脂质体及其制备方法的选择..-共11页
脂质体制备方法
脂质体制备方法2 脂质体的制备方法2.1 薄膜蒸发法该方法是将脂质及芯材(脂溶性药物)溶于有机溶剂,然后将此溶液置于大圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液(生理盐水),充分振荡烧瓶使脂质膜水化脱落,即可制得脂质体。
尽管薄膜分散法是使用最广泛的方法,由于这种方法比较原始,所以尚存在较多缺点。
用该方法制备得到的脂质体的粒径较大且不均匀,为了使其粒径更小、更均匀,可通过超声波仪处理,在一定程度上降低脂质体的粒径,从而提高包封率。
如采用此法制备得到的细辛脑脂质体的包封率达54. 1%[5]。
2.2 超声波法MLVs的混悬液经超声波处理,再通过 Sepharose 2B或4B柱色谱仪可去除较大的脂质体和MLVs 。
常用的方法有探针型和水浴型。
小量脂质悬液(高浓度脂质或黏性水溶液)需要高能量时用探针型。
水浴型更适于大量的稀释脂质。
郑宁等[6]采用薄膜 -超声分散法制备依托泊苷脂质体,按均匀设计的最优组合制备脂质体的平均包封率为(61.58±0.83)% ,粒径均小于2卩m,体外释药达到了长效缓释的作用,60Co灭菌后脂质体较稳定。
李维凤等⑺以薄膜-超声法和乙醚注入法制备硝苯地平脂质体,结果表明薄膜蒸发法和超声法综合使用,所得脂质体粒径均匀,粒度小,且多为单室。
2.3复乳法(二次乳化法)这种方法是先将脂质溶于有机溶剂,加入待包封芯材的溶液,乳化得到W/O初乳,其次将初乳加入到10 倍体积的水溶液中混合,进一步乳化得到W/O/W 乳液,然后在一定温度下去除有机溶剂即可得到脂质体,其包封率变化较大,一般为20%-80% 。
通过研究发现,在第二步乳化过程和有机溶剂的去除过程中, 对脂质体的粒径有较大影响的因素是温度, 较低的温度有利于减小脂质体的粒径。
姚瑶等[8]采用二次乳化法制备的酪丝亮肽多囊脂质体,不仅稳定性好,80%的粒径分布在20-30卩m,且包封率为92. 43%。
人干细胞生长因子脂质体及其制备方法与应用
人干细胞生长因子脂质体及其制备方法与应用一、人干细胞生长因子脂质体的制备方法人干细胞生长因子脂质体是一种将人干细胞生长因子包裹在脂质体中的纳米颗粒,通过脂质体的包裹,可以提高人干细胞生长因子的稳定性和生物活性,进而增强其在治疗和再生医学方面的应用效果。
1.材料准备:制备人干细胞生长因子脂质体的材料包括脂质体成分(如磷脂、胆固醇等)、人干细胞生长因子、溶剂(如氯仿、甲醇等)等。
2.脂质体制备:(1)将磷脂和胆固醇按一定比例溶解在溶剂中,得到脂质体溶液。
(2)将脂质体溶液置于真空下脱溶剂,得到脂质体薄膜。
(3)使用人干细胞生长因子溶液重新溶解脂质体薄膜,得到人干细胞生长因子脂质体。
3.脂质体的表征:通过粒径分析、电镜观察、稳定性测试等方法对制备的人干细胞生长因子脂质体进行表征,确保其粒径合适、形态规整,稳定性良好。
二、人干细胞生长因子脂质体的应用人干细胞生长因子脂质体在生物医学领域具有广泛的应用前景,主要体现在以下几个方面:1.再生医学领域:人干细胞生长因子脂质体可以用于组织工程、再生医学等领域的治疗。
通过将脂质体载体中的人干细胞生长因子输送到受损组织或器官,促进细胞增殖、分化和修复,从而实现组织或器官的再生。
2.肿瘤治疗领域:人干细胞生长因子脂质体在肿瘤治疗中具有潜在的应用价值。
通过将抗肿瘤药物或基因载体包裹在人干细胞生长因子脂质体中,可以提高药物的稳定性和生物利用度,增强抗肿瘤治疗的效果。
3.皮肤护理领域:人干细胞生长因子脂质体可以应用于皮肤护理产品中,通过促进皮肤细胞的增殖和修复,改善皮肤质量、促进伤口愈合等。
