高一数学1月月考试题

合集下载

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案

武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。

河南省郑州市第一中学2024-2025学年高一上学期第一次月考试题 数学(含答案)

河南省郑州市第一中学2024-2025学年高一上学期第一次月考试题 数学(含答案)

郑州一中27届(高一)第一次模拟测试数学试题卷第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,,则如图中阴影部分表示的集合为( )A. B. C. D. 2. 命题“,”的否定是( )A. , B. ,C. , D. ,3. 已知函数的值为( )A. B. 0 C. 2 D. 44. 已知,若,,,且,,,则的值( )A. 大于0B. 等于0C. 小于0D. 不能确定5. 函数的部分图象大致为( )A.B.U R =(){}{}30,1M x x x N x x =+<=<-{|1}x x ≥-{|30}-<<x x {|3}x x ≤-{|10}x x -≤<x ∃∈R 310x x +>x ∃∈R 310x x +≥x ∃∈R 310x x+≤x ∀∈R 310x x+≤x ∀∈R 310x x +>()()2,1,2,1x x f x f x x -≤⎧=⎨>⎩2-3()2f x x x =+a b c ∈R 0a b +>0a c +>0b c +>()()()f a f b f c ++()22111x f x x +=-+C. D.6. 已知,则下列不等式一定成立的是( )A. B. C D. 7. 已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值不可能是( )A 13 B. 14 C. 15 D. 168. 已知函数,若的值域为,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数中,既是奇函数,又在上单调递增的是( )A. B. C. D. 10. 命题“,”为真命题的一个充分不必要条件可以是( )A. B. C. D. 11. 设为实数,不超过的最大整数称为的整数部分,记作.例如,.称函数为取整函数,下列关于取整函数的结论中正确的是( )A. 在上是单调递增函数B. 对任意,都有C. 对任意,,都有..0a b >>22a b a b +>+2()4a b ab+≤2b a a b +<22b b a a +<+Z a ∈x 280x x a -+≤a 212,()23,3x c f x x x x c x ⎧-+<⎪=⎨⎪-+≤≤⎩()f x [2,6]c 11,4⎡⎤--⎢⎥⎣⎦1,04⎡⎫-⎪⎢⎣⎭[1,0)-11,2⎡⎤--⎢⎥⎣⎦(0,)+∞()f x =()||f x x x =2()1x x f x x -=-3()f x x =[1,2)x ∀∈20x a -≤4a ≥5a >6a ≥7a >x x x []x [1.2]1=[ 1.4]2-=-()[]f x x =()f x ()f x R x ∈R ()1f x x >-x ∈R k ∈Z ()()f x k f x k+=+D 对任意,,都有第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12. 用列举法表示______.13. 函数是上的偶函数, 且当时,函数的解析式为,则______;当时,函数的解析式为___________.14. 已知,为非负实数,且,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.15. 已知全集,集合,.(1)求;(2)求.16. 设命题,使得不等式恒成立;命题,不等式成立.(1)若为真命题,求实数取值范围;(2)若命题、有且只有一个是真命题,求实数取值范围.17. 设函数为定义在上的奇函数.(1)求实数的值;(2)判断函数的单调性,并用定义法证明在(0,+∞)上的单调性.18. 已知某园林部门计划对公园内一块如图所示的空地进行绿化,用栅栏围4个面积相同的小矩形花池,一面可利用公园内原有绿化带,四个花池内种植不同颜色的花,呈现“爱我中华”字样.(1)若用48米长的栅栏围成小矩形花池(不考虑用料损耗),则每个小矩形花池的长、宽各为多少米时,才能使得每个小矩形花池的面积最大?.的的x y ∈R ()()()f xy f x f y =6N N 1a a ⎧⎫∈∈=⎨⎬-⎩⎭∣()f x R 0x >2()1f x x=-(1)f -=0x <a b 21a b +=22211a b a b+++R U ={}2|560A x x x =-+>{|230}B x x =->A B ⋂()()U U A B ðð[]:1,1p x ∀∈-2230x x m --+<[]:0,1q x ∃∈2223x m m -≥-p m p q m ()22a f x x a x+=-+(,0)(0,)-∞+∞ a ()f x ()f x(2)若每个小矩形的面积为平方米,则当每个小矩形花池的长、宽各为多少米时,才能使得围成4个小矩形花池所用栅栏总长度最小?19. 已知集合中含有三个元素,同时满足①;②;③为偶数,那么称集合具有性质.已知集合,对于集合的非空子集,若中存在三个互不相同的元素,使得均属于,则称集合是集合的“期待子集”.(1)试判断集合是否具有性质,并说明理由;(2)若集合具有性质,证明:集合是集合的“期待子集”;(3)证明:集合具有性质的充要条件是集合是集合的“期待子集”.983A ,,x y z x y z <<x y z +>x y z ++A P {}1,2,3,,2n S n = *(N ,4)n n ∈≥n SB n S ,,a b c ,,+++a b b c c a B B n S {}1,2,3,5,7,9A =P {}3,4,B a =P B 4S M P M n S郑州一中27届(高一)第一次模拟测试数学试题卷第I卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BD【10题答案】【答案】BCD【11题答案】【答案】BC第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】 ①. ②. 【14题答案】【答案】2四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或验算步骤.【15题答案】【答案】(1)或 (2)【16题答案】【答案】(1)(2)【17题答案】【答案】(1)(2)在上单调递减,在(0,+∞)上单调递减,证明见解析【18题答案】【答案】(1)长为6米、宽为4米(2)长为7米、宽为米【19题答案】【答案】(1)不具有,理由见解析(2)证明见解析 (3)证明见解析{}1,2,3,61()21f x x=--{3|22x x <<3}x >3|232x x x ⎧⎫≤≤≤⎨⎬⎩⎭或(,0)-∞(,3]-∞0a =(,0)-∞143。

