七年级下几何证明题(精华版)
七年级下册数学全等三角形证明题
七年级下册数学全等三角形证明题
1. 给定三角形ABC,其中∠BAC=90度,AD是BC上的中线。
证明:△ABD≌△ACD。
证明:
因为∠BAD=∠CAD,而又AD=AD(公共边),所以△ABD≌△ACD (SAS)。
2. 给定四边形ABCD,其中AB=BC,CD=DA,BD是AC的中线。
证明:△ABD≌△CBD,△BCD≌△DAB。
证明:
因为BD是AC的中线,所以BD=1/2AC。
又因为AB=BC,CD=DA,所以△ABD≌△CBD(SAS),△BCD≌△DAB(SAS)。
3. 给定三角形ABC和点D,使得∠BAD=∠ACD。
证明:
△ABD≌△ACD。
证明:
因为∠BAD=∠ACD,而又共有一边AD,所以△ABD≌△ACD(AAS)。
4. 给定三角形ABC和点D,使得AC=CD,∠ACB=∠ADB。
证明:△ACB≌△ADB。
证明:
由AC=CD可知∠ADC=∠ACD。
所以
∠ADB=∠ACB+∠ACD=∠ADB+∠ADC,即∠ADC=0。
因此,D与B重合,且AB=AB,AC=AD,所以△ACB≌△ADB(SSS)。
5. 给定三角形ABC和点D,使得AB=BD,CD是BC的中线。
证明:△ABD≌△ACD。
证明:
因为CD是BC的中线,所以CD=1/2BC。
又因为AB=BD,所以
∠ABD=∠ADB。
因此,△ABD≌△ACD(SAS)。
七下数学证明必考题精选(经典)
图①DA EC B Fl图②ABEF C lD 七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线A E B图1D CG FA BD CGFE图2段DG 的长始终相等的线段?并以图2为例说明理由。
练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上(1)BD 与CE 相等吗?请说明理由.(2)你能求出BD与CE 的夹角∠BFC 的度数吗?(3)若将已知条件改为:四边形ABCD 与四边形AEFG 都是正方形,例3、正方形四边条边都相等,四个角都是90.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由;②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由;FB(2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .图 2FG D A 图 1F G D A在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论. (4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o , R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其A B C D EP A B C DE P M(3) A B C D EP M(2) A B C D EM (P )(1) A B C D E P M (5)C B APDEFC B E 延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中,h 1、h 2、h 3、h 之间的关系;⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的;例2、已知△ABC 是等边三角形,将一块含30角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存在,请指出这条线段,并证明;如果不存在,请说明理由.(B)CE F图1ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。
(完整版)七年级数学几何证明题
七年级数学几何证明题1. 如图,在ABC中,D在AB上,且△ CAD^P A CBE都是等边三角形, 求证:(1)DE=AB(2)Z EDB=602. 如图,在A ABC中, AD平分/ BAC DE||AC,EF丄AD交BC延长线于F。
求证:/ FAC" B3. 已知,如图,在厶ABC中,AD,AE分别是△ ABC的高和角平分线,若/ B=30/ C=50°求:(1),求/ DAE的度数。
(2)试写出 / DAE与 / C - / B 有何关系?(不必证明)B D C4、一个零件的形状如图,按规定/ A=9Oo,/ C=25o,Z B=25o,检验已量得/运用三角形的有关知识说明零件不合格的理BDC=150,就判断这个零件不合格,由。
5、如图,已知DF // AC, / C=Z D,你能否判断CE // BD?试说明你的理由6、如图,△ ABC中,D在BC的延长线上,过D作DE丄AB于E,交AC于F.已知/ A=30 ° ,Z FCD=80° ,求/D。
7、如图,BE平分/ ABD , CF平分/ ACD , BE、CF交于G, 若/ BDC = 140。
,/ BGC = 110。
,则 / A ?C 8、如图,AD丄BC于D, EG丄BC于G,Z E =Z 1,求证AD 平分/ BAC9、如图,直线。
