高精度数字输出温湿度传感器探头HTU21D

高精度数字输出温湿度传感器探头HTU21D
高精度数字输出温湿度传感器探头HTU21D

HTU21D—微型温度和相对湿度传感器

1.传感器简述

法国Humirel公司新一代HTU21D温度和湿度传感器在尺寸与智能方面建立了新的标准:它嵌入了适于回流焊的双列扁平无引脚DFN封装,底面3x3mm,高度1.1mm。传感器输出经过标定的数字信号,标准I2C格式。

HTU21D温度和湿度传感器为OEM应用提供一个准确可靠的温湿度测量数据。通过一个微控制器的接口和模块连接达到温度和湿度数字输出。HTU21D小体积低功耗的特点专为应对设备空间狭小和成品敏感的应用设计。

每一个传感器都经过校准和测试。在产品表面印有产品批号,同时在芯片内存储了电子识别码-可以通过输入命令读出这些识别码。此外,HTU21D的分辨率可以通过输入命令进行改变

(8/12bit乃至12/14bit的RH/T),传感器可以检测到电池低电量状态,并且输出校验和,有助于提高通信的可靠性。由于对传感器做了改良和微型化改进,因此它的性价比更高-并且最终所有设备都将得益于尖端的节能运行模式。

2.传感器的特点

·完整的互换性,在标准环境下无需校准

·长期处于湿度饱和状态,可以迅速恢复

·自动组装工艺生产,无铅材料制成,适合回流焊

·每个传感器具有单独标记,可追溯生产源头

3.性能规格

4.电气特性和基本性能

(在T=25℃,Vdd=3.3V下)

5.湿度性能

(在T=25℃,Vdd=3.3V下)

6.在25℃时相对湿度误差估算

·HTU21D传感器模块指定的最优测量范围在5%RH—95%RH

·在其它的湿度范围(<5%RH或者>95%RH,或者结露状态),不会影响HTU21D的稳定性和可靠性。

7.不同温度下的湿度精度

图中定义了25℃时的RH精度,并显示了其他温度段的湿度最大误差:

(在Vdd=3.3V下)

9.温度误差估算

可以使用标准的回流焊炉对HTU21进行焊接。传感器完全符合IPC/JEDEC J-STD-020D焊接标准,在最高260℃温度下,接触时间应小于40秒。

在蒸气回流焊炉中条件为TP<233℃,tp<60秒,焊接时温度上升和下降的速度应小于10℃/秒。手动焊接,在最高370℃的温度条件下接触时间须少于5秒。

标准回流焊图形:

11.传感器电极后面和尺寸图

推荐的HTU21的footprint,单位:mm

12.温度影响

气体的相对湿度,在很大程度上依赖于温度。因此在测量湿度时,应尽可能保证所有测量同

一湿度的传感器在同一温度下工作。在做测试时,应保证被测试的传感器和参考传感器在同样的

温度下,然后比较湿度的读数。如果HTU21与易发热的电子元件在同一个印刷线路板上,在设计电路时应采取措施尽可能将热传递的影响减小到最小。如:保持外壳的良好通风,HTU21与印刷电路板其它部分的铜镀层应尽可能最小,或在两者之间留出一道缝隙,如图:

13.布线规则和信号完整性

如果SCL和SDA信号线相互平行并且非常接近,有可能导致信号串扰和通讯失败。解决方法是在两个信号线之间放置VDD或GND,将信号线隔开,或使用屏蔽电缆。此外,降低SCL频率也可能提高信号传输的完整性。须在电源引脚(VDD,GND)之间加一个100nF的去藕电容,用于滤波。此电容应尽量靠近传感器。

14.光线

HTU21不受光线影响。但长时间暴露在太阳光下或强烈的紫外线辐射中,会使外壳老化。

15.传感器典型应用电路和引脚规格

典型电路:

典型应用电路,包括上拉电阻RP和VDD与GND之间的去藕电容。

引脚定义:

·电源引脚

HTU21的供电范围为1.8VDC-3.6VDC,推荐电压为3.0V。电源(VDD)和接地(VSS)之间须连接一个100nF的去耦电容,且电容的位置应尽可能靠近传感器。

·串行时钟输入(SCK)

SCK用于微处理器与HTU21之间的通讯同步。由于接口包含了完全静态逻辑,因而不存在最小SCK频率。

·串行数据

DATA引脚为三态结构,用于读取传感器数据。当向传感器发送命令时,DATA在SCK上升沿有效且在SCK高电平时必须保持稳定。DATA在SCK下降沿之后改变。当从传感器读取数据时,DATA在SCK变低以后有效,且维持到下一个SCK的下降沿。为避免信号冲突,微处理器应驱动DATA在低电平。需要一个外部的上拉电阻(例如:10kΩ)将信号提拉至高电平。上拉电阻通常已包含在微处理器的I/O电路中。

16.电气特性

DC特性

17.与传感器的通讯协议

·启动传感器

将传感器上电,电压为所选择的VDD电源电压(范围介于1.8V与3.6V之间)。上电后,传感器最多需要15毫秒时间(此时SCL为高电平)以达到空闲状态,即做好准备接收由主机(MCU)发送的命令。