同时,由于脂质体本身具有良好的渗透性和保湿性,可以增强产品的渗透力和保湿效果。
4.神经系统疾病治疗领域:人干细胞生长因子脂质体在神经系统疾病治疗中也具有潜在的应用前景。
通过将脂质体中的人干细胞生长因子输送到神经系统受损区域,可以促进神经细胞的再生和修复,改善神经系统疾病的症状。
总结:人干细胞生长因子脂质体的制备方法相对简单,通过将人干细胞生长因子包裹在脂质体中,可以提高其稳定性和生物活性,进而增强其在医学领域的应用效果。
脂质体的制备方法
脂质体的制备方法
脂质体是一种由磷脂类物质构成的微小球形结构,可以用来包封各种水溶性和不溶性的药物。
以下是制备脂质体的一般方法,不包含标题及重复文字。
1. 选择适当的脂质组分:按照需要包封的药物性质(如极性、脂溶性)选择相应的磷脂类物质,常用的有磷脂酰胆碱(PC)、磷脂酰甘油(PG)、磷脂酰丝氨酸(PS)等。
2. 选择合适的方法:制备脂质体的常用方法有薄膜法、乳化法、脂肪酸分散法等。
根据药物特性和制备要求选择合适的方法。
3. 薄膜法制备脂质体:将L-α-磷脂酰胆碱和药物以适当比例
溶解于有机溶剂中(如氯仿),用旋转蒸发器除去溶剂,形成薄膜。
加入适量水溶液,通过超声波处理或机械震荡破碎薄膜,生成脂质体悬浮液。
4. 乳化法制备脂质体:将磷脂、药物和辅助乳化剂(如表面活性剂)溶解于有机溶剂中。
将该溶液滴加到含有乳化剂的水相中,并用机械手段(如超声波)进行乳化处理,形成脂质体。
5. 脂肪酸分散法制备脂质体:将药物与脂肪酸(如硬脂酸)按一定比例共熔,然后迅速冷却。
通过乳化剂或超声波等方法将该混合物乳化成脂质体。
6. 脂质体的后处理:根据需要可以对脂质体进行一些后处理步骤,如冻干、冻融法提高脂质体稳定性等。
综上所述,脂质体的制备方法可以根据实际需求选择薄膜法、乳化法或脂肪酸分散法。
制备时要选择适当的脂质组分,并根据需要进行后处理以提高脂质体的稳定性。
脂质体的制备方法
脂质体的制备方法
脂质体是一种由两层磷脂分子构成的微小囊泡,内部可以包裹
水溶性或脂溶性的药物。
由于其良好的生物相容性和药物传递性能,脂质体在药物输送领域得到了广泛的应用。
下面我们将介绍脂质体
的制备方法。
首先,脂质体的制备需要选择合适的磷脂。
常用的磷脂有卵磷脂、大豆磷脂、磷脂酰胆碱等。
在实验室条件下,我们可以根据需
要选择不同种类的磷脂来制备脂质体。
其次,将所选的磷脂溶解在有机溶剂中,得到磷脂溶液。
常用
的有机溶剂有氯仿、甲醇、乙醇等。
在此过程中需要注意控制温度
和溶剂的选择,以确保磷脂能够完全溶解。
接下来,将药物溶解在水相中。
需要注意的是,药物的选择应
当考虑其溶解度和药效学特性。
将药物溶液缓慢滴加到磷脂溶液中,并利用超声波或机械搅拌等方法使两相充分混合。
然后,利用旋转蒸发、薄膜超滤、凝胶层析等方法去除有机溶剂,得到脂质体悬浮液。
在此步骤中需要注意控制温度和压力,以
避免对脂质体结构的破坏。
最后,通过超声处理、高压均质等方法对脂质体悬浮液进行处理,得到均匀、稳定的脂质体悬浮液。
在此过程中需要注意控制处
理时间和能量密度,以确保脂质体的质量和稳定性。
综上所述,脂质体的制备方法包括选择合适的磷脂、溶解磷脂、药物的溶解和混合、去除有机溶剂以及最后的处理步骤。
在实际操
作中,需要严格控制各个步骤的条件,以确保脂质体的质量和稳定性。
希望以上内容能够对您有所帮助。
脂质体制备方法
微脂體(又称脂质体)及其制备方法一二微脂體(又称脂质体)微脂體起源於1960 年代中期,Bangham博士等人首先提出,在磷酸脂薄膜上加入含鹽分的水溶液後,再加以搖晃,會使脂質形成具有通透性的小球;196 8年,Sessa 和Weissmann 等人正式將此小球狀的物體命名為微脂體(liposo me)並做出明確的定義: 指出微脂體是由一到數層脂質雙層膜(lipid bilayer)所組成的微小的囊泡,有自行密合(self-closing)的特性。