丘交厶ABC的边AB AC于D E,交BC延长线于F, 若/ B= 67°,/ ACB= 74°,/ AED= 48°,求/ BDF的度数•10、如图,将一副三角板叠放在一起,使直角的顶点重合于O,贝U/ AOC/ DOB11、如图,将两块直角三角尺的直角顶点C叠放在一起•(1)若/ DCE=35,求/ ACB的度数;(2)若/ ACB=140,求/ DCE的度数;(3)猜想:/ ACB与/ DCE有怎样的数量关系,并说明理由12、已知:直线AB与直线CD相交于点0,/ BOC= 45°,(1) 如图1,若EO丄AB,求/ DOE的度数;(2) 如图2,若EO平分/ AOC,求/ DOE的度数.13、已知AOB , P为OA上一点.(1)过点P画一条直线PQ,使PQ // OB ;(2)过点P画一条直线PM,使PM丄OA交0B于点M ;(3)若AOB 40 ,贝U PMO ?14、如图。
(完整版)七年级几何证明题训练(含答案),推荐文档
1. 已知:如图11所示,∆ABC 中,∠=C 90于E ,且有AC AD CE ==。
求证:DE =122. 已知:如图 求证:BC =3. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。
设M 为BC 的中点。
求证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++14【试题答案】1. 证明:取ΘAC ADAF CDAFC =∴⊥∴∠= 又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312ΘAC CEACF CED ASA CF EDDE CD∆∆()2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。
“截长”即将长的线段截ΘΘCB CE BCD ECD CD CD CBD CEDB EBAC B BAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==ADE E AD AEBC CE ,3. 证明:延长PM ΘCQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =,∴≅∴=∆∆BPM CRMPM RM∴QM 是Rt QPR ∆斜边上的中线ΘAD BC AD AEBC AE AD⊥∴<∴=>,22()ΘAB AC BCBC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++2414。
七年级下册数学期末考试几何大题证明必考题
图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。
初一下册几何证明题(完整版)
初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。
又因为fq=fp,em=en.fq=2dj,en=2hd。
又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。
所以do=hd+jd。
因为x=do,=h,z=dj.所以x=+z。
在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠bon=108°时。
bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。
初一下册几何证明题(完整版)
初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。
又因为fq=fp,em=en.fq=2dj,en=2hd。
又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。
所以do=hd+jd。
因为x=do,=h,z=dj.所以x=+z。
在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠bon=108°时。
bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。
初一下数学证明经典例题及答案
如图,已知D是△ABC内一点,试说明AB+AC>BD+CD 证明:延长BD交AC于E在△ABC中,AB+AE>BE,即AB+AE>BD+DE……①在△DEC中,DE+EC>DC……②①+②,得(AB+AE)+(DE+EC)>(BD+DE)+CD 即AB+(AE+EC)+DE>(BD+DE)+CD即AB+AC+DE>BD+DE+CD∴AB+AC>BD+CD如图,△ABC中,D是BC的中点,求证:(1)AB+AC>2AD(2)若AB=5,AC=3,求AD的范围。