高一数学上学期第一次月考试题_01_01

高一数学上学期第一次月考试题_01_01

一中2021-2021学年第一学期第一次月考高一数学试题〔考试时间是是:120分钟 总分:150分〕第I 卷〔选择题,一共60分〕一、选择题(本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的)1. 全集{}8,7,6,5,4,3,2,1=U ,集合{}6,5,3,2=A ,集合{}7,6,4,3,1=B , 那么集合()=⋂B C A U 〔 〕{}5,2.A {}6,3.B {}6,5,2.C {}8,6,5,3,2.D2. 集合{},3,12,4,22A a a a A ∈-+-=且,那么a 等于〔 〕1.-A 3.-B 3.C 1-3.或-D3. 函数()()0313++-+=x x x x f 的定义域为〔 〕 ()+∞,1.A [)()+∞⋃-,11,3.B [)+∞,1.C ()()+∞⋃-,11,3.D4. 函数()满足x f ()432-=-x x f ,那么()x f 的解析式为〔 〕()23.-=x x f A ()32.+=x x f B ()23.+=x x f C ()32.-=x x f D5. 函数()()1011≠>+=-a a ax f x 且的图象一定经过定点〔 〕()1,0.A ()2,0.B ()2,1.C ()3,1.D6. 312=a ,524=b ,215-=c ,那么c b a ,,的大小关系是 〔 〕c b a A >>. c a b B >>. a b c C >>. b a c D >>.7. 假如二次函数()()122+-+=x a x x f 在区间(]3,∞-上是减函数,那么a 的取值范围是〔 〕8.≤a A 1.≥a B 4.-≥a C 4.-≤a D8. 函数()(),82,13=-++=f bx ax x f 那么()2f 的值〔 〕6.-A 8.B 8.-C 6.D9.函数1(0,1)x y a a a a=->≠的图象可能是〔 〕10. 偶函数()x f 的定义域为R ,且[)上在+∞,0()x f 是增函数,那么()()()2,3,1--f f f 的大小关系是〔 〕()()()123.->->f f f A ()()()213.->->f f f B ()()()123.-<-<f f f C ()()()213.-<-<f f f D11.函数()x f 在()上为减函数,+∞∞-,且为奇函数,假设()12-=f ,那么满足不等式()111≤-≤-x f 的x 取值范围是〔 〕 []1,1.-A[]2,2.-B []3,1.-C.D []3,112.非空数集A 假如满足:①0A ∉;②假设对,x A ∀∈有1A x∈,那么称A 是“互倒集〞.给出以下数集:①2{|10}x R x ax ∈++=; ②{}1313+<<-x x③[)[]22,0,15|1,1,2x x y y x x x ⎧⎫⎧+∈⎪⎪⎪⎪⎪⎪=⎨⎨⎬⎪⎪⎪-∈⎪⎪⎪⎩⎩⎭.其中“互倒集〞的个数是〔 〕0.A 1.B 2.C 3.D第二卷〔非选择题 一共90分〕二、填空题(本大题一一共4小题,每一小题5分,一共20分)13.()2124123-⎪⎭⎫ ⎝⎛--=____14.函数(),0,0,1⎩⎨⎧≥<+=x e x x x f x那么()()=-+50f f __________. 15. ()x f 为定义在R 上的奇函数,当0≥x 时,()()1+=x x x f ,那么当0<x 时 ,()=x f ________.16.函数()()100,20,≠>⎩⎨⎧>-≤=a a x x a x a x f x 且的值域为R ,那么实数a 的取值范围是________.三、解答题(本大题一一共6小题,满分是70分,解答过程要有必要文字说明与推理过程.) 17.〔此题满分是10分〕集合{}{}.131,71-≤≤+=≤≤-=m x m x B x x A 〔1〕当3=m 时,求集合B A B A ⋃⋂,; 〔2〕假设A B ⊆,务实数m 的取值范围.18.〔此题满分是12分〕)(x f 为二次函数,且242)1()1(2+-=-++x x x f x f 〔1〕求)(x f 的解析式;〔2〕当[]2,1-∈x 时,求)(x f 的最大值与最小值;19.〔此题满分是12分〕函数()b x ax x f ++=12是奇函数,且().252=f(1)务实数b a ,的值;(2)判断函数()x f 在(]1,-∞-上的单调性,并用单调性的定义加以证明.20.〔此题满分是12分〕经场调查,某商品在过去的30天内的销售量〔单位:件〕和价格〔单位:元〕均为时间是t 〔单位:天〕的函数,且销售量近似地满足()(),3016,40151,10N t t t t t t f ∈⎩⎨⎧≤≤-≤≤+= 价格为()t t g -=30 ()N t t ∈≤≤,301. 〔1〕求该种商品的日销售额()h t 与时间是t 的函数关系; 〔2〕求t 为何值时,日销售额最大?并求出最大值.21.〔此题满分是12分〕指数函数()x f 的图象经过点().9,2M 〔1〕求()x f 的解析式; 〔2〕函数()()x mf x g x232-=在区间[)+∞,1上的最小值为3-,务实数m 的值.22.〔此题满分是12分〕定义域在R 的单调函数()x f 满足()()()()R y x y f x f y x f ∈+=+,,且()42=f ,〔1〕求()()1,0f f ;〔2〕判断函数()x f 的奇偶性,并加以证明; 〔3〕假设对于任意⎪⎭⎫⎢⎣⎡∈1,21x 都有()()0122<-+x f kx f 成立,务实数k 的取值范围.一中2021-2021学年第一学期第一次月考高一数学试题答案一、选择题〔本大题一一共12小题,每一小题5分,一共60分〕二、填空题(本大题一一共4小题,每一小题5分,一共20分) 13.3- 14.3- ()x x -1.15 16.⎪⎭⎫⎢⎣⎡1,21 三、解答题(本大题一一共6小题,满分是70分) 17.解:)1(当{}分时,集合1843 ≤≤==x x B m {}71≤≤-=x x A 集合 {}分374 ≤≤=⋂∴x x B A {}分581 ≤≤-=⋃x x B A()解:2①分解得时,当6.1,131 <->+=m m m B φ②38171311131≤≤⎪⎩⎪⎨⎧≤--≥+-≤+≠m m m m m B 解得时,则有当φ分9综上所述:38≤m 分10 18.解:()1设()()分102≠++=a c bx ax x f()()()()()()c x b x a c x b x a x f x f +-+-+++++=-++∴11111122分3.22222c a bx ax +++=()()242112+-=-++x x x f x f⎪⎩⎪⎨⎧=-==∴⎪⎩⎪⎨⎧=+-==∴021*******c b a c a b a 分5 ()分6.22 x x x f -=∴()()()开口向上,对称轴)得,由(,111122=--=x x x f()[][].2,11,1-上单调递增上单调递减,在在x f ∴分8 ()分的最大值为时,当1031 x f x -=∴()分的最小值为时,当12.11 -=x f x19. 解:()1()()252=f x f 是奇函数, ()252-=-∴f 分1 ⎩⎨⎧==∴⎪⎪⎩⎪⎪⎨⎧-=+-+=++∴012521425214b a ba b a 分5〔注:由奇函数的定义求b 的值的,酌情给分〕()()()()(]分上为增函数在知由6.1,,11122 -∞-∴+=+=x f xx x x x f证明:设,121-≤<x x那么()()()⎪⎪⎭⎫ ⎝⎛-+-=⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-21212211211111x x x x x x x x x f x f()()()分91112121212121211221 x x x x x x x x x x x x x x x x -⋅-=⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-+-= ,121-≤<x x 分101,02121 ><-∴x x x x ()()()()2121,0x f x f x f x f <<-∴即 ()(]1,-∞-∴在x f 上为增函数.分1220. 解:〔1〕由题意可知,()()()()()()()⎩⎨⎧∈≤≤--∈≤≤-+=⋅=Nt t t t Nt t t t t g t f t h ,3016,3040,151,3010=分4,3016,120070,151,3002022 ⎪⎩⎪⎨⎧∈≤≤+-∈≤≤++-Nt t t t Nt t t t ()2①当N t t ∈≤≤,151时,()()400103002022+--=++-=t t t t h对称轴[]15,110∈=t ,且()t h 在[]10,1上递增,在[]15,10上递减.∴当10=t 时,日销售额有最大值,().400max =t h 分7②当N t t ∈≤≤,3016时,()()253512007022--=+-=t t t t h对称轴[],30,1635∉=t 且()t h 在[]30,16上递减,∴当16=t 时,日销售额有最大值,().336max =t h 分10().40010,336400max ==∴>t h t 时,日销售额最大,当 .40010元大值为时,日销售额最大,最答:当=t 分1221.解:()1设指数函数的解析式为()()10≠>=a a a x f x且分1()()分舍去或函数的图象经过点3.33,99,22 -==∴=∴a a a ()分4.3 x x f =∴()2由()1可知,()()x x x x m m x g 32332322⋅-=⋅-=分5[)[)分令6,3,,1,3 +∞∈∴+∞∈=t x t x ()().2222m m t mt t t h --=-=∴记7 分①当3<m 时,()[)上单调递增,,在∞+3t h 那么当3=t 时()2,3693232min =-=-=⋅-=m m m x g 解得分9②当3≥m 时,那么当m t =时,()()舍去解得3,32min ±=-=-=m m x g 分11综上所述:分12.2 =m22. 解:()1()()()分则令200,020,0 =∴==f f f x 令,1=x 那么()()()()分42142,122 =∴==f f f f ()2令,x y -=那么()()()()()x f x f x f x f f -=-∴=-+=,00 ().是奇函数函数x f ∴6 分 ()()()()01232<-+x f kxf x f 是奇函数,且 在⎪⎭⎫⎢⎣⎡∈1,21x 上恒成立,()()()⎪⎭⎫⎢⎣⎡∈-=--<∴1,2121122x x f x f kx f 在上恒成立.分7()x f 是定义域在R 上的单调函数且()()2100=<=f f ()x f ∴是定义域在R 上 的增函数.分8 x kx 212-<∴在⎪⎭⎫⎢⎣⎡∈1,21x 上恒成立.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-<∴x x x x k 1212122在⎪⎭⎫⎢⎣⎡∈1,21x 上恒成立.分9 令()⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=x x x g 1212那么(),1112-⎪⎭⎫⎝⎛-=x x g(]2,11,1,21∈∴⎪⎭⎫⎢⎣⎡∈xx令(]()()()(]上递增,在且记2,1,11,2,112t h t t h xt --=∈=()(),1,1->->∴x g t h 即1-≤∴k那么实数k 的取值范围为(].1,-∞-分12。

数学高一月考试题及答案

数学高一月考试题及答案

数学高一月考试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x^2+3x-5,则f(-2)的值为:A. 3B. -3C. -1D. 12. 在等差数列{a_n}中,若a_3=7,a_5=11,则公差d为:A. 2B. 3C. 4D. 53. 已知圆的方程为x^2+y^2-6x-8y+25=0,该圆的半径为:A. 2B. 4C. 5D. 64. 若sinθ=1/3,且θ为第一象限角,则cosθ的值为:A. 2√2/3B. √2/3C. √6/3D. 2√6/35. 函数y=x^3-3x+2在x=1处的导数为:B. 1C. 2D. 36. 集合A={1,2,3},集合B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 47. 已知等比数列{a_n}的首项a_1=2,公比q=3,那么a_5的值为:A. 162B. 486C. 729D. 9728. 若直线y=2x+1与圆x^2+y^2=25相切,则该直线与x轴的交点坐标为:A. (-1/2, 0)B. (1/2, 0)C. (-1, 0)D. (1, 0)9. 函数f(x)=x^2-2x+3的最小值为:A. 2B. 1C. 0D. -110. 已知向量a=(3, -4),向量b=(-2, 6),则向量a与向量b的夹角A. 0°B. 90°C. 180°D. 45°二、填空题(每题4分,共20分)1. 若函数f(x)=x^3-6x^2+11x-6的零点为x_0,则f'(x_0)的值为________。

2. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,那么a_4的值为________。

3. 圆心在原点,半径为5的圆的方程为________。

4. 若sinα=3/5,且α为第二象限角,则cosα的值为________。

5. 函数y=|x-2|+|x+3|的最小值为________。

高一数学必修一月考试题

高一数学必修一月考试题

高一数学(必修1)第一次月考试题(集合与函数及指数函数)一、选择题(每小题5分,共60分)1.下列关系式正确的是( )A.0{0}∈,B.0{0}=,C.0{0}⊆,D.{0}∅=。

