基于单片机的红外感应报警系统设计论文(传感器_程序_原理图全套)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1报警系统设计的目的与意义
1.1 目的
报警系统在现实生活中应用十分的广泛,家庭财产防盗,汽车安全防盗,企业信息防盗,其中非常重要的金融行业防盗等。现在主流的报警器采用以红外传感器为基础的红外线传感器,红外线是一种不可见的光,任何物体都会发出红外线,但是红外线容易受各种热源、阳光源干扰;被动红外穿透力差,人体的红外辐射容易被遮挡,不易被报警器接收;易受射频辐射的干扰;环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵等缺点,但是压电式感应报警器,当有入侵者将压力施加与压电传感器时,机械能在压电传感器中转化为电能,通过放大电路,将信号方法,从而带动发声报警装置,这类报警装置重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等优点。本次设计目的在于设计以压电传感器为基础的压电传感器报警系统,压力是一种不可避免的力,任何物体都质量,任何动作的产生都是有力的参与。力是改变物体运动状态的原因、所以它具有很好的不可避免性。如果采用传感器的报警系统,只需要将报警器放置在必要的位置探测改变其本身电流的力,探测装置只需与被测物体直接接触,就可以感受到电流的改变。本设计就采用被动式电流改变的的方式,当有入侵者入侵时候,压电感应器会感受到自身的电流的变化,通过放大电路,将压电材料中微小的电流信号进行放大,并将信号输入到单片机中,单片机中的程序将传感器发送来的信号做处理并发送到光报警系统和声音报警系统中,光报警系统在接受到信号后,红灯亮10S,声音报警系统在接收到信号后,扬声器响10S,当10后,单片机重新检测是否还有红外传感器发送来的信号,如果还有,声光报警系统将继续工作。通过中断系统,可以实现声光报警系统在10S内暂停。这样就可以方便的控制报警系统的中断了。
1.2 国内外进展情况
压电报警器是紧跟着压电材料与放大器的出现而出现的。美国军方是最早使用压电传感器技术的国家,上世纪美国军方研制出以压电传感器方式导引的精确地雷制导炸弹,这可能是压电传感器最早应用的实例。我国发展压电传感器系统的时间起步比较晚,直到上世纪末才出现压电传感器系统的研究。但是这并没有阻碍我国压电传感器的进步,从1995年开始,全国各地出现了大小不等的压电材料传感器研发销售公司,这为压电传感器的迅速发展起着关键性作用。现在我国压电传感器广发应用在银行,工厂,商业等重要地方,甚至走进了普通的家庭,但是研究更加简易,低价格,高性能的被动式压电传感器仍然需要科技的进步。
1.3 设计思路
由于现代仿真技术已经非常的成熟,不像过去那样设计过程就需要耗费大量的财力和物力。本系统可以使用ISIS画出系统的原理图,首先打开ISIS软件,单击命令窗口file——new design,创建一个default模板,保存名称为“基于AT89C51单片机红外线报警器的设计.DSN”。执行菜单命令library——pick device/symbol,添加所需元件。本程序中红外传感器可以使用TORCH_LDR原件来代替,上面有“+”“-”可以模拟外界红外强度的变化,并将这个变化转化为电信号输入到单片机中。扬声器功率放大电路中的芯片选取555。在原理图编辑窗口中放置元件,再单击工具箱中的“原件终端”图标,在对象选择中单击POWER和GROUND放置电源和地。放置好元件后,布好线。左键双击各元件,设置好相应参数,完成电路设计。
设计的软件部分在Keil中完成,由于汇编语言的优越性,本次设计选择汇编语言进行程序设计。
2系统分析
2.1 系统总体设计
从设计的要求来分析该设计须包含如下结构:热释电红外传感探头电路、报警电路、单片机、复位电路及相关的控制管理软件组成;它们之间的构成框图如图3总体设计框图所示:
图3 总体设计框图
处理器采用51系列单片机AT89C51。整个系统是在系统软件控制下工作的。当红外检测装置检测到有人时,信号经放大电路和非门将相应的电平送至单片机的p1.0端口,在单片机内,经软件查询、识别判决等环节实时发出入侵报警状态控制信号。驱动电路将控制信号放大并推动声光报警设备完成相应动作。当报警延迟10s一段时间后自动解除,也可人工手动解除报警信号,当警情消除后复位电路使系统复位,或者是在声光报
警10s钟后有定时器实现自动消除报警。
2.2红外传感器(系统中用TORCH_LDR)基础知识
热释电式传感器主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。由探测元件将探测并接收到的红外辐射转变成微弱的电压信号,经装在探头内的场效应管放大后向外输出。为了提高探测器的探测灵敏度以增大探测距离,一般在探测器的前方装设一个菲涅尔透镜,该透镜用透明塑料制成,将透镜的上、下两部分各分成若干等份,制成一种具有特殊光学系统的透镜。它和放大电路相配合,可将信号放大70分贝以上,这样就可以测出10~20米范围内人的行动。
菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而强其能量幅度。人体辐射的红外线中心波长为9~10--um,而探测元件的波长灵敏度在0.2~20--um范围内几乎稳定不变。在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7~10--um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。
热释电式传感器的优点是:本身不发任何类型的辐射,器件功耗很小,隐蔽性好。价格低廉。
热释电式传感器的缺点是:容易受各种热源、光源干扰,被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。