(1)延长AD到点G,使DG=AD.连接BG在△CDA和△BDE中AD=GD,∠ADC=∠GDB∵D是BC的中点∴CD=BD∴△CDA≌△BDG.∴BG=AC在△ABG中,AB+BG=AB+BCAG=2AD因为三角形两边和大于第三边,所以AB+BE>AG ∴AB+BC>2AD(2)AB-AC<2AD<AB+ACDC BAEAB CDG2<2AD <8 1<AD <4如图,AB=AD,AC=AE,∠BAD=∠CAE=90°,点F 为DE 的中点,求证:BC=2AF. 延长AF 到点G,使AF=DF.连接GD 在△AFE 和△DFG 中 AF=GF,∠AFE=∠DFG ∵点F 为DE 的中点 ∴DF=EF所以△AFE ≌△DFG. (SAS) GD=AE=AC;∠G=∠FAE.∴DG ∥AE.(内错角相等,两直线平行)则∠GDA+∠DAE=180°.(两直线平行,同旁内角互补) 又∵∠BAC+∠DAE=180°.∴∠GDA=∠BAC.(同角的补角相等). 又∵AD=AB.∴⊿ADG ≌⊿BAC(SAS) ∴AG=BC,即2AF=BC. ∴BC=2AF.如图,AD 是△ABC 的中线,点E 在BC 的延长线上,CE=AB, ∠BAC=∠BCA 求证:AE=2AD证明:在AD 的延长线上取点F,使AD =FD,连接CF ∵AD 是中线∴BD =CD,AD =FD,∠ADB =∠FDCECDBA∴△ABD≌△FCD (SAS)∴CF=AB,∠B=∠FCD∵∠ACF=∠BCA+∠BCE,∠ACE=∠BAC+∠B,∠BAC=∠BCA∴∠ACF=∠ACE∵CE=AB∴CE=CF∴△ACE≌△ACF (SAS)∴AE=AF∵AF=AD+FD=2AD∴AE=2AD如图,△ABC中,∠ABC=90°,AC=CE,BC=CD,∠ACE=∠BCD=90°,BC的延长线交DE于F。
七年级下册数学几何证明题
七年级下册数学几何证明题七年级下册数学几何证明题一、直线平分角在平面几何中,对于给定的角,如果有一条直线能够将这个角划分成两个相等的小角,我们称这条直线是该角的平分线。
接下来我们将证明两个定理和一个引理。
定理1:如果直线ab平分角BAC,则直线ab与弧BCB′的切点C相同。
引理:如果点D在圆弧BCB′上,且点D在角BAC的平分线ab上,则BD=DC。
定理2:如果点E在角BAC的平分线ab上,且BE=CE,则直线ab平分角BAC。
证明:首先,我们先证明引理。
根据圆的性质,半径与弦垂直且平分弦。
又因为BD=DC,所以BD和DC分别是圆弧BCB′的半径,从而BD⊥BC,DC⊥BC。
又因为点D在角BAC的平分线ab上,所以BD⊥BA,DC⊥CA。
综上所述,BD⊥BA,BD⊥BC,BD是角BAC的平分线上任意一点至圆弧BCB′的切线。
同理,DC是角BAC的平分线上任意一点至圆弧BCB′的切线。
这样,我们就证明了引理。
接下来,我们证明定理1。
假设直线ab平分角BAC,且ab与弧BCB′的切点为C′。
根据引理,如果D是角BAC的平分线上的一点,且D在圆弧BCB′上,则BD=DC。
所以,当切点C与切点C′不同时,就会导致BD≠DC,与引理矛盾。
所以,点C和点C′必须是同一个点,即直线ab与弧BCB′的切点C唯一。
综上所述,我们证明了定理1。
最后,我们证明定理2。
假设点E在角BAC的平分线ab上,且BE=CE。
根据定理1,直线ab与弧BCB′的切点C唯一。
假设BE和CE分别与圆弧BCB′交于点F和G。
根据弧与切线的性质,∠BCF≤90°,∠BCG≤90°。
又因为BE=CE,所以∠BEF=∠CEG。
综上所述,∠BCF=∠BEF=∠BAC,∠BCG=∠CEG=∠BAC。
所以,直线ab平分角BAC。
综上所述,我们证明了定理2。
二、垂直平分线在平面几何中,对于给定的线段,如果有一条直线能够将这个线段划分成两个相等的小线段,并且与这个线段垂直相交,我们称这条直线是该线段的垂直平分线。
七年级数学典型几何证明50题
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
七年级下几何证明题
第4题几何说理题1、填空完成推理过程:如图,∵AB ∥EF( 已知 )∴∠A + =1800( )∵DE ∥BC( 已知 )∴∠DEF= ( ) ∠ADE= ( )2.如图,EF ∥AD,∠1 =∠2,∠BAC = 70°.将求∠AGD 的过程填写完整.因为EF ∥AD,所以∠2 = . 又因为∠1 = ∠2,所以∠1 = ∠3. 所以AB ∥ . 所以∠BAC + = 180°.又因为∠BAC = 70°, 所以∠AGD = .3.已知:如图,∠ADE =∠B,∠DEC =115°.求∠C 的度数.4、已知:如图,AD ∥BC,∠D =100°,AC 平分∠BCD,求∠DAC 的度数.5、已知:如图, AB ∥CD,直线EF 分别交AB 、CD 于点E 、F,∠BEF 的平分线与∠DEF 的平分线相交于点P.求∠P 的度数6、直线AB 、CD 相交于O,OE 平分∠AOC,∠EOA:∠AOD=1:4,求∠EOB 的度数.49、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37o,求∠D 的度数.ABCDEHG 21FEDCBA50、如图,已知:,,求的度数。