2.设 :f M N →是集合M 到集合N 的映射,下列说法正确的是( )A.M 中每一个元素在N 中必有输出值,B.N 中每一个元 素在M 中必有输入值,C.N 中每一个元素在M 中的输入值是唯一的,D.N 是M 中所有元素的输出值的集合。

3.设定义域在 R 上的函数()f x x x =⋅,则()f x ( )A.既是奇函数又是增函数,B.既是偶函数又是增函数,C.既是奇函数又是减函数,D.既是偶函数又是减函数。

4.集合11{|,},{|,}2442k k M x x k Z N x x k Z ==+∈==+∈,则( )A.M N =, B.M N ⊆ C.N M ⊆,D.M N =∅。

5.已知53()2f x x ax bx =-++且(5)17f -=,则(5)f 的值为( )A.19,B.13,C.-19,D.-136.若0a <,则函数(1)1xy a =--的图象必过点( ) A.(0,1), B.(0,0), C.(0,-1), D.(1,-1)。

7.要得到函数 (2)1y f x =-+的图象,只需将函数()y f x =的图象( )A.向右平移2个单位向下平移1个单位,B.向左平移2个单位向下平移1个单位,C.向右平移2个单位向上平移1个单位,D.向左平移2个单位向上平移1的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所 有元素数字之和为。

9.已知函数()312f x ax a =+-在区间(-1,1)上 存在0x ,使得0()0f x =,则( )A.115a -<<,B.15a >,C.1a <-或15a >,D.1a <-。

全国名校高中数学优质试题(附详解)高一数学第一次月考试题及答案

全国名校高中数学优质试题(附详解)高一数学第一次月考试题及答案

高一数学单元测试题一、选择题:(每小题5分,共50分)1.如果全集U ={x |x 是小于9的正整数},集合A ={1,2,3,4},B ={3,4,5,6},则(U A )(U B )为( )A .{1,2}B .{3,4}C .{5,6}D .{7,8} 2.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4},那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3.设全集U =Z ,集合A ={1,3,5,7,9},B ={1,2,3,4,5},则图中阴影部分表示的集合是( )A .{1,3,5}B .{1,2,3,4,5}C .{7,9}D .{2,4} 4.下列各组函数表示同一函数的是( )A .f (x )g (x )=2 B .f (x )=1,g (x )=x 0C .,0,(),0,x x f x x x ≥⎧=⎨-<⎩g (t )=|t | D .f (x )=x +1,g (x )=211x x --5.已知函数221,2,()3,2,x x f x x x x -≥⎧=⎨-+<⎩则f (-1)+f (4)的值为( )A .-7B .3C .-8D .46.若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( ) A .f (x )=9x +8 B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -47.函数f (x )91x+是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数 8.设集合A ={x |1<x <2},B ={x |x <a },满足A B ,则实数a 的取值范围是( ) A .{a |a ≥2} B.{a |a ≤1} C.{a |a ≥1} D.{a |a ≤2}9.设集合A ={x |0≤x ≤2},B ={y |1≤y ≤2},若对于函数y =f (x ),其定义域为A ,值域为B ,则这个函数的图象可能是()10.若函数y =f (x )为偶函数,且在(0,+∞)上是减函数,又f (3)=0,则02)()(<-+xx f x f 的解集为( )A .(-3, 3)B .(-∞,-3)∪(3,+∞)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3)二、填空题:(每小题5分,共25分)11.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值______.12.函数y =的定义域为__________(用区间表示). 13.若函数f (x )=(1)(2)xx x a +-为奇函数,则a =_____.14.函数y =f (x )是R 上的偶函数,且当x >0时,f (x )=x 3+1,则当x <0时,f (x )=________.15.某城市出租车按如下方法收费:起步价8元,可行3 k m(含3 k m),3 k m 后到10 k m(含10 k m)每走1 k m 加价1.5元,10 k m 后每走1 k m 加价0.8元,某人坐该城市的出租车走了20 k m ,他应交费________元.三、解答题:(共75分)16.(10分)已知全集U =R ,若集合A ={}310x x ≤<,B ={x |2<x ≤7}. (1)求A B ,A B ,(U A )(U B );(2)若集合C ={x |x >a },A ⊆C ,求a 的取值范围.(结果用区间或集合表示)17.(12分)已知函数35,0,()5,01,28, 1.x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩(1)求32f ⎛⎫ ⎪⎝⎭,1πf ⎛⎫⎪⎝⎭,f (-1)的值;(2)画出这个函数的图象; (3)求f (x )的最大值.18.(12分)奇函数f (x )是定义在区间(-2,2)上的减函数,且满足f (m -1)+f (2m -1)>0,求实数m 的取值范围.19.(12分)利用函数的单调性定义证明函数f (x )=1xx -,x ∈[2,4]是单调递减函数,并求该函数的值域.20.(12分)已知函数f (x )=x +1x, (1)判断函数f (x )的奇偶性;(2)判断函数f (x )在区间(0,1)和(1,+∞)上的单调性,并用定义证明;(3)当x ∈(-∞,0)时,写出函数f (x )=x +1x的单调区间(不必证明).21.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值范围.。

高一上学期第一次月考数学试题(附答案解析)

高一上学期第一次月考数学试题(附答案解析)

高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。

富平县迤山中学高一第二学期第一次月考数学试卷

富平县迤山中学高一第二学期第一次月考数学试卷

1、一个正方体的内切球与外接球的表面积之比为:A. 1:3B. 1:2C. 1:4D. 2:3解析:正方体的内切球半径等于正方体棱长的一半,而外接球半径等于正方体对角线的一半。

通过计算两者的表面积比,可以得出答案为A。

内切球与外接球的半径之比为1:√3,因此表面积之比为1:3。

(答案:A)2、设集合A={x|x是小于9的正整数},B={1,2,3},则A∩B等于:A. {1,2,3,4,5,6,7,8}B. {4,5,6,7,8,9}C. {1,2,3}D. ∅解析:集合A包含小于9的所有正整数,即{1,2,3,4,5,6,7,8}。

集合B为{1,2,3}。

两集合的交集即为它们共有的元素,所以A∩B={1,2,3}。

(答案:C)3、若a,b,c为三角形的三边,且a+b>2c,则此三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定解析:根据三角形的性质,任意两边之和大于第三边。

题目给出a+b>2c,并不能直接判定三角形的具体类型(锐角、直角或钝角),因为这仅说明了边长关系,不足以确定角度。

(答案:D)4、已知等差数列的前n项和为Sn,若S3=6,S6=15,则S9等于:A. 24B. 27C. 30D. 36解析:等差数列的前n项和Sn满足性质:S3, S6-S3, S9-S6也成等差数列。

已知S3=6,S6=15,则S6-S3=9。

因此,S9-S6也应为9,所以S9=15+9=24。

(答案:A)5、下列哪个数不是质数?A. 2B. 3C. 4D. 5解析:质数是只有1和它本身两个正因数的自然数,且必须大于1。

2, 3, 5都符合质数的定义,而4除了1和4本身外,还能被2整除,因此不是质数。

(答案:C)6、若一个长方体的长、宽、高分别为3cm、4cm、5cm,则其体积为:A. 12cm³B. 30cm³C. 60cm³D. 120cm³解析:长方体的体积计算公式为长×宽×高。

安徽省部分高中高一数学上学期第一次月考试题2

安徽省部分高中高一数学上学期第一次月考试题2

安徽省部分高中2019-2020学年高一数学上学期第一次月考试题考生须知:1.本试卷满分150分,考试时间120分钟。

2.考生答题时,将答案写在专用答题卡上。

选择题答案请用2B 铅笔将答题卡上对应题目的答案涂黑;非选择题答案请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内规范作答,凡是答题不规范一律无效...........。