微脂體由脂雙層膜包裹水溶液形成,由於構造的特性,可同時作為厭水性(hydrophobic)及親水性(hydrophilic)藥品的載體,厭水性藥品可以嵌入脂雙層中,而親水性藥品則可包覆在微脂體內的水溶液層中。
如同細胞膜,微脂體的脂質膜為脂雙層構造,由同時具有親水性端及厭水性端的脂質所構成,脂雙層由厭水性端相對向內而親水性端面向水溶液構成,組成中的兩性物質以磷酸脂質最為常見。
微脂體的形成是兩性物質在水溶液中,依照熱力學原理,趨向最穩定的排列方式而自動形成。
微脂體的性質深受組成脂質影響,脂質在水溶液的電性,決定微脂體是中性或帶有負電荷、正電荷。
此外,磷酸脂碳鏈部分的長短,不飽和鍵數目,會決定微脂體的臨界溫度(transition temperature, Tc),影響膜的緊密度。
一般來說,碳鏈長度越長臨界溫度越高,雙鍵數越多則臨界溫度越低,常見的DPPC(dipalmitoylp hosphatidylcholine)与DSPC(distearoylphosphatidylcholine)的臨界溫度分別是42℃與56℃,而Egg PC(egg phosphatidylcholine)與POPC(palmitoyl oleoyl phosphatidylcholine)的Tc 則低於0℃。
臨界溫度影響微脂體包裹及結合藥物的緊密度,當外界溫度高於Tc時,對膜有通透性的藥物,較容易通過膜;此外,當外界溫度處於臨界溫度時,微脂體脂質雙層膜中的脂質,會因為流動性不一致而使微脂體表面產生裂縫,造成內部藥物的釋出。
第六节 脂质体制备技术
四、脂质体的制法
1、薄膜分散法 将磷脂、胆固醇等类脂质及脂溶性药物溶于氯仿(或其他 有机溶剂中)然后将氯仿溶液在茄形瓶中旋转蒸发,在瓶内 壁上形成一层薄膜;将水溶性药物溶于磷酸盐缓冲液中, 加入烧瓶中不断搅拌,即得脂质体。
33
2、注入法 将磷脂与胆固醇等类脂质及脂溶性药物溶于有机溶剂中 (一般多采用乙醚),然后将此药液经注射器缓缓注入加 热至50℃(并用磁力搅拌)的磷酸盐缓冲液(或含有水溶性 药物)中,加完后,不断搅拌至乙醚除尽为止,即制得大 多孔脂质体,其粒径较大,不适宜静脉注射。再将脂质 体混悬液通过高压乳匀机二次,则所得成品大多为单室 脂质体,少数为多室脂质体,粒径绝大多数在1μm以下。
15
16
磷脂的结构式中含有一个磷酸基团和一个含氨的碱 基(季铵盐),均为亲水性基团,还有两个较长的烃链 为亲油团。
分子中磷酸部分极性很强,溶于水;但烃链R与R 为非极性部分, 不溶于水。
17
18
把类脂质的醇溶液倒入水面时,醇很快地溶解于水, 而类脂分子则排列在空气-水的界面上, 它们的极性 部分在水里, 亲油的非极性部分则伸向空气中,当 极性类脂分子被水完全包围时,其极性基团面向两 侧的水相,而非极性的烃链彼此面对面缔合成双分 子而形成球状。
(四)脂质体的理化性质
1.相变温度 (phasetransitiontemperature)
当升高温度时脂质双分子层中酰基侧链从有序 排列变为无序排列,这种变化引起脂膜的物理性质 一系列变化,可由“胶晶”态变为“液晶”态,膜 的横切面增加,双分子层厚度减小,膜流动性增加, 这种转变时的温度称为相变温度。
1、磷脂类 磷脂类包括卵磷脂、脑磷脂、大豆磷脂以及其它合 成磷脂等都可以作为脂质体的双分子层基础物质。 我国研究脂质体,以采用大豆磷脂最为适宜,因其 成本比卵磷脂低廉,乳化能力强,原料易得,是今 后工业生产脂质体的重要原料,而卵磷脂的成本要 比豆磷脂高得多,不宜大量生产。