51、如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数、52、AB//CD,EF ⊥AB 于点E,EF 交CD 于点F,已知∠1=600、求∠2的度数、53、如图,AB ∥CD,BF ∥CE,则∠B与∠C有什么关系?请说明理由.54、如图,已知:DE ∥BC,CD 就是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC与∠BDC 的度数.55、如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE,求∠B的大小.56、如图,AB ⊥BD ,CD ⊥MN ,垂足分别就是B 、D 点,∠FDC=∠EBA . (1)判断CD 与AB 的位置关系;第11题图(2)BE 与DE 平行不?为什么?57、如图,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行不?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 不?为什么.58、如图,已知:E 、F 分别就是AB 与CD 上的点,DE 、AF 分别交BC 于G 、H ,A =D ,1=2,求证:B =C .59、如图所示,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.60、如图,在△ABC 中,∠ABC =80°,∠ACB =50°,BP 平分∠ABC ,CP 平分∠ACB ,求∠BPC 的度数、61、如图,点D 就是△ABC 内一点,∠A =65°,∠1=20°,∠2=25°,求∠BDC 的度数。
七年级下几何证明题
初一几何证实题1.如图CD ⊥AB,EF ⊥AB,∠1=∠2,求证:∠AGD=∠ACB.2. 如图,已知∠1=∠2,∠C=∠CDO,求证:CD ∥OP.3.如图,AC ∥DE,DC ∥EF,CD 等分∠BCA,求证:EF 等分∠BED.4.如图,∠1=∠2,∠3=∠4,∠E=900,求证:AB ∥CD. 5.如图,∠A=2∠B,∠D=2∠C,求证:AB∥CD.6.如图,EF ∥GH,AB.AD.CB.CD 是∠EAC.∠FAC.∠GCA.∠HCA 的等分线,求证:∠BAD=∠B=∠C=∠D. 7.已知,如图,B.E.C 在统一向线上,∠A=∠DEC,∠D=∠BEA,∠A+∠D=900,求证:AE ⊥DE,AB∥CD.8.如图,已知,BE 等分∠ABC,∠CBF=∠CFB=650,∠EDF=500,,求证:BC ∥AE.9.已知,∠D=900,∠1=∠2,EF ⊥CD,求证:∠3=∠B.10.如图,AB ∥CD,∠1=∠2,∠B=∠3,AC ∥DE,求证:B DE/F C A2G 3AB C DFE 21A B C D 34EB CD O A B CD FE A G HAD∥BC.11.∠ECF=900,线段AB的端点分离在CE和CF上,BD等分∠CBA,并与∠CBA的外角等分线AG 地点的直线交于一点D,(1)∠D与∠C有如何的数目关系?(直接写出关系及大小)(2)点A在射线CE上活动,(不与点C重合)时,其它前提不变,(1)中结论还成立吗?说说你的来由.12.已知如图8,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,求证:DE=BD+CE.△ABC中,已知∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE.∠ACF和∠BHC的度数.14如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC 的中点.(1)写出点O到△ABC的三个极点A.B.C的距离关系(不证实);(2)假如点M.N分离在线段AB.AC上移动,在移动中保持AN=BM,请断定△OMN•的外形,并证实你的结论. 15.如图,在ΔABC中,AD等分∠BAC,DE||AC,EF⊥AD交BC延伸线于F.求证:∠FAC=∠B16.如图,△ABC的周长为18 cm,BE.CF分离为AC.AB边上的中线,BE.CF订交于点O,AO的延伸线交BC于D,且AF=3 cm,AE=2 cm,求BD的长.17如图,在ABC中,D在AB上,且ΔCAD和ΔCBE都是等边三角形,求证:(1)DE=AB,(2)∠EDB=60°18.已知,如图,在△ ABC中,AD,AE分离是△ ABCAE O D CB A 的高和角等分线,若∠B=30∠C=50°求:(1),求∠DAE 的度数.(2) 试写出 ∠DAE 与 ∠C - ∠B 有何干系?(不必证实)E D C19.如图,△ABC 中,D 在BC 的延伸线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D.20.如图,BE 等分∠ABD,CF 等分∠ACD,BE.CF 交于G,若∠BDC = 140°,∠BGC = 110°,则∠A ?21.如图,AD ⊥BC 于D,EG ⊥BC 于G,∠E =∠1,求证AD 等分∠BAC.22.已知:直线AB 与直线CD 订交于点O ,∠BOC=45,(1)如图1,若EO ⊥AB ,求∠DOE 的度数;(2)如图2,若EO 等分∠AOC ,求∠DOE 的度数. 23.已知AOB ∠,P 为OA 上一点.