3.考生应遵守考试规定,做到“诚信考试,杜绝舞弊”。

4.本卷命题范围:必修①第一章第I 卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A ={x |x 2-2x ≤0},B ={x |x ≤a }.若A ⊆B ,则实数a 的取值范围是A .[2,+∞)B .(2,+∞)C .(-∞,0)D .(-∞,0]2.已知集合1{|12}{|22}8x M x x x P x x =-≤∈=<<∈Z R ,,,,则图中阴影部分表示的集合为A .{1}B .{–1,0}C .{0,1}D .{–1,0,1}3.已知函数f (x )21x -x ∈{1,2,3}.则函数f (x )的值域是A .{}35,,B .(–∞,0]C .[1,+∞)D .R4.已知函数y =()()21020x x x x ⎧+≤⎪⎨>⎪⎩,若f (a )=10,则a 的值是 A .3或–3 B .–3或5 C .–3 D .3或–3或55.设偶函数()f x 的定义域为R ,当x [0,)∈+∞时()f x 是增函数,则(2)f -,(π)f ,(3)f -的大小关系是A .(π)f <(2)f -<(3)f -B .(π)f >(2)f ->(3)f -C .(π)f <(3)f -<(2)f -D .(π)f >(3)f ->(2)f -6.定义域为R 的奇函数()y f x =的图像关于直线2x =对称,且(2)2018f =,则(2018)(2016)f f +=A .4034B .2020C .2018D .27.若函数()f x =的定义域为R ,则实数m 取值范围是A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞8.已知()f x 在R 上是奇函数,且()()2f x f x +=-, 当()0,2x ∈时,()22f x x =,则()7f = A .98 B .2 C .98- D .2-9.函数()f x 定义域为R ,且对任意x y 、R ∈,()()()f x y f x f y +=+A .(0)0f =B .(2)2(1)f f =C .11()(1)22f f =D .()()0f x f x -<10.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为A .9B .14C .18D .2111.已知函数y =f (x +1)定义域是[-2,3],则y =f (2x-1)的定义域是A .[0,25] B .[-1,4] C .[-5,5]D .[-3,7]12.已知函数()266,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是A.11,63⎛⎫⎪⎝⎭B.18,33⎛⎫-⎪⎝⎭C.11,63⎛⎤-⎥⎝⎦D.18,33⎛⎤- ⎥⎝⎦第Ⅱ卷(非选择题共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知集合A={a,b,2},B={2,b2,2a},且A=B,则a=__________.14.奇函数f(x)的图象关于点(1,0)对称,f(3)=2,则f(1)=___________.15.不等式的mx2+mx-2<0的解集为,则实数的取值范围为__________.16.设函数y=ax+2a+1,当-1≤x≤1时,y的值有正有负,则实数的范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演示步骤.17.(本小题满分10分)设全集为R,A={x|2≤x<4},B={x|3x–7≥8–2x}.(1)求A∪(C R B).(2)若C={x|a–1≤x≤a+3},A∩C=A,求实数a的取值范围.18.(本题满分12分)已知函数1 ()f x xx=+,(1)求证:f(x)在[1,+∞)上是增函数;(2)求f(x)在[1,4]上的最大值及最小值.19.(本题满分12分)已知函数()222(0)f x ax ax a a =-++<,若()f x 在区间[2,3]上有最大值1.(1)求a 的值;(2)若()()g x f x mx =-在[2,4]上单调,求实数m 的取值范围.20.(本题满分12分)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. (1)若A∪B=A ,求实数m 的取值范围; (2)当x∈Z 时,求A 的非空真子集的个数; (3)当x∈R 时,若A∩B=∅,求实数m 的取值范围.21.(本题满分12分)已知函数()273++=x x x f .(1)求函数的单调区间;(2)当()2,2-∈x 时,有()()232m f m f >+-,求m 的范围.22.(本题满分12分)已知函数+∈=N x x f y ),(,满足:①对任意,a b N +∈,都有)()()(b af b bf a af >+)(a bf +;②对任意n ∈N *都有[()]3f f n n =. (1)试证明:()f x 为N +上的单调增函数; (2)求(1)(6)(28)f f f ++;(3)令(3),nn a f n N +=∈,试证明:121111.424n n n a a a <+++<+2019~2020学年度第一学期第一次月考联考高一数学参考答案一、选择题:本题共12小题,每小题5分,共60分。

高一数学上学期1月月考试题-人教版高一全册数学试题

高一数学上学期1月月考试题-人教版高一全册数学试题

高一月考数学试题201本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.测试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至4页. 注意事项:1.答第Ⅰ卷前,考生务必将自己的某某、某某号、考试科目涂在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其它答案标号.不能答在试题卷上.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是符合题目要求的,把正确选项的代号涂在答题卡上.1如图⑴、⑵、⑶、⑷为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为()A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、正四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台2.可作为函数()y f x =的图象的是()3.函数2()lg(31)1f x x x=+-的定义域为() A .1(,1)3-B .11(,)33- C .1(,)3-+∞ D .1(,)3-∞-4.几何体的三视图如图,则几何体的体积为( ) A .3π B .23πC .πD .43π5.如图,将无盖正方体纸盒展开,直线AB ,CD 在原正方体中的位置关系是( ) A .平行B .相交且垂直C . 异面D .相交成60°6. 若点)2,3(在函数)3(log )(5m x f x+=的图象上,则函数3my x =-的值域为( )A.),0(+∞B.[)+∞,0C.),0()0,(+∞-∞D.(,0)-∞ 7.若函数432--=x x y 的定义域为[0 ,m ],值域为⎥⎦⎤⎢⎣⎡--4,425,则 m 的取值X 围是( )A.[0 ,4]B.[23 ,4] C.⎪⎭⎫⎢⎣⎡+∞,23 D.[23 ,3] 8.,,a b c 表示直线,M 表示平面,给出下列四个命题:①若//,//a M b M ,则//a b ;②若,//b M a b ⊂,则//a M ;③若,,a c b c ⊥⊥则//a b ;④若,a M b M ⊥⊥,则//a b .其中正确命题的个数有( )A. 0B. 1C. 2D. 3 9. 函数xx x f 1lg )(-=的零点个数为( ) A .0B .1C .2D .310.在四面体ABCD 中,已知棱AC 2,其余各棱长都为1,则二面角B-AC-D 的大小为( ) A .030B .045C .060D .090第Ⅱ卷(非选择题 共100分)注意事项:1.用蓝黑钢笔或圆珠笔答在答题纸上,直接答在试题卷上无效.2.答题前将答题纸密封线内的项目填写清楚.二、填空题:(本大题共5个小题.每小题5分;共25分.)11.设集合15,A a ⎧⎫=⎨⎬⎩⎭,集合{},B a b =.若{}2A B ⋂=,则A B ⋃=_______.12. 设()f x 是R 上的偶函数, 且在[0+)∞,上递减, 若1()02f =,14(log )0f x >那么x 的取值X 围是 .13. 一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45,腰和上底均为1. 如图,则平面图形的实际面积为.14.设实数,a b ,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数()(2)(1),R f x x x x =-⊗+∈.则关于x 的方程()f x x =的解集为{}|1x x =.15..已知平面,αβ,直线,l m ,且有,l m αβ⊥⊂,给出下列命题:①若α∥β则l m ⊥;②若l ∥m 则l ∥β;③若αβ⊥则l ∥m ;④若l m ⊥则l β⊥; A .1B .2C .3D .4其中,正确命题有.(将正确的序号都填上)三、解答题:本大题共6个小题. 共75分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分12分)已知集合{}{}23100,121A x x x B x m x m =--≤=+≤≤-,若A B A =某某数m m 的取值X 围.17.如图,已知平面,αβ,且,,,,AB PC PD C D αβαβ=⊥⊥是垂足,,l l CD β⊂⊥,试判断AB 与CD 的位置关系?并证明你的结论.18.(本题满分14分)甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如下图所示。

高一数学上学期第一次月考试题附答案

高一数学上学期第一次月考试题附答案

已知 A = {x | x ∈ R, x2 + (m + 2)x + 1 = 0} , B={x|x 是正实数},若 A B = ∅ ,求实数 m 的取值范围.
(22)(本小题满分 10 分) 已知 p:|1- x − 1 |≤2,q:x2-2x+1-m2≤0(m>0)的解集依次为 A、B,
3 且(CUB) (CUA)。求实数 a 的取值范围。
(18)(本小题满分 8 分)
已知集合 P = {y | y = −x2 + 2x + 5, x ∈ R} , Q = {y | y = 3x − 4, x ∈ R} , 求PQ,PQ.
(19)(本小题满分 10 分)
已知 A= {x | −2 < x ≤ 5} ,=B {x | 2m −1 ≤ x ≤ m +1},且 A B = B ,
-N)等于( ).
A. M N
B. M N
C.M
D.N
第Ⅱ卷(非选择题 共 72 分)
考生注意事项: 请在.答.题.纸.上.书.写.作.答.,.在.试.题.卷.上.书.写.作.答.无.效...
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在答题纸的相应
位置.
(13)设集合 A = {x | (x − 2)2 ≤ 4} ,B={1,2,3,4},则 A B =__________.
A. −16 ≤ a < 0
B. a > −16 C. −16 < a ≤ 0

