[-5, 5]区间上,选取11个切比雪夫节点
(2k 1)
xk 5cos( 22 )
( k=10, 9, 8, ···, 1, 0 )
是否可以在光滑性和局部单调性之间折衷呢9/1?9
Hermite插值问题
不仅要求函数值相等,而且要求若干阶导数值也相等。 即要求插值函数 (x) 满足 (xi) = f (xi), ’ (xi) = f ’ (xi),
…, (m) (xi) = f (m) (xi)。
两点三次插值问题, 已知插值条件如下:
➢插值函数的选择和构造 ➢插值函数的存在唯一性 ➢插值误差估计的问题
11/19
存在唯一性
定理5.4 x0和x1互异, 满足插值条件的次数小于等于三 次的Hermite插值是存在且唯一的。
证明:
1 1
0
0
x0 x1 1 1
x02 x12 2 x0 2 x1
x03 x13 3 x02 3 x12
-4.9491 -4.5482 -3.7787 -2.7032 -1.4087 0.0000 1.4087
2.7032 3.7787 4.5482 4.9491
11(x)=(x – x0)(x – x1)(x – x2)······(x – x10)
11(x)
参考: Numerical Analysis, Timothy Sauer
思路1:
选取节点x0, x1 ,······, xn
max
a xi b
n1
(
x
)
思路2: 局部化(分段线性)
|
R1( x) |
1 2
f ( ( x))( x a)( x b)
M (b a)2 8
2/19
例1. 函数
1
f ( x) 1 x2 x∈[-5, 5]
选取等距插值结点: -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5
x x j1 x j x j1
yj
x xj x j1 x j
y j1
( j= 0,1,···,n-1)
|
R1( x) |
1 2
f ( ( x))( x a)( x b) M (b a)2
8
6/19
Demo1 x=-5:5; y=1./(x.^2+1); u=-5:.01:5; v1=polyinterp(x,y,u); plot(x,y,'o',u,v1,'-')