·启动信号

启动传输,发送一位数据时,包括DATA线在SCK线高电平期间一个向低电平的跳变。

·停止信号

终止传输,停止发送数据时,包括DATA线在SCK线高电平期间一个向高电平的跳变。

18.HTU21传感器命令列表

·主机/

MCU与传感器之间的通讯有两种不同的工作方式:主机模式或非主机模式。在第一种情况下,在测量的过程中,SCL线被封锁(由传感器进行控制),在第二种情况下,当传感器在执行测量任务时,SCL线仍然保持开放状态,可进行其他通讯。非主机模式允许传感器进行测量时在总线上处理其他I2C总线通讯任务。两种方式的通信时序分别如图所示。

在主机模式下测量时,HTU21将SCL拉低强制主机进入等待状态。通过释放SCL线,表示传感器内部处理工作结束,进而可以继续数据传送。

如图,主机通信模式时序-灰色部分由HTU21控制。如果要省略校验和(CRC)传输,可将第45位改为NACK,后接一个传输停止时序(P)。

在非主机模式下,MCU需要对传感器状态进行查询。此过程通过发送一个启动传输时序,之后紧接着是如图16所示的I2C首字节(1000’0001)来完成。如果内部处理工作完成,单

片机查询到传感器发出的确认信号后,相关数据就可以通过MCU进行读取。如果测量处理工作没有完成,传感器无确认位(ACK)输出,此时必须重新发送启动传输时序。

无论哪种传输模式,由于测量的最大分辨率为14位,第二个字节SDA上的后两位LSBs (bit43和44)用来传输相关的状态信息。两个LSBs中的bit1表明测量的类型(’0’温度;‘1’:湿度)。bit0位当前没有赋值。

19、软复位

这个命令(见表6)用于在无需关闭和再次打开电源的情况下,重新启动传感器系统。在

接收到这个命令之后,传感器系统开始重新初始化,并恢复默认设置状态,用户寄存器的加

热器位除外。软复位所需时间不超过15毫秒。

20、用户寄存器

用户寄存器的内容如下表描述。请注意,不得变更预留位且相关的预留位的默认值以后

可能会改变,我们不另行通知。因此,在进行任何写寄存器的操作之前,必须先读预留位的

默认值。之后,用户寄存器字节由对应的预留位的默认值和其他剩余位的默认值或者写入值

组成。

电池电量不足警报在电源电压下降到2.25V以下时激活。内部加热器用于传感器功能性诊断—温度升高时相对湿度降低。加热器功耗大约为5.5mW,可使温度升高0.5– 1.5°C。OTP重加载为一个安全功能,可以在每次测量前将整个OTP设置加载到寄存器,加热器位除外。HTU21中此功能默认为禁止状态,且不推荐用户使用。请采用软复位代替-它包含OTP重加载。

读和写用户寄存器的I2C通讯如图所示:

图中读和写寄存器时序–灰色部分由HTU21控制。在此示例中,分辨率设置为8bit/

12bit。

21、CRC-8校验和计算

当HTU21传感器通过I2C协议通讯时,8位的CRC校验可被用于检测传输错误,CRC校验覆盖所有由传感器传送的读取数据。I2C协议的CRC校验属性见下表:

22.信号转换

传感器内部设置的默认分辨率为相对湿度12位和温度14位。SDA的输出数据被转换成两个字节的数据包,高字节MSB在前(左对齐)。每个字节后面都跟随一个应答位。两个状态位,即LSB的后两位在进行物理计算前须置‘0’。在示例中,所传输的16位相对湿度数据为‘0110’0011’0101’0000’=25424。

·相对湿度转换

不论基于哪种分辨率,相对湿度RH都可以根据SDA输出的相对湿度信号S RH通过如下公式计算获得(结果以%RH表示):

例如16位的湿度数据为0x6350:25424,相对湿度的计算结果为42.5%RH。

·温度转换

不论基于哪种分辨率,温度T都可以通过将温度输出信号S T代入到下面的公式计算得到(结果以温度°C表示):

23.HTU21传感器尺寸和封装信息

·封装信息

HTU21D提供DFN封装(与QFN相似),DFN表示双侧无引脚扁平封装。传感器芯片

由镀Ni/Pd/Au的铜引线框架制成,芯片和引线框由绿色环氧材料包覆。请注意,由于传感器侧面被切成方形,因此侧面的引线框部分没有相应的保护镀层。传感器总重量为25mg.