D. a < 0
(9)已知 M 有 3 个真子集,集合 N 有 7 个真子集,那么 M∪N 的元素个数为( )
A.有 5 个元素

高一数学第一次月考试题

高一数学第一次月考试题

高一数学学科第一次月考试题考试用时:90分钟 满分:100分一、选择题(本题共12道小题,每小题4分,共48分)1.下列关于集合的关系式正确的是( )A .0∈{0}B .∅={0}C .0=∅D .{2,3}≠{3,2}2. 命题“对任意的x ∈R,2x+1>0”的否定为( )A.对任意的x ∈R,2x+1≤0B.存在x ∈R,2x+1>0C.对任意的x ∉R,2x+1≤0D.存在x ∈R,2x+1≤03.已知实数集为R ,集合{}3M x x =<,{}1N x x =<,R MC N =( ) A. ∅ B. {}13x x << C. {}13x x ≤< D. {}13x x ≤≤4.设x ∈R ,“x >1“的一个充分条件是( )A .x >﹣1B .x ≥0C .x ≥1D .x >25.若正数a ,b 满足31a b +=,则13a b +的最小值为( )A. 12B. 14C. 16D. 186.已知不等式022>-+bx ax 的解集是}412|{-<<-x x ,则的值为b a - ( )A.2B.3C.4D.57.下列命题中,既是存在量词命题又是真命题的是( )A.所有的正方形都是矩形B.有些梯形是平行四边形C.对任意的x ∈R ,3x+2<0D.至少有一个整数m ,使得m 2<18.已知a >0,﹣1<b <0,那么下列不等式成立的是( )A. a <ab <ab 2B. ab <a <ab 2C. ab <ab 2<aD. ab 2<a <ab9.生活中有这样一个实际问题:如果一杯糖水不够甜,可以选择加糖的方式,使得糖水变得更甜.若*0b a n R ∈>>,,则下列数学模型中最能刻画“糖水变得更甜”的是( )A. a b b n +>+B.a n ab n b+>+ C. a n b n +<+ D. a n a b n b +<+ 10.“1x >”是“20x x ->”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D.既不充分也不必要条件11.已知集合P={4,5,6},Q={1,2,3},定义P ⊕Q={x|x=p ﹣q ,p ∈P ,q ∈Q},则集合P ⊕Q 的所有真子集的个数为( )A .32B .31C .30D .以上都不对 12.若0<x <1,则当x(4-3x)取得最大值时,x 的值为( )31214332A. B. C. D.二、填空题(本题共4道小题,每小题4分,共16分)13.已知集合A }{3,2,1⊆,且A 中至少含有一个奇数,则这样的集合A 的个数为 .14.已知集合{}{},,0,1,2a b c =,且下列三个关系式:(1)2a ≠;(2)2b =;(3)0c ≠;有且只有一个正确,则a b c +-=____________.15.设α:x >m ,β:1≤x <3,若α是β的必要条件,则实数m 的取值范围是 .16.已知集合{}11A x x =-<<,{}B x x a =<,若A B =∅,则实数a 的取值范围__________.三、解答题(本题共4道小题,第17题8分,第18题8分,第19题8分,第20题12分,共36分)17.(8分)设全集{}|4U x x =≤,{}|23A x x =-<<,{}|33B x x =-<≤,求U C A ,A B ,()U C A B ,()U C A B ⋂.18. (8分)已知集合A={x|x 2﹣3x+2<0},B={x|a ﹣1<x <3a+1}.(1)当a=时,求A ∩B ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.19.(8分)已知关于x 的不等式x 2-5ax+b ﹥0的解集为{x|x ﹥4,或x <1}.(1)求实数a,b 的值;(2)若正实数x,y 满足x+y=2,t=x a +y b ,求t 的最小值。

高一数学第一次月考试卷

高一数学第一次月考试卷

高一数学第一次月考试题时量:120分钟 总分:150分 姓名: 班级: 得分:一、 选择题(5×10=50分)1.集合},{b a 的子集有 ( )A .2个B .3个C .4个D .5个2. 设集合{}|43A x x =-<<,{}|2B x x =≤,则A B = ( )A .(4,3)-B .(4,2]-C .(,2]-∞D .(,3)-∞3. 图中阴影部分所表示的集合是( )A.B ∩[CU(A ∪C)]B.(A ∪B) ∪(B ∪C)C.(A ∪C)∩(CUB)D.[CU(A ∩C)]∪B4.下列对应关系:( )①{1,4,9},{3,2,1,1,2,3},A B ==---f :x x →的平方根②,,A R B R ==f :x x →的倒数③,,A R B R ==f :22x x →-④{}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方其中是A 到B 的映射的是A .①③B .②④C .③④D .②③5. 已知A 、B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离s 表示为时间t (小时)的函数表达式是( )A .s=60tB .s=60t+50tC .s=D .s= 6. 函数y=xx ++-1912是( ) A . 奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数7.已知函数212x y x ⎧+=⎨-⎩(0)(0)x x ≤>,使函数值为5的x 的值是( ) ⎪⎩⎪⎨⎧≤<--≤<≤≤)5.65.3(),5.3(50150)5.35.2(,150)5.20(,60t t t t t ⎩⎨⎧>-≤≤)5.3(,50150)5.20(,60t t t tA .-2B .2或52-C . 2或-2D .2或-2或52- 8.下列函数中,定义域为[0,+∞)的函数是 ( )A .x y =B .22x y -=C .13+=x yD .2)1(-=x y9.下列图象中表示函数图象的是 ( )(A ) (B) (C ) (D)10. 若偶函数 f(x)在 上是增函数,则下列关系式中成立的是( )A. B.C. D. 二、填空题(5×5=15分)11.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x 1<0,x 2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .12.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = .13.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .14. 设奇函数f (x )的定义域为[-5,5],若当 时,f(x)的图象如右图,则不等式f(x)<0的解是 .15.已知函数()y f x =是R 上的偶函数,且在(-∞,0]上是减函数,若()(2)f a f ≥,则实数a 的取值范围是 .三、解答题(共75分)16.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(12分) (Ⅰ)若A =B ,求a 的值;(6分)(Ⅱ)若∅A ∩B ,A ∩C =∅,求a 的值.(6分)x y 0 x y 0 x y 0 x y 0 (]1,-∞-)2()1()23(f f f <-<-)2()23()1(f f f <-<-)23()1()2(-<-<f f f )1()23()2(-<-<f f f [0,5]x ∈17、设U={2,3,a 2+2a-3},A={b,2},U ⊇A ,C U A={5},求实数a 和b 的值。