(1)过点P 画一条直线PQ ,使PQ ∥OB ;(2)过点P 画一条直线PM ,使PM ⊥OA 交OB 于点M ;(3)若︒=∠40AOB ,则=∠PMO ?24.如图所示:ΔABC 的周长为24cm,AB=10cm,边AB 的垂直等分线DE 交BC 边于点E,垂足为D,求ΔAEC 的周长.22.已知:如图,AB//CD,∠ABE=∠DCF,请解释∠E=∠F 的来由23.如图,已知D 为△ABC 边BC 延伸线上一点,DF ⊥BAB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.24.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 等分∠ABC,CP 等分∠ACB,则∠BPC 的大小.25.如图1,已知∠1 =∠2,∠B =∠C,可推得AB ∥CD.来由如下:∵∠ 1 =∠2(已知),且∠ 1 =∠4( )∴∠2 =∠4(等量代换)∴CE ∥BF ( ) ∴∠=∠3( )又∵∠B =∠C (已知)∴∠3 =∠B (等量代换)∴AB ∥CD ( )26.如图,①画∠BAC 的角等分线AD;②过点A 画线段BC 的垂线段AE;③取线段BC 的中点F,贯穿连接AF;④过点A.C 分离画BC.AB 的平行线,两平行线交于点G .27.如图,CD 是∠ACB 的等分线,∠EDC=025,∠DCE=025,∠B=070①求证:DE//BC ②求∠BDC 的度数.28.如图,BE 等分∠ABD,DE 等分∠BDC,假如∠1与∠2互为余角,那么直线AB 与直线C 图7 DB AE1 2CD 平行吗?说说你的来由.29.如图,已知∠ABC=50°,∠ACB=60°,BF.CF 为∠ABC.∠ACB 的等分线且交于点F,过点F 作DE ∥BC 交AB.AC 于点D.E,求∠BFC 的度数.30..如图,CD AB ⊥于D,GF AB ⊥于F,140,250∠=︒∠=︒,求B ∠度数. 31.如图,AB∥CD,EF分离交AB.CD于M.N,∠EMB=50°,MG等分∠BMF,MG交CD于G,求∠1的度数.32.填空完成推理进程:如图,∵AB ∥EF ( 已知 )∴∠ A +=1800( )∵DE ∥BC ( 已知 )∴∠DEF=( )∠ADE=( )33.如图∠1+∠2=180°,∠DAE =∠BCF ,DA 等分∠BDF .(1)AE 与FC 会平行吗?解释来由.(2)AD 与BC AB C DE F G 1234的地位关系若何?为什么?(3)BC等分∠DBE吗?为什么.34.如图,已知:E.F分离是AB和CD上的点,DE.AF 分离交BC于G.H,∠A=∠D,∠1=∠2,求证:∠B=∠C.35.将一副直角三角尺BAC和BDE如图放置,个中∠BCA=30°,∠BED=45°,(1)若∠BFD=75°,断定AC与BE的地位关系,并解释来由;(2)衔接EC,假如AC∥BE,AB∥EC,求∠CED的度数.36图,在△ABC中,DM.EN分离垂直等分AB和AC,交BC于D.E,(1)若∠DAE=50°,求∠BAC的度数;(2)若△ADE的周长为19cm,求BC的长.37图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上活动(D不与 B.C重合),衔接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C活动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于若干时,△ABD≌△DCE,请解释来由;(3)在点D的活动进程中,△ADE的外形也在转变,断定当∠BDA等于若干度时,△ADE是等腰三角形.38图,在⊿ABC中,∠ACB=90°,AC=BC,延伸AB至点D,使DB=AB,衔接CD,以CD为直角边作等腰三角形CDE,个中∠DCE=90°,衔接BE.(1)求证:⊿ACD≌⊿BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何地位关系?请解释来由.。
初一数学(七下)几何证明题
第3题填空完成推理过程: 1、 如图,∵AB ∥EF (已知)∴∠A + =1800( ) ∵DE ∥BC ( 已知 )∴∠DEF= ( ) ∠ADE= ( ) 2、已知:如图,∠ADE =∠B ,∠DEC =115°.求∠C 的度数.3、已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,求∠DAC 的度数.4、已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=_______4321A CDB5、已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数6、直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD =1:4,求∠EOB 的度数.ACD E FBDEB CAHG21F EDC BA7、如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.8、如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.9、如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