·传感器尺寸

注:尺寸单位均为mm,公差为±0.1mm,传感器底部已经接地处理。·激光标识

传感器上的激光标识

卷轴上面也贴有标签,并提供了其他的跟踪信息,如下图:

XX=传感器型号(21for HTU21D)

O=输出方式(D=Digital,P=PWM,S=SDM)

NN=芯片版本

YY=年的最后两位

RRR=卷轴上的传感器数量除以10(通常为200或2000)

TTTT=Meas追踪代码

DDD=日期码

QQQQ=实际数量(400,1500或5000单位)

·运输包装

HTU21采用卷带式包装,密封在在抗静电ESD袋中。标准的包装尺寸为每卷400、1500和5000片。对于HTU21包装,每盘卷带后440mm(55个传感器容量)和前200mm(25传感器容量)部分为空包装。带有传感器定位的包装图如下图所示。卷轴放置在防静电口袋中

声明:

本手册是根据Humirel的HTU21D数据手册HPC199_0Preliminary HTU21D data sheet翻译而来,本司(深圳市新世联-郑星辉1-8-9-0-2-4-5-7-1-9-0)所做编译只是为了

促进该产品在中国地区的销售及应用,如果用户在阅读过程中遇到任何问题,请参考原始英

文文件。

常用压力传感器原理分析

常用压力传感器原理分析 振膜式谐振压力传感器 振膜式压力传感器结构如图(a)所示。振膜为一个平膜片,且与环形壳体做成整体结构,它和基座构成密封的压力测量室,被测压力 p经过导压管进入压力测量室内。参考压力室可以通大气用于测量表压,也可以抽成真空测量绝压。装于基座顶部的电磁线圈作为激振源给膜片提供激振力,当激振 频率与膜片固有频率一致时,膜片产生谐振。没有压力时,膜片是平的,其谐振频率为 f0;当有压力作用时,膜片受力变形,其张紧力增加,则相应的谐振频率也随之增加,频率随压力变化且为单值函数关系。 在膜片上粘贴有应变片,它可以输出一个与谐振频率相同的信号。此信号经放大器放大后,再反馈给激振线圈以维持膜片的连续振动,构成一个闭环正反馈自激振荡系统。如图(b)所示 压电式压力传感器 某些电介质沿着某一个方向受力而发生机械变形(压缩或伸长)时,其内部将发生极化现象,而在其某些表面上会产生电荷。当外力去掉后,它又会重新回到不带电 的状态,此现象称为“压电效应”。常用的压电材料有天然的压电晶体(如石英晶体)和压电陶瓷(如钛酸钡)两大类,它们的压电机理并不相同,压电陶瓷是人造 多晶体,压电常数比石英晶体高,但机械性能和稳定性不如石英晶体好。它们都具有较好特性,均是较理想的压电材料。 压电式压力传感器是利用压电材料的压电效应将被测压力转换为电信号的。由压电材料制成的压电元件受到压力作用时产生的电荷量与作用力之间呈线性关系: Q=kSp 式中 Q为电荷量;k为压电常数;S为作用面积;p为压力。通过测量电荷量可知被测压力大小。 图1为一种压电式压力传感器的结构示意图。压电元件夹于两个弹性膜片之间,压电元件的一个侧面与膜片接触并接地,另一侧面通过引线将电荷量引出。被测压力 均匀作用在膜片上,使压电元件受力而产生电荷。电荷量一般用电荷放大器或电压放大器放大,转换为电压或电流输出,输出信号与被测压力值相对应。 除在校准用的标准压力传感器或高精度压力传感器中采用石英晶体做压电元件外,一般压电式压力传感器的压电元件材料多为压电陶瓷,也有用高分子材料(如聚偏二氟乙稀)或复合材料的合成膜的。

DHT11-温湿度传感器

3.3 DHT11传感器模块设计 3.3.1 DHT11传感器简介 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器。它应用专用的数字模块采集技术和温湿度传感技术,确保产品具有极高的可靠性与卓越的长期稳定性。传感器包括一个电阻式感湿元件和一个NTC测温元件,并与一个高性能8位单片机相连接。因此该产品具有品质卓越、超快响应、抗干扰能力强、性价比极高等优点。每个DHT11传感器都在极为精确的湿度校验室中进行校准。校准系数以程序的形式储存在OTP存中,传感器部在检测信号的处理过程中要调用这些校准系数。单线制串行接口,使系统集成变得简易快捷。超小的体积、极低的功耗,信号传输距离可达20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选则。产品为 4 针单排引脚封装。连接方便,特殊封装形式可根据用户需求而提供。 DHT11传感器实物图如下3-3所示: 图3-3 DHT11传感器实物图 (1)引脚介绍: Pin1:(VDD),电源引脚,供电电压为3~5.5V。

Pin2:(DATA),串行数据,单总线。 Pin3:(NC),空脚,请悬浮。 Pin4(VDD),接地端,电源负极。 (2)接口说明: 建议连接线长度短于20米时用5K上拉电阻,大于20米时根据实际情况使用合适的上拉电阻。 图3-4 DHT11典型应用电路 (3)数据帧的描述: DATA 用于微处理器与 DHT11之间的通讯和同步,采用单总线数据格式,一次通讯时间4ms左右,数据分小数部分和整数部分,具体格式在下面说明,当前小数部分用于以后扩展,现读出为零.操作流程如下: 一次完整的数据传输为40bit,高位先出。 数据格式:8bit湿度整数数据+8bit湿度小数数据 +8bi温度整数数据+8bit温度小数数据 数据传送正确时校验和数据等于“8bit湿度整数数据+8bit湿度小数数据+8bi 温度整数数据+8bit温度小数数据”所得结果的末8位。 (4)电气特性:VDD=5V,T = 25℃,除非特殊标注 表3-2 DHT11的电气特性 参数条件Min typ max 单位供电DC 3 5 5.5 V 供电电流测量0.5 2.5 mA 平均0.2 1 mA 待机100 150 uA 采样周期秒 1 次注:采样周期间隔不得低于1秒钟。