高一上学期第一次月考数学试卷

高一上学期第一次月考数学试卷

高一数学上学期第一次月考试题第I卷(选择题)一、单选题(本大题共8小题,共40.0分)1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A;,是x∈A的必要不充分条件.其中与命题A⊆B等价的有()A. 1个B. 2个C. 3个D. 4个2.命题“∃x∈R,x2+2x+2<0”的否定是()A. ∃x∈R,x2+2x+2≥0B. ∃x∈R,x2+2x+2>0C. ∀x∈R,x2+2x+2≥0D. ∀x∉R,x2+2x+2>03.已知t>0,则y=t2−4t+1t的最小值为()A. −2B. 12C. 1D. 24.设a∈R,若关于x的不等式x2−ax+1≥0在1≤x≤2上有解,则()A. a≤2B. a≥2C. a≤52D. a≥525.已知非零实数a,b满足a>b,则下列不等式一定成立的是()A. a+b>0B. a2>b2C. 1a <1bD. a2+b2>2ab6.已知集合,B={x|3<x<22},且A∩B=A,则实数a的取值范围是()A. (−∞,9]B. (−∞,9)C. [2,9]D. (2,9)7.对于实数x,“|x|<1”是“x<1”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8.已知实数a>0,b>0,且9a+b=ab,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则实数m的取值范围为()A. [3,+∞)B. (−∞,3]C. (−∞,6]D. [6,+∞)二、多选题(本大题共4小题,共20.0分)9.已知a>0,b>0,则下列说法不正确的有()A. 1a−b >1aB. 若a+b≥2,则ab≥1C. 若a+b≥2,则ab≤1D. a3+b3≥a2b+ab210.下列命题为真命题的是()A.B. a2=b2是a=b的必要不充分条件C. 集合{(x,y)|y=x2}与集合{y|y=x2}表示同一集合D. 设全集为R,若A⊆B,则∁R B⊆∁R A11.设集合M={x|x=6k+1,k∈Z},N={x|x=6k+4,k∈Z},P={x|x=3k−2,k∈Z},则下列说法中正确的是()A. M=N⫋PB. (M∪N)⫋PC. M∩N=⌀D. ∁P M=N12.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A. M={−4,−2,0,2,4)为闭集合B. 正整数集是闭集合C. M={n|n=3k,k∈Z)为闭集合D. 若集合A1,A2为闭集合,则A1∪A2也为闭集合第II卷(非选择题)三、单空题(本大题共2小题,共10.0分)13.已知不等式(a−3)x2+2(a−3)x−6<0对一切x∈R恒成立,则实数a的取值范围_______.14.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.四、解答题(本大题共8小题,共96.0分)15.在①A∩B=A,②A∩(∁R B)=A,③A∩B=⌀这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合A={x|a−1<x<2a+3},B={x|x2−2x−8≤0}.(1)当a=2时,求A∪B;(2)若_______________,求实数a的取值范围.注:如果选择多个条件分别解答按第一个解答计分.16.已知集合A={x|0<ax+1≤5},集合B={x|−1<x≤2}.2(1)若A⊆B,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.17.设全集为实数集R,A={x|−1≤x<4},B={x|−5<x<2},C={x|1−2a<x<2a}.(1)若C=⌀,求实数a的取值范围;(2)若C≠⌀,且C⊆(A∩B),求实数a的取值范围.18.设y=mx2+(1−m)x+m−2.(1)若不等式y≥−2对一切实数x恒成立,求实数m的取值范围;(2)在(1)的条件下,求m2+2m+5的最小值;m+1(3)解关于x的不等式mx2+(1−m)x+m−2<m−1(m∈R).19.已知定义在R上的函数f(x)=x2+(x−2)a−3x+2(其中a∈R).(1)若关于x的不等式f(x)<0的解集为(−2,2),求实数a的值;(2)若不等式f(x)−x+3≥0对任意x>2恒成立,求a的取值范围.20.已知集合A={x|x2+2x−3<0},集合B={x||x+a|<1}.(1)若a=3,求A∩B和A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.21.设集合A={|xx2+2x−3<0},集合B={|x−a−1<x<−a+1}.(1)若a=3,求A∪B和A∩B;(2)设命题p:x∈A,命题q:x∈∁R B,若q是p成立的必要不充分条件,求实数a的取值范围.22.已知m>0,n>0,关于x的不等式x2−mx−20<0的解集为{x|−2<x<n}.(1)求m,n的值;(2)正实数a,b满足na+mb=2,求15a +1b的最小值.答案和解析1.【答案】B【解析】【分析】本题主要考查了集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于中档题.根据集合的交集、并集、补集的定义结合Venn图判断集合间的关系,从而求出结论.【解答】解:由A⊆B得Venn图,①A∩B=A⇔A⊆B; ②A∪B=A⇔B⊆A; ③A∩(∁I B)=⌀⇔A⊆B; ④A∩B=I,与A、B是全集I的真子集矛盾,不可能存在;⑤x∈B是x∈A的必要不充分条件⇔A⫋B;故和命题A⊆B等价的有①③共2个,故选:B2.【答案】C【解析】【分析】本题考查存在量词命题的否定,属于基础题.根据存在量词命题的否定为全称量词命题,即可求出结果.【解答】解:因为存在量词命题的否定为全称量词命题, 所以命题“∃x ∈ R ,x 2+2x +2<0”的否定是: ∀x ∈ R ,x 2+2x +2≥0. 故选C .3.【答案】A【解析】 【分析】本题主要考查利用基本不等式求最值,属于基础题.对原式进行化简,利用基本不等式求最值即可,注意等号取得的条件. 【解答】 解:t >0,则 y =t 2−4t+1t=t +1t−4≥2√t ·1t−4=−2,当且仅当t =1t ,即t =1时,等号成立, 则y =t 2−4t+1t的最小值为−2.故选A .4.【答案】C【解析】 【分析】本题主要考查了含参一元二次不等式中参数的取值范围,属于中档题. 根据题意得不等式对应的二次函数f (x )=x 2−ax +1的图象开口向上,分别讨论三种情况即可.【解答】解:由题意得:二次函数f (x )=x 2−ax +1的图象开口向上, 当,满足题意,当{Δ>0f(1)≥0或 f(2)≥0,解得a <−2或2<a ≤52, 当,满足题意,综上所述:a⩽52.故选C.5.【答案】D【解析】【分析】本题考查不等关系,不等式性质,是基础题.通过给变量取特殊值,举反例来说明某个命题不正确,利用不等式性质证明命题正确即可.【解答】解:对于A,令a=−1,b=−2,故A错误,对于B,a2−b2=(a+b)(a−b),符号不确定,故B错误,对于C,令a=1,b=−2,故C错误,对于D,∵a>b,a2+b2−2ab=(a−b)2>0,∴a2+b2>2ab,故D正确.故选D.6.【答案】B【解析】【分析】本题考查了描述法、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力.根据A∩B=A可得出A⊆B,从而可讨论A是否为空集:A=⌀时,a+1>3a−5;A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解出a的范围即可.【解答】解:∵A∩B=A,∴A⊆B,且A={x|a+1≤x≤3a−5},B={x|3<x<22},∴①A=⌀时,a+1>3a−5,解得a<3,满足题意;②A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解得3≤a<9,∴综上得,实数a的取值范围是(−∞,9).故选:B.7.【答案】A【解析】【分析】本题考查充分条件、必要条件的判断,要注意准确理解概念和方法,属于基础题.双向推理,即从左右互推进行判断即可得解.【解答】解:当|x|<1时,显然有x<1成立,但是由x<1,未必有|x|<1,如x=−2<1,但|x|>1,故“|x|<1”是“x<1”的充分不必要条件;故选:A.8.【答案】A【解析】【分析】本题考查恒成立问题,考查利用基本不等式求最值,训练了分离变量法求字母的取值问题,是中档题.利用基本不等式求得a+b的最小值,把问题转化为m≥f(x)恒成立的类型,求解f(x)的最大值即可.【解答】解:∵9a+b=ab,∴1a +9b=1,且a,b为正数,∴a+b=(a+b)(1a+9b)=10+ba+9ab⩾10+2√ba⋅9ab=16;当且仅当ba =9ab,即a=4, b=12时,(a+b)min=16;若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则16≥−x2+2x+18−m对任意实数x恒成立,即m≥−x2+2x+2对任意实数x恒成立,∵−x2+2x+2=−(x−1)2+3⩽3,∴m≥3,故选:A.9.【答案】ABC【解析】【分析】本题考查了不等式性质,灵活运用不等式的性质是解决本题的关键,属于中档题.由题意和不等式的性质,逐个选项验证即可.【解答】解:对于A,若a>0,b>0,且a<b,则a−b<0,则1a−b <1a,故选项A说法不正确;对于B,若a=1.9,b=0.1,则满足a+b≥2,而ab=0.19,不满足ab≥1,故选项B 说法不正确;对于C,若a=3,b=2,满足a+b⩾2,,而ab=6不满足ab≤1,故选项C说法不正确;对于D,已知a>0,b>0,则(a3+b3)−(a2b+ab2)=a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a−b)(a2−b2)=(a+b)(a−b)2⩾0,当a=b时,等号成立,故选项D成立.故选ABC.10.【答案】ABD【解析】【分析】本题考查了真假命题的判定,必要条件、充分条件与充要条件的判断,考查了集合的相等,子集的定义,属于中档题.根据必要条件、充分条件与充要条件的判断、集合的相等及子集的定义逐项判断即可.【解答】解:对于A,当x=0时,x2⩽1,故A是真命题;对于B,当a2=b2时,则a=±b,当a=b时,则a2=b2,则a2=b2是a=b的必要不充分条件,故B是真命题;对于C,集合{(x,y)∣y=x2}与集合{y|y=x2}不表示同一集合,前者为点集,后者为数集,故C是假命题;对于D,根据子集定义,A⊆B时,集合A中元素,全都在集合B中,不在集合B中的元素一定不会在集合A中,当x∈∁R B时,就是x在集合R内,不在集合B中,故x一定不在集合A中,不在集合A中就一定在集合A的补集内,故x∈∁R A,D正确.故选ABD.11.【答案】CD【解析】【分析】本题主要考查了集合的含义、集合的交集、并集、补集运算、集合间的关系,属于中档题.根据集合的意义及集合运算分析解答.【解答】解:集合M表示所有被6除余数为1的整数,集合N表示所有被6除余数为4的整数,所以M不等于N,又因为被6除余数分为0,1,2,3,4,5六类,A选项错误,C选项正确;因为M∪N={x|x=6k+1,k∈Z}∪{x|x=6k+4,k∈Z}={x|x=6k+1或x=6k+4,k∈Z}所以M∪N={x|x=2k·3+1或x=(2k+1)·3+1,k∈Z}={x|x=3m+1,m∈Z},因为P={x|x=3k−2,k∈Z}={x|x=3(n+1)−2,n∈Z}={x|x=3n+1,n∈Z},所以M∪N=P,所以,所以B选项错误,D选项正确,故选CD.12.【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,属于中档题.根据闭集合的定义,对选项进行逐一判断,可得出答案.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,当a<b时,a−b<0不是正整数,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,k1,k2∈Z,所以集合M是闭集合.D.设A 1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈A1∪A2,而2+3∉A1∪A2,此时A1∪A2不为闭集合.所以说法中不正确的是ABD故选ABD.13.【答案】(−3,3]【解析】解:由题意,a =3时,不等式等价于−6<0,显然恒成立。