制备脂质体的方法
制备脂质体的方法脂质体是一种由磷脂类物质构成的微型结构,常用于药物传递和基因传递等领域。
制备脂质体的方法有多种,下面我将详细介绍其中几种常用的方法。
1. 脂质溶液混合法:这是最常见的制备脂质体的方法之一。
首先,选择合适的脂质和胆固醇进行溶解,在有机溶剂(如氯仿、甲醇等)中制备脂质溶液。
然后,将要包封的药物或基因载体等添加到脂质溶液中,形成混合溶液。
接着,通过旋转蒸发法或其他方法除去有机溶剂,得到干燥的脂质膜。
最后,在适当条件下,如加入缓冲溶液或具有适当水分含量的溶剂,使脂质膜重新形成多层脂质囊泡。
2. 混合溶剂蒸发法:这种方法适用于制备大量脂质体。
首先,选择合适的脂质和胆固醇,如磷脂类物质(如卵磷脂、磷脂酰乙醇胺等)和胆固醇等,在有机溶剂(如氯仿、甲醇等)中制备脂质溶液。
然后,将混合溶液加入到气候箱或旋转蒸发仪中,使有机溶剂慢慢挥发,形成脂质膜。
最后,使用缓冲溶液重新形成多层脂质囊泡。
3. 超声法:这是一种制备大量脂质体的常用方法。
首先,选择合适的脂质和胆固醇,在有机溶剂中制备脂质溶液。
然后,将脂质溶液以滴定或喷雾的方式添加到含有表面活性剂(如Tween-80)的水溶液中,并通过超声处理使其均匀分散。
超声会产生高频震荡波,使脂质在水相中形成多层脂质囊泡。
最后,使用适当的方法,如超速离心法或滤膜法,将所得脂质体分离出来。
4. 凝胶转移法:这是一种制备大量稳定脂质体的方法。
首先,将脂质和胆固醇等溶解在有机溶剂中,制备脂质溶液。
然后,将脂质溶液与含有水的凝胶混合,制备脂质-凝胶混合物。
接着,通过连续冻结-解冻循环进行转移,使溶胶凝胶中的水逐渐转移到脂质-凝胶混合物中,形成脂质体。
以上是几种常用的制备脂质体的方法。
通过选择适当的方法以及脂质和胆固醇的组合,可以制备出具有不同性质和功能的脂质体。
这些脂质体在药物传递和基因传递等领域具有广泛的应用潜力。
脂质体制备方法的选择
脂质体的结构类型分类( 表 5 )
表5
单层脂质体 结构类型 小单层( SUV)
脂质体结构类型分类
多层脂质体( MLV) 多囊脂质体( MVL)
大单层( LUV) 粒径 范 围 为 100 nm ~ 1 000 nm
粒径在 100 nm ~ 5 μm 之间
粒径范围为 5 ~ 50 μm 由许多非同心囊泡构成, 内水相总体 积比较大。
薄膜分散法
的很小部分, 约 5% ~ 10% 。因此, 不太适于包裹水溶性药物, 而对脂溶性药物, 其包裹率甚至可高达 100% 。 粒径 较大。 此法是将脂质吸附于极细的水溶性载体上, 以增加脂质分散的表面积, 将其溶于水即在水相中形成多层脂质体 。 因
前体脂质体法
15 ] , 因此包裹在脂质中的药物材料不易泄露, 更适于包裹脂溶性药物。 为脂质包在水溶性的载体材料( 如山梨醇) 中[
[ 12 ] [ 13 ] , 是影响脂质体体内 命 运 的 主 要 因 素 。 孙 维 彤 [ 14 ]
其中最主要的性质就是药物的油水分 要包裹的药物的性质, 配系数。 油水分配系数
[ 10 ]
是指在平衡状态时, 药物在油相和水
相的浓度之比。一般使用药物在辛醇水两相中的分配系数 P 值来表示这种性质。 根据药物的油水分配系数可将药物 第 1 类为 lgP 大于 4. 5 的脂溶性药物, 第 2 类为 分为三类, lgP 小于 - 0. 3 的水溶性药物, lgP 在 - 0. 3 ~ 4. 5 的为第 3 类。脂质体的结构特性使其具有亲水亲油性, 因此脂质体作 为药物或其他物质的载体既可以将第一类的脂溶性药物分 散于泡囊的脂质双分子层中, 又可在泡囊的水相中包裹第二 类的水溶性药物, 还可以在水相与膜内部的交界磷脂中包封 两性化合物。 药物包裹在脂质体中的位置对其包封率 、 载药量和稳定