DIT系列高精度数字电流传感器使用说明书

DIT系列 高精度数字电流传感器 使用说明书 V1.5 成立于2017年的航智精密,坐落于最具创新精神的深圳。凭借强大的研发团队,秉承以技术创新为动力,以市场结果为导向的理念,航智精密立足高精度直流传感器领域,打破国外企业该领域市场垄断的现状,力争发展成为国际领先的直流系统领域精密电子的领军企业。 基于技术集成与创新,航智精密研发了业界第一款高精度数字电流传感器及高精度、低成本、全量程为主要特点的模拟电流传感器。该产品在降低行业成本、提高行业效率和增强用户体验体验上具备行业领先定位,并在创新创业赛事中屡获佳绩,赢得社会各界广泛关注和支持。 航天品质,匠心制造。让高精度直流传感器进入普及时代,这是航智精密人孜孜以求的梦想。作为一家有强烈责任感、使命感的企业,航智精密正在以服务型的品牌营销及定制化的产品理念发力市场,并成功通过资本融资助力运营质量,为建设一个不断创新的分享型企业而奋斗!

目录 1前言 (3) 1.1装箱内容确认 (3) 1.2附件 (3) 2概述 (5) 2.1产品概要 (5) 2.2核心技术 (5) 2.3性能特点 (5) 2.4应用领域 (5) 3产品选型及技术参数 (6) 3.1产品选型表 (6) 3.2技术参数(RG-量程值) (7) 4接口说明 (8) 4.1DB9接线端子定义(DB9公头) (8) 4.2凤凰端子定义 (8) 4.3运行指示灯 (8) 5尺寸说明 (9) 5.1DIT1、DIT5、DIT60、DIT200、DIT300、DIT400型号 (9) 5.2DIT600、DIT1000型号 (10) 附录1 通信协议 (11)

温湿度传感器介绍

DWTHI100-S02 无线多功能综合传感器 一、产品介绍 1.1产品概述 ●本产品可以实时、准确的测量环境温度、环境相对湿度和照度,它能使用户对现 场环境实现远程的数据采集和监测,大大减少人工工作量,突出便利性、准确性和实时性。 ●本产品具有体积小、使用寿命长、无线信号传输距离远、环境适应性好、测量 精度高、安装便捷、防水等特点,是一款高性价比的产品。 ●本产品可广泛应用于仓储管理、生产制造、气象观测、科学研究以及日常生活等 领域。 1.2 产品外观 1.3技术参数 1. 温度测量范围:-40℃~+125℃; 2. 温度测量精度:±0.3℃±2.5%(rdg-25℃); 3. 绝对湿度测量范围:1%RH~100%RH; 4. 绝对湿度测量精度: <10%RH:±1.8%RH±20%(rdg-20%RH); 10%RH~90%RH:±1.8%RH

>90%RH:±1.8%RH±20%(rdg-90%RH); 5. 工作环境温度:-20℃~+80℃; 6. 信号调制方式:GFSK; 7. 工作频率:2.45GHz; 8. 无线通讯距离:>300米(2.45GHz、开阔地); 9. 测量周期:30s(3.6V、典型值); 10.平均功耗:<7μA(3.6V); 11.电池寿命:≥6年; 12.外壳材料:增强型耐高温ASA树脂; 13.外形尺寸:45 mm×24 mm×18.5mm; 14.重量:25g(含天线); 15.防护等级:IP34; 16.安装方式:螺丝固定或无痕泡棉双面胶粘贴。 1.4应用场所 1、机房、厂房、仓库、无菌室; 2、温室大棚、智能大棚; 3、图书馆、档案馆、文物馆; 4、生物制药; 5、食品加工、储存场所; 6、医卫场所; 7、气象站; 8、智能楼宇; 9、其它需要监测温、湿、照度的场所。 1.5产品尺寸

DS18B20 数字温度传感器

应用指引:在MC430F14板上是标配了DS18B20数字温度传感器器,同时希望用户通过以下DS18B20的讲解能够了解更多1线 MC430F14实物图如下: >>关于MC430F14开发板详情>> 在传统的模拟信号远距离温度测量系统中,需要很好的解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高的测量精度。另外一般监控现场的电磁环境都非常恶劣,各种干扰信号较强,模拟温度信号容易受到干扰而产生测量误差,影响测量精度。因此,在温度测量系统中,采用抗干扰能力强的新型数字温度传感器是解决这些问题的最有效方案,新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线、可组网等优点,在实际应用中取得了良好的测温效果。 新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。目前DS18B20批量采购价格仅10元左右。 DS18B20、DS1822 "一线总线"数字化温度传感器 同DS1820一样,DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS1822的精度较差为±2°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。 DS18B20、DS1822的特性 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 一、DS18B20的主要特性 (1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电 (2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