高一第一次月考(数学)试题含答案

高一第一次月考(数学)试题含答案

高一第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分)1.(5分)1. 集合,集合,则等于( )A .B .C .D .2.(5分)2.已知命题:,,则为( )A .,B .,C .,D .,3.(5分)3. “”是“”的( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分也不必要条件4.(5分)4.不等式的解集是( )A .B .C .D .5.(5分)5.设实数、满足,,则的取值范围是( )A .B .C .D .6.(5分)6.下列命题中真命题有( )①; ②q :所有的正方形都是矩形; ③ ; ④s :至少有一个实数x ,使.A .1个B .2个C .3个D .4个7.(5分)7.若关于的不等式的解集为,则实数的取值范围是( )A .或B .C .或D .8.(5分)8. 已知关于的不等式在上有解,则实数的取值范围是( ){}1,2,3,4A ={}3,4,5,6B =A B {}1,2,3,4,5,6{}3,4{}3{}4p n N ∃∈225n n ≥+p ⌝n N ∀∈225n n ≥+n N ∃∈225n n ≤+n N ∀∈225n n <+n N ∃∈225n n =+1x =2230x x +-=()()2230x x -->()3,2,2⎛⎫-∞⋃+∞ ⎪⎝⎭R 3,22⎛⎫ ⎪⎝⎭∅x y 34x <<12y <<2M x y =-46M <<57M <<56M <<47M <<21,04p x R x x ∀∈+-≥:2,220r x R x x ∈+∃+≤:210x +=x 210x mx ++≥R m {2m m ≤-}2m ≥{}22m m -≤≤{2m m <-}2m >{}22m m -<<x 2243x x a a -+≥-R aA .B .C .或D .二、 多选题 (本题共计4小题,总分20分)9.(5分)二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9. 已知且,则下列不等式正确的是( )A .B .C .D .10.(5分)10.若集合,,则下列结论错误的是( )A .B .C .D . 11.(5分)11.记全集为U ,在下列选项中,是B ⊆A 的充要条件的有( )A .A ∪B =A B .A ∩B =AC .(∁U A )⊆(∁U B )D .A ∪(∁U B )=U12.(5分)12.两个函数与(为常数)的图像有两个交点且横坐标分别为,,,则下列结论中正确的是( )A .的取值范围是B .若,则,C .当时,D .二次函数的图象与轴交点的坐标为和三、 填空题 (本题共计4小题,总分20分)13.(5分)三、填空题:(本大题共4小题,每小题5分,共20分)13. 不等式的解集是____________.14.(5分)14.设全集U =R ,集合A ={x |x <0},B ={x |x >1},则A ∪(∁U B )=________.15.(5分)15. 设:,:,是的充分条件,则实数的取值范围是__________.16.(5分)16. 已知,则的最大值为________.四、 解答题 (本题共计6小题,总分70分)17.(10分)四、解答题:(本题共6小题,共计70分.解答时应写出文字说明、证明过程或演算步骤.) {}14a a -≤≤{}14a a -<<{4a a ≥}1a ≤-{}41a a -≤≤,,R a b c ∈a b >a c b c +>+11a b >22ac bc >33a b >{1,2,3,4,5}M ={2,2}N =-N M ⊆M N M ⋃=M N N ={2}M N =24y x =-y m =m 1x 2x ()12x x <m 4m >-0m =12x =-22x =0m >1222x x -<<<()()12y x x x x m =--+x ()2,0()2,0-2430x x -+<α24x <≤βx m >αβm 0x >97x x --17.(本小题满分10分)设集合2{},35{-<=≤≤-=x x B x x A 或}4>x ,求)()(,B C A C B A R R ⋃⋂18.(12分)18.(本小题满分12分)已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }.(1)当m =-1时,求A ∪B ;(2)若A ⊆B ,求实数m 的取值范围.19.(12分)19.(本小题满分12分)已知关于的方程有实数根,.(1)若p 是假命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.20.(12分)20(本小题满分12分)在①;②““是“”的充分不必要条件;③这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合.(1)当时,求A ∪B ;(2)若_______,求实数a 的取值范围.21.(12分)21.(本小题满分12分) 已知二次函数.(1)若关于的不等式的解集是.求实数的值;(2)若,解关于的不等式.22.(12分)22. (本小题满分12分)中欧班列是推进“一带一路”沿线国家道路联通、贸易畅通的重要举措,作为中欧铁路在东北地区的始发站,沈阳某火车站正在不断建设,目前车站准备在某仓库外,利用其一侧原有墙体,建造一面高为,底面积为,且背面靠墙的长方体形状的保管员室,由于保管员室的后背靠墙,无需建造费用,因此,甲工程队给出的报价如下:屋子前面新建墙体的报价为每平方米元,左右两面新建墙体的报价为每平方米元,屋顶和地面以及其他报价共计元,设屋子的左右两面墙的长度均为.(1)当左右两面墙的长度为多少米时,甲工程队的报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为元:p x 22220x ax a a -++-=:13q m a m -≤≤+a p q m A B B ⋃=x A ∈x B ∈A B =∅{|},111|3{}A x a x a B x x =-≤≤=≤≤-+2a =22y ax bx a =+-+x 220ax bx a +-+>{}|13x x -<<,a b 2,0b a =>x 220ax bx a +-+>3m 212m 4001507200m x (26)x ≤≤900(1)a x x +;若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,求的取值范围.(0)a a答案一、 单选题 (本题共计8小题,总分40分)1.(5分) 1-4 B2.(5分)C3.(5分)A4.(5分)A5.(5分)5-8 D6.(5分)B7.(5分)B8.(5分)A二、 多选题 (本题共计4小题,总分20分)9.(5分)二、多项选择题:9.AD10.(5分) 10.ABC11.(5分) 11.ACD 1212.(5分).ABD三、填空题:(本大题共4小题,每小题5分,共20分)三、 填空题 (本题共计4小题,总分20分)13.(5分)13. (1,3) ;14.(5分) 14. {x |x ≤1};15.(5分) 15. ;16.(5分) 16. 1四、 解答题 (本题共计6小题,总分70分)17.(10分)四、解答题:本大题共6小题,共70分.17.(本小题满分10分)解:=⋂B A }25{-<≤-x x =⋃)()(B C A C R R }2,5{-≥-<x x x 或18.(12分)18.(本小题满分12分)解: (1)当m =-1时,B ={x |-2<x <2},A ∪B ={x |-2<x <3}.(2)由A ⊆B ,知⎩⎨⎧ 1-m >2m ,2m ≤1,1-m ≥3,解得m ≤-2,(],2-∞即实数m 的取值范围为{m |m ≤-2}.19.(12分)19.(本小题满分12分)解:(1)因为是假命题,所以对于方程,有, 即,解得,所以实数的取值范围是.(2)由命题为真命题,根据(1)可得,又由是的必要不充分条件,可得那么能推出,但由不能推出, 可得,则,解得,所以实数的取值范围是.20.(12分)20.(本小题满分12分)解:(1)当时,集合,所以;(2)若选择①,则,因为 ,所以 ,又,所以,解得, 所以实数a 的取值范围是.若选择②,““是“”的充分不必要条件,则,因为,所以,又,所以,解得, 所以实数a 的取值范围是.若选择③,,因为,所以,又所以或,解得或,所以实数a 的取值范围是 . p 22220x ax a a -++-=()()222420a a a ∆=--+-<480a ->2a >a {}2a a >p {}2a a ≤p q q p p q {}{}132a m a m a a -≤≤+≤32m +≤1m ≤-m {}1m m ≤-2a =1313{|},{|}A x x B x x =≤≤=≤≤-{|13}B x x A -≤≤⋃=A B B ⋃=A B ⊆11{|}A x a x a =-≤≤+A ≠∅{|13}B x x =-≤≤1113a a -≥-⎧⎨+≤⎩02a ≤≤[]0,2x A ∈x B ∈AB 11{|}A x a x a =-≤≤+A ≠∅{|13}B x x =-≤≤1113a a -≥-⎧⎨+≤⎩02a ≤≤[]0,2A B =∅11{|}A x a x a =-≤≤+A ≠∅{|13}B x x =-≤≤13a ->11a +<-4a >2a <-()(),24,-∞-+∞21.(12分)21.(本小题满分12分)解(1)因为关于的不等式的解集是 所以和是方程的两根,所以 解得:, (2)当时,即可化为,因为,所以 所以方程的两根为和, 当即时,不等式的解集为或, 当即时,不等式的解集为, 当即时,不等式的解集为或, 综上所述:当时,不等式的解集为或, 当时,不等式的解集为,当时,不等式的解集为或. 22.(12分) 22.(本小题满分12分)解:(1)设甲工程队的总造价为元,依题意左右两面墙的长度均为,则屋子前面新建墙体长为, 则 因为. 当且仅当,即时等号成立. 所以当时,,即当左右两面墙的长度为4米时,甲工程队的报价最低为14400元. x 220ax bx a +-+>{}|13x x -<<1-3220ax bx a +-+=13213b a a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩12a b =-⎧⎨=⎩2b =220ax bx a +-+>2220ax x a +-+>()()120x ax a +-+>0a >()210a x x a -⎛⎫+-> ⎪⎝⎭()210a x x a -⎛⎫+-= ⎪⎝⎭1-2a a -21a a --<1a >{|1x x <-2a x a -⎫>⎬⎭21a a --=1a ={}|1x x ≠-21a a -->01a <<2|a x x a -⎧<⎨⎩}1x >-01a <<2|a x x a -⎧<⎨⎩}1x >-1a ={}|1x x ≠-1a >{|1x x <-2a x a -⎫>⎬⎭y m x (26)x ≤≤12m x 12163(1502400)7200900()7200(26)y x x x x x =⨯+⨯+=++1616900()72009002720014400x x x x++⨯⨯⋅+=16x x =4x =4x =min 14400y =(2)由题意可得,对任意的,恒成立. 即,从而,即恒成立, 又.当且仅当,即时等号成立. 所以.16900(1)900()7200a x x x x+++>[2x ∈6]2(4)(1)x a x x x ++>2(4)1x a x +>+9161x a x +++>+99162(1)61211x x x x ++++⋅+=++911x x +=+2x =012a <<。