10、已知:如图,AB∥CD,∠B=400,∠E=300,求∠D的度数ABCDE第19题21FEDBAC11、如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.ba341212、已知等腰三角形的周长是16cm .(1)若其中一边长为4cm ,求另外两边的长; (2)若其中一边长为6cm ,求另外两边长; (3)若三边长都是整数,求三角形各边的长.14、如图,AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,已知∠1=600.求∠2的度数.15、如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.NMG F E DC BA16、如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,请你从所得的四个关系中任选一个加以说明.PDCBAPDCBAPDCBAPDCBA(1) (2) (3) (4)17、如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理由.18、如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.第17题图AB CD E第18题图19、如图AB∥CD,∠NCM=90°,∠NCB=30°,CM 平分∠BCE,求∠B 的大小.20、如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?NMFE DCBA21、如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?(3)BC 平分∠DBE 吗?为什么.F 21DCBA22、如图5-26,已知:CE =DF ,AC =BD ,∠1=∠2.求证:∠A =∠B .BCENMCD BA 第19题图图5-24图5-25图5-2623、如图5-27,已知:AB ∥CD ,AB =CD ,求证:AC 与BD 互相平分.24、如图5-27,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .2ABECFDH G125、如图5-28,已知:在∆A B C 中,∠=︒C 90,AC=BC ,BD 平分∠CBA ,D EA B⊥于E ,求证:AD +DE =BE .26、如图5-29,已知:AB ∥CD ,求证:∠B +∠D +∠BED =360︒(至少用三种方法)EABCD27、直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数. 图5-26AB CDE28、如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°.将求∠AGD 的过程填写完整.因为EF ∥AD ,所以 ∠2 = . 又因为 ∠1 = ∠2,所以 ∠1 = ∠3. 所以AB ∥ .所以∠BAC + = 180°. 又因为∠BAC = 70°,所以∠AGD = .29、如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.30、AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数31、∠ECF =900,线段AB 的端点分别在CE 和CF 上,BD 平分∠CBA ,并与∠CBA 的外角平分线AG 所在的直线交于一点D ,(1)∠D 与∠C 有怎样的数量关系?(直接写出关系及大小)(2)点A 在射线CE 上运动,(不与点C 重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由。
七年级下几何证明题(精华版)
几何证明题专项练习1直接根据图示填空:(1) Za= ___________ ( 2)Za= _____________ ( 3)Za= _____________2. 填空完成推理过程:如图,••• AB// EF ( 已知 )•••/ A +=180(••• DE// BC ( 已知)•••/ DEF _______ ( Z ADE= ______ (3. 已知:如图,Z ADE=Z B,Z DEC= 115° .求Z C 的度数.4. 已知:如图,AD// BC, Z D = 100°, AC 平分Z BCD求Z DAC 的度数.))2.,Z 3= ______ , Z 4= ______5.4.(4)( 5) (6)FB D5. _________________________________ 已知AB// CD Z 1=70° 则Z 2= _________________________________& 如图,AE//CD,EF 分别交AE、CD 于M、N,/EME =MF,MG交CD于G,求/I的度数10. 如图,已知:仁2 , D =50,求B的度数。