PSA_PSB系列小型高精度压力传感器_控制器

02zn 02{N y Hn 0vuo ==+:[0<05}9@ d Y w d M _2p ==+://omprrrqq <052|E vuo ==+:E B 2vuo y omprrrqq <05ypopmrqsvq <05p ./B c y Q p I A p _r Q p |D W +==+q /2Q E Q p L L y 766?p p <05p p ==+:p ==+q /p ?A;p ;>+: 05<05-05==+:?A;65@pooomooo xwouxmpo prrmrqqo xmwouut uwxsmxrx ==+q /, s p 05;>+:pooooomo rrwumrww p xwmouxpo omprrrqq omooxwo umwxsxr poomoooo rmrwurww omoopooo omoxwoux omoooprr omoouwx ompooooo omoorrwu omopopxv p omooprtx omooooxx omovorov pmopxuwx omorstro vmtooupu vrtmtvwv p omovrttvw tpmvpuro vtomouq qtmsoooo popmxuwx poooomqo prmtxts p vormov popxumwx rstmrqso ompstorw psmqqrrs omopxrru omoopsq p psmtorrx omsxppsp omopoooo omxwouxp omooprrr omooooxw omouwxsv p omorrwur omqxtr qwmxtxvx omorxrvo omooqwxt qmoruovs qxmtqxxw p D ]T =1x `n q o \K D ]v =|b ,~}Q p .,~}]=@xmt ==/D ]N K ,@pnpooo D n q |b Q p J o Dm =V n q 2Uy n q @ <05k <:9n 7=k 65@k ?A;k ==+:k ==+q /k ;>+:G n q @<05k <:9n 7=k 65@k ?A;D C U u k :o @S *:o 2_8{8=f 7:o 2:p 8u k :o 2C I u k :o p f D K u k`8Q F 7 .b f 7U *j @@qmtk tk pook too =A /D :>u u k .plt 4}|/ D s3}<+3+235G J <+3+D z 25F g = D +:o C lqxmx hpmt C lqxmxi o C lporms htmq C lpormsi poomo C lpoomo hppomo C lpopmri pmoqo C lpmoqo hpmpqq C lpmorsi pmoqo C lpmoqo hpmpoo C lpmopri psmto C lpsmto hptmxu C lpsmvoi vto C lvto hwqs C lvuoi qxmt C lqxmt hrqmu C lqxmxi poqmp C lporms hppqmr C lpormsi l c Uy n q G n q V n q 02z L ^c 02{L ^c 02{J \D c <:9n 7=q <:9n 7=q <:9n 7=q 42 [c 2]T =n q o \K 5e R K n q Q p I A n q |D 0,M

热电阻热电偶温度传感器校准实验

湖南大学实验指导书 课程名称:实验类型: 实验名称:热电阻热电偶温度传感器校准实验 学生姓名:学号:专业: 指导老师:实验日期:年月日 一、实验目的 1.了解热电阻和热电偶温度计的测温原理 2.学会热电偶温度计的制作与校正方法 3.了解二线制、三线制和四线制热电阻温度测量的原理 4.掌握电位差计的原理和使用方法 5.了解数据自动采集的原理 6.应用误差分析理论于测温结果分析。 二、实验原理 1.热电阻 (1) 热电阻原理 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。常用铂电阻和铜电阻,铂电阻在0—630.74℃以内,电阻Rt与温度t 的关系为: Rt=R0(1+At+Bt2) R0系温度为0℃时的电阻,铂电阻内部引线方式有两线制,三线制,和四线制三种,两线制中引线电阻对测量的影响最大,用于测温精度不高的场合,三线制可以减小热电阻与测量仪之间连接导线的电阻因环境温度变化所引起的测量误差。四线制可以完全消除引线电阻对测量的影响,用与高精度温度检测。本实验是三线制连接,其中一端接二根引线主要是消除引线电阻对测量的影响。 (2) 热电阻的校验 热电阻的校验一般在实验室中进行,除标准铂电阻温度计需要作三定点,(水三相点,水沸点和锌凝固点)校验外,实验室和工业用的铂或铜电阻温度计的校验方法有采用比较法

湿度传感器,高精度

/HMT1001 温湿度模块 产品手册 HM1001

/HMT1001H 一、产品概述 M1001电压输出温湿度模块相对湿度传感器与电路一体化的产品模块的供给电压为直流电压,相对湿度通过电压输出迚行计算,本模块具有精度高,可靠性高,一致性好,确保长期稳定性好,使用方便及价格低廉等特点,尤其适合对质量、成本要求比较苛刻的企业使用。 实物图 二、应用范围 暖通空调、加湿器、除湿机、通迅、大气环境监测、工业过程控制、农业、测量仪表等应用领域。 三、产品亮点 低功耗,小体积、带温度补偿、单片机校准线性输出、使用方便、成本低、完全互换、超长的信号传输距离、精确校准。 四、外形尺寸(单位:mm )