高一上册数学月考试卷

高一上册数学月考试卷

高一上册数学月考试题考试时间:120分钟;试卷满分:150分第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1、已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则下图中阴影部分所表示的集合为( )A .{0,1}B .{1}C .{1,2}D .{0,1,2} 2.函数y =2x -3+1x -3的定义域为( )A .[32,+∞)B .(-∞,3)∪(3,+∞)C .[32,3)∪(3,+∞) D .(3,+∞)3. 若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-5124.函数()212log (4)f x x =-的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3B .14 m 3C .18 m 3D .26 m 36、若a =⎝ ⎛⎭⎪⎫23x,b =x 2,c =log 23x ,则当x >1时,a ,b ,c 的大小关系是( )A.c <a <bB.c <b <aC.a <b <cD.a <c <b解析 当x >1时,0<a =⎝ ⎛⎭⎪⎫23x <23,b =x 2>1,c =log 23x <0,所以c <a <b .7.已知函数f (x )=a x -2+2的图象恒过定点A ,则A 的坐标为( ) A .(0,1) B .(2,3) C .(3,2) D .(2,2) 8.函数f (x )=12ln x +x -1x -2的零点所在的区间是( )A .(1e ,1) B .(1,2) C .(2,e) D .(e,3)9.集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是( )10. 设奇函数f(x)在(0,+∞)上为增函数,且f(2)=0,则不等式f(x)-f(-x)<0x的解集为( )A.{x|-2<x<0或0<x<2}B.{x|x<-2或0<x<2}C.{x|x<-2或x>2}D.{x|-2<x<0或x>2}11. 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)12.已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2[f (x )]2-3f (x )+1的零点个数是( ) A .2 B .3 C .4 D .5第Ⅱ卷(非选择题,共100分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13. 若tan α=2,则sin α+4cos α5sin α-2cos α= .14.若f (cos x )=cos 2x ,则f (sin 15°)= . 15. 已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.16. 若a >1,设函数f (x )=a x+x -4的零点为m ,函数g (x )=log a x+x -4的零点为n ,则m +n 的值为________.三、解答题(本大题共6小题,70分.解答应写出必要的文字说明、证明过程或演算步骤)17(10分).已知全集U =R ,A ={x|-4≤x <2},B ={x|-1<x ≤3},P ={x|x ≤0或x ≥52},求A ∩B ,(∁U B)∪P ,(A ∩B)∩(∁U P).18(12分)计算(1))16(log )3log 12(log 243-⋅+(2):tan (π+α)cos (2π+α)sin (α-3π2)cos (-α-3π)sin (-3π-α)19(12分). 已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.20(12分)候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为v =a +b log 3Q10(其中a 、b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s. (1)求出a 、b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位?21.(12分)已知-π<x <0,sin(π+x )-cos x =-15.①求sin x -cos x 的值; ②求sin 2x +2sin 2x 1-tan x的值22.(12分)(1)证明:函数3y x x =+是R 上的增函数(2)讨论函数()0)f x a =>在定义域上的单调性并证明.。

高一上学期第一次月考数学试题(含答案解析)

高一上学期第一次月考数学试题(含答案解析)

高一上学期第一次月考数学试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共14小题,共56.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C=( )A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}2. 命题“∀x∈R,x2−2x+1≥0”的否定是( )A. ∃x∈R,x2−2x+1≤0B. ∃X∈R,x2−2x+1≥0C. ∃x∈R,x2−2x+1<0D. ∀x∈R,x2−2x+1<03. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为( )A. 3B. 4C. 5D. 64. 已知集合A={x||x|≥2},B={x|x2−3x>0},则A∩B=( )A. ⌀B. {x|x>3,或x≤−2}C. {x|x>3,或x<0}D. {x|x>3,或x≤2}5. 已知p:sinα=√33,q:cos2α=13,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充分条件D. 既不充分也不必要条件6. 若M⊆U,N⊆U,且M⊆N,则( )A. M∩N=NB. M∪N=MC. ∁U N⊆∁U MD. ∁U M⊆∁U N7. 已知集合A={x|x<1},B={x|0≤x≤2},则A∩B=( )A. {x|0≤x<1}B. {x|1<x≤2}C. {x|x<1}D. {x|x≤2}8. 设b>a>0,c∈R,则下列不等式中不一定成立的是( )A. a12<b12B. 1a −c>1b−c C. a+2b+2>abD. ac2<bc29. 满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合的个数是( )A. 4B. 6C. 8D. 910. 若关于x的不等式ax2+bx−1>0的解集是{x|1<x<2},则不等式bx2+ax−1<0的解集是( )A. {x|−1<x<23} B. {x|x<−1或x>23}C. {x|−23<x<1} D. {x|x<−23或x>1}11. 已知集合A={x|x2+x−6=0},B={x|mx+1=0},且B⊆A,则实数m=( )A. {0,12,−13} B. {−12,13} C. {12,−13} D. {0,−12,13}12. 使不等式1+1x>0成立的一个充分不必要条件是( )A. x>0B. x>−1C. x<−1或x>0D. −1<x<013. 已知命题“∃x∈R,4x2+(a−2)x+14<0”是假命题,则实数a的取值范围是( )A. (−∞,0)B. [0,4]C. [4,+∞)D. (0,4)14. 已知a,b∈R,a2+b2=15−ab,则ab最大值是( )A. 15B. 12C. 5D. 3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)15. 已知a∈R,b∈R,若集合{a,ba,1}={a2,a−b,0},则“a2017+b2018”的值为______.16. 当x<−1时,f(x)=x+1x+1的最大值为______.17. 已知集合A={0,1,2},则集合A的子集共有______个.18. 已知集合A={x|−1<x<2},B={x|−1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是______.19. 已知{x|ax2−ax+1<0}=⌀,则实数a的取值范围为.20. 已知正数x,y满足x+y=5,则1x+1+1y+2的最小值为______.三、解答题(本大题共4小题,共40.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省安阳市第三十六中学2017-2018学年高一数学1月月考试题
一、选择题:(共12小题,每小题5分.) 1.已知全集{}{}{}()=⋂===N M C ,N M U
U 则,3,2,21,0,4,3,2,1,0( )
A. B. C.{}432,, D.{}43210,,,,
2.用符号表示“点在直线上,在平面外”,正确的是( )
A.α∉∈A l A ,
B.α⊄∈A l A ,
C.α⊄⊂A l A ,
D.α∉⊂A l A , 3.下列各组函数中,表示同一函数的是( )
()()
A f x x g x .=,()()2
B f x g x .=
()()21
11
x C f x g x x x --.=,=+()()D f x g x .4、如果两直线//a b 且//a α平面,则b a 与的位置关系是 ( ) A.相交 B.//b α C.b α⊂ D.//b b αα⊂或
5.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( )
A .三棱台、三棱柱、圆锥、圆台
B .三棱台、三棱锥、圆锥、圆台
C .三棱柱、四棱锥、圆锥、圆台
D .三棱柱、三棱台、圆锥、圆台
6.设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ⊥n ,n ∥α,则m ⊥αB .若m ∥β,β⊥α则m ⊥α
C .若m ⊥β,n ⊥β,n ⊥α则m ⊥α
D .若m ⊥n ,n ⊥β,β⊥α,则m ⊥α 7.三个数 1.50.320.5,log 0.5,2a
b c ===之间的大小关系是()
A.a c b <<
B.a b c <<
C.b a c <<
D.b c a <<
8.如图,在正方体中,异面直线与所成的角为
( )
A. B. C. D.
9.函数2ln )(-+=x x x f 的零点所在区间是( )
A.()1,0
B.()21,
C.()3,2
D.()4,3 10.一个几何体的三视图如图所示,则该几何体的体积为
A .14+π
B .134+π
C .834+π
D .84+π
11.一个四面体的所有棱长都为,四个项点在同一球面上,则此球的表面积为( ) A .3
B .4
C .3π3
D .6
12.已知函数f (x )=⎩⎪⎨⎪

a -x ,x ≥2,⎝ ⎛⎭
⎪⎫12x
-1,x <2满足对任意的实数x 1≠x 2,都有
f x 1-f x 2
x 1-x 2
<0成立,则实数a 的取值范围为( )
A .(-∞,2) B.⎝ ⎛⎦⎥⎤-∞,138C .(-∞,2] D.⎣⎢
⎡⎭
⎪⎫138,2
二、填空题:(共10小题,每小题5分)
13.若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为________. 14.函数)13lg(13)(2++-=
x x
x x f 的定义域是
15.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图),剩下几何体的体积为.
16、已知函数 21,(2)
()(3),(2)
x x f x f x x ⎧+≥=⎨+<⎩,则(1)(3)f f -=.
17
、已知3x,f =-则()f x =________________ 18、有一块多边形的菜地,它的水平放置的平面图形的
斜二测直观图是直角梯形(如图)45,1,ABC AB AD DC BC ∠=︒==⊥,则这块
菜地的面积为.
19、已知圆锥的表面积为cm 2
,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为
俯视图
20、给定下列四个命题:
①若两个平面有无数个公共点,则这两个平面重合;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中为正确的命题的是
三.解答题(共4小题,共50分)
21.(13分)如图所示,在直三棱柱ABC­A1B1C1中,E,F分别为A1C1和BC的中点.
(1)求证:EF∥平面AA1B1B;
(2)若AA1=3,AB=23,求EF与平面ABC所成的角.
22、(13分)如图,在棱长为1的正方体ABCD-A1B1C1D1中.
(1)求证:B1D⊥平面A1C1B;
(2)求异面直线BC1与AA1所成的角的大小.
(3)求三棱锥B1-A1C1B的体积;
23、(12分)如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD =2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
24、(12分)已知)(x f 是定义在R 上的奇函数,当0≥x 时,()22f x x x =--. (1)求函数)(x f 的解析式;
(2)若对任意实数0)()1(,2
<++-t m f m f m 恒成立,求实数的取值范围.
安阳市36中高一数学答案(2018.1)
1B 2A 3A 4D 5C 6C 7C 8C 9B 10C 11A 12B 13、π27 14、⎪⎭
⎫ ⎝⎛1,31- 15、50 16、7
17、()02-2
≥+x x 18、23 19、
3
3
20、②④。

相关文档
最新文档