11. 已知:如图,AB/CD,/B=4O°,/E=3O O,求/ D的度数12. 如图所示,/仁72 ° , / 2=72°,/3=60°,求/ 4的度数.13. 如图,AB//CD , AE交CD于点C, DE I AE,垂足为E,/ A=37°,14. A B//CD,EF 丄AB于点E,已知/ 1=600.求/ 2的度数.50° ,MG平分/E 求/D的度数.15.6.已知:如图4, AB// CD 直线EF分别交AB CD于点E、F,Z BEF的平分线与/ DEF的平分线相交于点P.求/ P的度数八7•直线AB、CD相交于O, OE 平分/ AOC / EOA / AOD=1 4,求/ EOB的度数.EF交CD于点F,13.L D15. 如图所示,把一张长方形纸片ABCD沿EF折叠,若/ EFG=50 ,求/ DEG的度数.个关系中任选一个加以说明17•如图,AB // CD ,19. 如图AE//CD,/ NCM = 90° / NCB = 30° CM 平分/ BCE ,求/ B 的大小. 20. 如图 5-24, AB 丄BD , CD 丄 MN ,垂足分别是 B 、D 点,/ FDC= / EBA .(1) 判断CD 与AB 的位置关系; (2) BE 与DE 平行吗?为什么?20.图 5-25BF // CE ,则/ B 与/ C 有什么关系?请说明理由./ BDC 的度数.18.N图 5-24 A21. 如图5-25,/ 1+ / 2=180 ° / DAE= / BCF , DA 平分/ BDF .(1)AE与FC会平行吗?说明理由.(2)AD与BC的位置关系如何?为什么?(3)BC平分/ DBE吗?为什么.22. 如图5-28,已知:E 、F 分别是 AB 和CD 上的点,DE 、AF 分别交BC 于G 、H , A= D ,2,求证:0 0 023 如图,CD 是/ ACB 的平分线,/ EDC= 25,/ DCE= 25 ,/ B= 7°证:DE//BC ②求/ BDC 的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何证明题专项练习 1、直接根据图示填空:
(1)∠α=_________ (2)∠α=_________ (3)∠α=_________ (4)∠α=_________ (5)∠α=_________ (6)∠α=_________
α
38°
62°20°α°30°25°
150°
α
(1) (2) (3)
70°
α°70°
60°
20°
α
20°135°
45°α
(4) (5) (6) 2、填空完成推理过程: 如图,∵AB ∥EF ( 已知 )
∴∠A + =1800
( ) ∵DE ∥BC ( 已知 )
∴∠DEF= ( )2. ∠ADE= ( ) 3. 已知:如图,∠ADE =∠B ,∠DEC =115°. 求∠C 的度数.
4. 已知:如图,AD ∥BC ,∠D =100°,AC 平分∠BCD ,
求∠DAC 的度数.
3.
5.已知AB ∥CD ,∠1=70°则∠2=_______,∠3=______,∠4=______
5.
43
2
1A C
D
B
4.
A
C
D E F
B
D
E
B C
A
H
G 2 1 F
E D
C B A E
D
B
A
C
2
1
F
E
D
B
A C
b
a
341
2
6. 已知:如图4, AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,∠BEF 的平分线与∠DEF 的平分线相交于点P .求∠P 的度数 6.
7.
8.
7.直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数.
8. 如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.
9.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37º,求∠D 的度数.
12.
9.
10.
11.
10.如图,已知:21∠∠=, 50=D ∠,求B ∠的度数。
11.已知:如图,AB∥CD,∠B=400
,∠E=300
,求∠D的度数
12.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.
13,如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370
,
求∠D 的度数.
14.
13.
14.AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F , 已知∠1=600
.求∠2的度数.
15.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.
15.
A B
C D E
E D
C
B
A
N
M
G F E
D
C B
A
N
M
F
E D
C
B
A
16. 如图所示,已知AB ∥CD,分别探索下列四个图形中∠P 与∠A,∠C 的关系,•请你从所得的四个关系中任选一个加以说明.