五、产品参数 (1)供电电压(Vin):DC 5V (2)消耗电流:约2mA (3)使用温度范围:0~60℃ (4)温度检测范围:0~60℃ (5)使用湿度范围:20~95%RH (6)湿度检测范围:20~95%RH (7)保存温度范围:0~60℃ (8)保存湿度范围:95%RH以下(非凝露) (9)湿度检测精度:±5%RH(条件:at25℃,60%RH) (10)温度检测精度:±0.5℃(条件:at25℃) (11)标准湿度输出电压(免调试):(条件:at25℃,Vin=5V) (12)标准温度输出阻值(免调试): 10kΩNTC 详情见附表:电阻-温度特性表 (13)温度依存性(参考):±2%RH(Vin=5V DC,10-90%RH -20~80℃范围) 六、标准检测条件 大气中、温度25℃、供给电压5.0V DC作为基准。 特性测定,测定前先把温湿度模块放入25℃/0%RH的干燥空气中放置30分钟,湿度发生装置发生湿度60%RH,放入温湿度模块15分钟后测出电压值。 《测定装置》 分流式湿度发生装置:SHR-1型 测定用表:露点仪

DS18B20温度传感器使用方法以及代码

第7章 DS18B20温度传感器 7.1 温度传感器概述 温度传感器是各种传感器中最常用的一种,早起使用的是模拟温 度传感器,如热敏电阻,随着环境温度的变化,它的阻值也发生线性变化,用处理器采集电阻两端的电压,然后根据某个公式就可以计算出当前环境温度。随着科技的进步,现代的温度传感器已经走向数字化,外形小,接口简单,广泛应用在生产实践的各个领域,为我们的生活提供便利。随着现代仪器的发展,微型化、集成化、数字化、正成为传感器发展的一个重要方向。美国DALLS半导体公司推出的数字化温度传感器DS18B20采用单总线协议,即单片机接口仅需占用一个 I/O端口,无需任何外部元件,直接将环境温度转化为数字信号,以数码方式串行输出,从而大大简化了传感器与微处理器的接口。 7.2 DS18B20温度传感器介绍 DS18B20是美国DALLAS^导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9?12位的数字 值读数方式。可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入 DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的 DS18B20供电,而无需额外电源。因而使用

DS18B20可使系统结构更趋简单,可靠性更高。他在测温精度、转换时间、传输距离、分辨率等方面较 DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。 1. DS18B20温度传感器的特性 ①独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口 线即可实现微处理器与DS18B20勺双向通讯。 ②在使用中不需要任何外围元件。 ③可用数据线供电,电压范围:+3.0~ +5.5 V。 ④测温范围:-55 ~+125 C。固有测温分辨率为0.5 C。 ⑤通过编程可实现9~12位的数字读数方式。 ⑥用户可自设定非易失性的报警上下限值。 ⑦支持多点组网功能,多个 DS18B20可以并联在惟一的三线上,实现多点测温。 ⑧负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。 2. 引脚介绍 DS18B20有两种封装:三脚TO-92直插式(用的最多、最普遍的封装)和八脚SOIC贴片式。下图为实验板上直插式 DS18B20的原理图。 3. 工作原理 单片机需要怎样工作才能将DS18B2 0中的温度数据独取出来呢?F面将给出详细分析

基于51单片机及DS18B20温度传感器的数字温度计设计

基于51单片机及DS18B20温度传感器的数字温度计设计

摘要 本设计采用的主控芯片是ATMEL公司的AT89S52单片机,数字温度传感器是DALLAS 公司的DS18B20。本设计用数字传感器DS18B20测量温度,测量精度高,传感器体积小,使用方便。所以本次设计的数字温度计在工业、农业、日常生活中都有广泛的应用。 单片机技术已经广泛应用社会生活的各个领域,已经成为一种非常实用的技术。51单片机是最常用的一种单片机,而且在高校中都以51单片机教材为蓝本,这使得51单片机成为初学单片机技术人员的首选。本次设计采用的AT89S52是一种flash型单片机,可以直接在线编程,向单片机中写程序变得更加容易。本次设计的数字温度计采用的是DS18B20数字温度传感器,DS18B20是一种可组网的高精度数字式温度传感器,由于其具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠。 本设计根据设计要求,首先设计了硬件电路,然后绘制软件流程图及编写程序。本设计属于一种多功能温度计,温度测量范围是-55℃到125℃。温度值的分辨率可以被用户设定为9-12位,可以设置上下限报警温度,当温度不在设定的范围内时,就会启动报警程序报警。本设计的显示模块是用四位一体的数码管动态扫描显示实现的。在显示实时测量温度的模式下还可以通过查询按键查看设定的上下限报警温度。 关键词:单片机、数字温度计、DS18B20、AT89S52

目录 1 概述 ................................................................................................................................................................. - 1 - 1.1系统概述 ................................................................................................................................................. - 1 - 2 系统总体方案及硬件设计 ............................................................................................................................... - 2 - 2.1 系统总体方案 ........................................................................................................................................ - 2 - 2.1.1系统总体设计框图 ...................................................................................................................... - 2 - 2.1.2各模块简介 .................................................................................................................................. - 2 - 2.2 系统硬件设计 ........................................................................................................................................ - 5 - 2.2.1 单片机电路设计 ......................................................................................................................... - 5 - 2.2.2 DS18B20温度传感器电路设计.................................................................................................. - 6 - 2.2.3 显示电路设计 ............................................................................................................................. - 6 - 2.2.4 按键电路设计 ............................................................................................................................. - 7 - 2.2.5 报警电路设计 ............................................................................................................................. - 8 - 3 软件设计 ........................................................................................................................................................... - 9 - 3.1 DS18B20程序设计................................................................................................................................. - 9 - 3.1.1 DS18B20传感器操作流程.......................................................................................................... - 9 - 3.1.2 DS18B20传感器的指令表.......................................................................................................... - 9 - 3.1.3 DS18B20传感器的初始化时序................................................................................................ - 10 - 3.1.4 DS18B20传感器的读写时序.................................................................................................... - 10 - 3.1.5 DS18B20获取温度程序流程图................................................................................................ - 11 - 3.2 显示程序设计 ...................................................................................................................................... - 13 - 3.3 按键程序设计 ...................................................................................................................................... - 13 -4实物制作及调试 .............................................................................................................................................. - 14 -5电子综合设计体会 .......................................................................................................................................... - 15 -参考文献 ............................................................................................................................................................. - 16 -附1 源程序代码 .............................................................................................................................................. - 17 -附2 系统原理图 .............................................................................................................................................. - 32 -

卫星用高精度压力传感器研究

2018年 第2期仪表技术与传感器 Instrument Technique and Sensor2018 No.2 收稿日期:2017-02-24卫星用高精度压力传感器研究 付新菊,关威 (北京控制工程研究所,北京100094) 摘要:针对卫星用压阻式压力传感器存在温度漂移误差的问题,提出在传感器内部压力芯片处嵌入高精度温度传感器,使传感器具备压力二温度一体化测量和标定的功能三通过曲面拟合,采用最小二乘法完成对压力传感器的标定补偿工作,将压力传感器的测量精度提高到0.0418%三 关键词:曲面拟合;误差补偿;高精度 中图分类号:V441 文献标识码:A 文章编号:1002-1841(2018)02-0151-03 Research on High Precision Pressure Sensor Used in Satellite FUXin-ju,GUANWei (Beijing Institute of Control Engineering,Beijing100094,China) Abstract:In orderto solvetemperature drifterrorofthepiezoresistivepressure sensorused on satelliteapplication,high-pre-cisiontemperature sensorembeddedatthepressure chipwasproposed,sothatthepiezoresistivepressure sensorhastheability ofpressure/temperatureintegrate measurementand calibration.The curve surfacefitting method by usingtheleast-square method was usedto complete calibration compensatedwork ofthepressure sensor,whichincreasedthepressure sensormeasurementac-curacyto0.0418%. Keywords:curve surfacefitting;errorcompensation;highprecision 0 引言 卫星用压力传感器的作用是向卫星遥测系统提供推进剂贮箱及气瓶的压力值,用于剩余推进剂量计算二预测卫星在轨寿命二监视系统状态以及协助系统进行故障判断与定位等三随着空间飞行器推进系统故障诊断和状态监测系统技术水平的提高,对压力传感器的精度要求越来越高,尤其是在卫星寿命期内,精确地估算推进剂剩余量至关重要,迫切需要研制高精度压力传感器三 硅压阻式压力传感器具有较好的介质相容性和长期稳定性,灵敏度高二动态响应快二测量精度较高,在空间飞行器上应用广泛三其芯片是半导体产品,输出易受压力和温度的交叉敏感影响,严重影响传感器的线性度,因此要研制高精度压力传感器,必须对传感器的输出特性进行补偿校正[1]三 本文在分析比较各种误差校正技术的基础上,选取曲面拟合方法,通过在传感器内部嵌入高精度温度传感器,使传感器具备压力二温度一体化测量和标定的功能,利用最小二乘法完成对压力传感器的标定补偿工作,将压力传感器精度提高到0.0418%三1 误差校正技术 压力传感器的误差校正技术有传统的误差校正 技术和数字补偿技术两种三传统方法是采用模拟方 式对传感器输出信号进行校准和补偿三难度比较大, 补偿精度不高,且受限于补偿元件的非线性误差,补 偿元件受温度漂移的影响,无法进行逐点补偿,因此 精度不高二线路复杂[2]三现代信号调理技术是采用数字式调整模拟系统,较常用的有分立补偿算法和数据 融合技术三分立补偿算法特点是试验及标定比较简 单,但对精度指标的贡献有限[3]三 数据融合是一项多数据综合处理技术,最大优势 在于能充分综合有用数据,提高目标参数测量的准确 性[4]三数据融合技术主要有曲面拟合法二二元插值法二神经网络算法三二元插值法的优点是速度快,精度高,缺点是需要预先在EPROM中输入对照数据表,不但工作量大,而且易出错三神经网络法拟合出的数据精度很高,是目前研究的热点之一,但神经网络算法需要数据量大,编程复杂,一般的微控制器难以胜任,且具有网络不太稳定,训练周期长等缺点三曲面拟合法拟合出的数据精度较高,是目前较成熟的补偿方法三如美国Kulite公司采用曲面拟合方法补偿的压阻式压力传感器的零点温度漂移和灵敏度 万方数据