P
D
C
B
A P D
C
B
A
P D
C
B A P
D
C
B A
(1) (2) (3) (4)
17.如图,AB ∥CD ,BF ∥CE ,则∠B 与∠C 有什么关系?请说明理由.
18.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.
19.如图AB∥CD,∠NCM =90°,∠NCB =30°,CM 平分∠BCE ,求∠B 的大小. 20.如图5-24,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA . (1)判断CD 与AB 的位置关系;
(2)BE 与DE 平行吗?为什么?
21.如图5-25,∠1+∠2=180°,∠DAE =∠BCF ,DA 平分∠BDF . (1)AE 与FC 会平行吗?说明理由. (2)AD 与BC 的位置关系如何?为什么?
(3)BC 平分∠DBE 吗?为什么.
20. F E
2
1
D
C
B
A
第17题图 A
B
C
D
E
第18题图
E
N
M
C
D B
A
第19题图
图5-24 图5-25
A
B C
D
E
22.如图5-28,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,
∠1=∠2,求证:∠B =∠C .
23. 22. 24. .
23如图,CD 是∠ACB 的平分线,∠EDC=025,∠DCE=025, ∠B=070
① 证:DE//BC ②求∠BDC 的度数。
24、如图,AB 、CD 相交于点O ,∠DOE=
90,∠AOC=
37,求∠BOC ,∠BOE 的度数。
25、如图5,AO ⊥CO ,BO ⊥DO ,且∠AOB=
160,求∠COD 的度数。
26 26.如图,已知:AB//CD ,求证:∠B+∠D+∠BED=360︒(至少用三种方法) 27. 直线AB 、CD 相交于O ,OE 平分∠AOC ,∠EOA :∠AOD=1:4,求∠EOB 的度数. 28、如图,已知OB 平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠1,∠2,∠3,∠4的度数. 29. 如图所示,AB ∥ED ,∠B =48°,∠D =42°, BC 垂直于CD 吗?下面给出两种添加辅助线的方法,请选择一种,对你作出的结论加以说明.
30.如图,已知:DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°, ∠ACB =50°,求∠EDC 和∠BDC 的度数.
31.AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数
A
B
C D
3
21
O
B
C
D A
图5
E
A
B O
D
C 图4
4
321D
C
A
B
O
2 A
B
E
C
F
D H
G 1
E
A
B
C
D
28题
H G
2
1
F
E
D
C B
A
E
D
B
A
C
2
1
F
E
D
B
A
C
北北A B
C E
F D A
E
A
B
C
D 21A B C
D F
E
32、如图,已知:21∠∠=,
50=D ∠,求B ∠的度数。
34 33
32
33.如图,AB//CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A=370
,
求∠D 的度数.
34.如图,AB//CD,EF ⊥AB 于点E ,EF 交CD 于点F ,
已知∠1=600
.求∠2的度数.
35.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠A=500
,∠C=600
, 求∠DAC 及∠BOA
36
37
36.如图,A 岛在B 岛的北偏东52°方向,A 岛在C 岛北偏西31°方向,从A 岛看B 、C 两岛的视角∠BAC 是多少度?(提示:过A 点作AD ∥BE )
37.如图7-37,在△ABC 中,已知AD 是△ABC 角平分线,DE 是△ADC 的高线,∠B =600
, ∠C =450
, 求∠ADB 和∠ADE 的度数.
38.如图,∠1=20°,∠2=25°,∠A =35°,求∠BDC 的度数。
38
39.如图,∠C =48°,∠E =25°,∠BDF =140°,求∠A 与∠EFD 的度数。
40.如图△ABC 中,∠B =∠C ,FD ⊥BC ,DE ⊥AB ,∠AFD =158°,则∠EDF =________。
40
A
B
F E
C
D
39
41.如图所示,已知∠A=∠1,∠E=∠2,且AC ⊥EC,试证明:AB ∥DE.
42、如图,已知∠ A =∠ F ,∠ C =∠ D.试问BD 是否与CE 平行?为什么?
2
1C A E
D B。