新发布高精度温度传感芯片DS1624的完整程序

/********************************** 晶振:11.0592M 模拟I2C总线操作DS1624 2007/11/27 编写:fjh /**********************************/ #include #include #include "lcd.c" #define uchar unsigned char #define uint unsigned int #define ulong unsigned long #define SCL_H PORTD|=(1<<4) #define SCL_L PORTD&=~(1<<4) #define SDA_H PORTD|=(1<<5) #define SDA_L PORTD&=~(1<<5) unsigned char temperdata[2]={0,0}; unsigned char buffer[6]={1,1,1,1,1,1}; /******************应用程序********************/ void timer1_init(void); void delay(uchar us); void Start(void); void Stop(void); void SendByte(uchar Dat); uchar ReceiveByte(uchar b); void Start_Temperature_T(void); void I2cByteRead(void); void data_to_buffer(uint a); void Display(void); /**********************************************/ void port_init(void) { PORTA = 0xff; DDRA = 0xff; PORTB = 0xff; DDRB = 0xff; PORTC = 0xff; DDRC = 0xff;

室内温湿度传感器应用

室内温湿度传感器 一、概述 PRT-THS-EXX精密型温湿度传感器是采用最新专利技术的半导体敏感器件设计方案,用于测量室内环境的温度、湿度的一体化智能监控模块。产品不仅具有显示直观、精度高、成本低、外形美观、安装方便等特点,而且特别具有专利技术的自恢复自校准功能,因此,产品测量精度高、长期稳定性好。本公司提供有RS485接口、干节点输出接口、4-20mA模拟输出等多种型号产品,为用户提供全系列温湿度监控解决方案,已经广泛应用于通讯机房、IDC数据机房、空调室、实验室、图书馆、办公室等室内场所的温湿度测量。 二、主要功能 (1)采用最新专利技术设计方案,具有自恢复自校正功能,精度高,一致性好。 (2)大屏幕高亮度LCD显示,观察直观、操作简便。 (3)具有温度单位选择:摄氏度(℃)、华氏度(℉)可设置,可在全球范围使用。 (4)具有温度、湿度误差校正设置,方便进行定期校验。 (5)具有RS485接口,采用标准MODBUS协议,便于远程监控系统集成。(PRT-THS- E10)。 (6)具有温度、湿度测量范围设置,提供4~20mA信号输出,用于传统数据采集应用。 (PRT-THS-E20) (7)具有温度、湿度告警范围设置,提供干接点告警信号输出,实现本地告警功能。 (PRT-THS-E30) (8)外接端口具有抗电磁干扰设计,可靠性高。 (9)电源输入具有防反功能,电源输入正负反接不损坏设备。 (10)模块化结构,安装、维护方便。 三、产品型号及主要技术参数 型号PRT-THS-E10PRT-THS-E20PRT-THS-E30 输出方式 RS485接口4~20mA输出光继电器输出MODBUS-RTU协议 负载能力: 12V电源:100Ω(推 荐) 24V电源:250Ω(推 荐) 触点电压:<40V 触点电流:<100mA 输出电阻:<50Ω 输入电源范围额定:12VDC 额定:12V/24VDC 额定:12VDC

科技成果——高精度硅谐振压力传感器

科技成果——高精度硅谐振压力传感器 技术领域新一代信息技术 技术开发单位中国科学院电子学研究所 技术概述高精度压力传感器采用先进的换能机制,利用单晶硅的良好机械特性,将压力的作用应力转化机械部件的固有频率,并输出。传感器具有低迟滞误差、重复性好,长期稳定性好等优点。 (1)采用基于双谐振器的原位温度自补偿技术,有效解决传感器温度漂移问题,实现了全温区0.01%FS精度等级; (2)采用全温区稳幅闭环控制技术,有效降低传感器非线性误差,结合温度自补偿技术,有效拓展了传感器温区和提升了宽温区精度; (3)传感器采用圆片级的真空封装技术,保证了传感器的综合性能,有效抑制传感器的时间漂移问题。 项目已研制出应用于军用航空大气数据系统传感器PRS2511、2512和RPS5611、工业校准领域传感器RPS2513、以及民用大气压力传感器MERPT-M1等系列产品。产品综合精度优于0.02%FS,年漂移低于100ppm,可靠性指标优于30万小时。由李树深、刘明等院士专家组成的鉴定委员会认为:传感器整体性能处于国际先进水平,温度跟随性指标居国际领先。 技术特点 基于双谐振器设计的高精度硅谐振压力传感器综合精度高、分辨率高、稳定性好、可靠性强、温度跟随性好、温度范围和测量范围大、

体积小、功耗低、能批量化制造、成本低。 技术指标 先进程度国际先进 技术状态小批量生产、工程应用阶段 适用范围 (1)航空大气数据系统 军用飞机的航空大气数据系统采用综合精度优于0.02%FS的高精度压力传感器,用于测量飞机飞行的高度、速度、攻角等参数。本项目所研制的硅谐振压力传感器产品精度水平满足航空大气数据系统要求。2015年,项目组与太原航空仪表有限公司开展合作,研制两款压力传感器产品,开展国产化替代工作,解决了进口产品使用温区限制、温度跟随性差、启动时间长的问题。目前RPS2511、2512产品已完成正样阶段,进入设计定型阶段;RPS5611产品目前正处于初样

相关文档
最新文档