脂质体的制备方法
脂质体的制备方法
脂质体是一种由脂质构成的微小囊泡,可用于药物传递和技术研究。
以下是脂质体的一种常见制备方法:
1. 脂质选择:选择适当的脂质作为载体,常见的脂质包括磷脂(如磷脂酰胆碱和磷脂酰乙醇胺)、胆固醇等。
根据需要可选择不同种类和比例的脂质。
2. 溶剂选择:将所选的脂质溶解在一个合适的溶剂中,常见的溶剂有无水乙醇、氯仿、二氯甲烷等。
溶剂的选择应该考虑到其对脂质的溶解性和对目标应用的安全性。
3. 溶剂去除:使用旋转蒸发仪、氮气吹干等方法将溶剂去除,以便得到脂质的薄膜或干燥物。
4. 水相制备:将药物或其他要包含在脂质体内的物质溶解在适当的水相中,形成水相溶液。
5. 水相与脂质相结合:将脂质的薄膜或干燥物加入水相中,并使用超声波处理、机械切割等方法将其混合均匀。
使脂质与水相形成乳液。
6. 制备脂质体:使用超声波处理、乳化机等方法对乳液进行进一步处理,使脂质体形成更加均匀和稳定的粒子。
7. 进一步处理(可选):根据需要,可以进行进一步的处理,如使用超滤、离心、冷冻干燥等方法对脂质体进行纯化和浓缩。
以上是一种常见的脂质体制备方法,但具体的制备步骤和条件可能会因实际情况和目标应用的不同而有所差异。
因此,在制备脂质体时应结合具体要求和设备条件进行调整。
脂质体的制备方法
第一页,共101页
本节要求
• 1. 脂质体的基本概念
• 2. 脂质体的组成与结构、与胶团的区别 • 3. 脂质体的剂型特点和体内作用特点
• 4. 脂质体的制备方法、质量标准
第二页,共101页
Main Contents
• 脂质体
• Ⅰ 脂质体的应用概况 • Ⅱ 脂质体的组成和结构特点 • Ⅲ 脂质体的剂型特点
第八页,共101页
脂质体抗癌药物产品及研究进展情况
第九页,共101页
脂质体在主动靶向制剂中 的应用
• 对脂质体来说,将靶向因子-脂质连接物插入含 药脂质体的外层脂质分子层中,是一种操作性 强的有效的靶向因子连接手段。
第十页,共101页
Diagram of synthesize reaction between WGA and PE
•当极性类脂分子被水完全包围时
•极性基团面向两侧的水相,而非极性的烃链彼此面对面
缔合成双分子层
第二十二页,共101页
脂质体双分子层
第二十三页,共101页
脂质体形成示意图
第二十四页,共101页
图 9 磷脂在水相中的 3 种结构
第二十五页,共101页
脂质体与其包封的药物
第二十六页,共101页
脂质体半球剖面图
• 1971年英国莱门等人开始将脂质体用于药物载体。 • 我国自80年代开始进行脂质体的研究工作
第七页,共101页
抗癌药物脂质体
• 2000年,世界脂质体产品销售额为12亿美元。预 测至2005年将达33亿美元,增长率为175%。
• 国外已上市的脂质体药物品种有两性霉素、多柔比 星和柔红霉素,均为抗癌药物。抗癌药物脂质体是 脂质体最重要的应用。目前还有约30种脂质体抗癌 药物正在临床试验或等待批准上市。
脂质体的制备方法及工艺流程
脂质体的制备方法及工艺流程
脂质体是一种由脂质分子组成的微小球形结构体,具有良好的生物相容性和生物降解性,可用于药物传递、基因传递、基因治疗、疫苗制备等领域。
本文介绍了脂质体的制备方法及工艺流程。
脂质体制备方法:
1. 膜法制备法:将脂质分子溶解在有机溶剂中,再利用蒸发浓缩、旋转蒸发等方法制备脂质体。
2. 水相沉淀法:将脂质分子与胆固醇、表面活性剂等混合,再将其加入到含有生理盐水的水相中,以形成脂质体。
3. 反应溶液法:利用化学反应使脂质分子聚合成脂质体。
脂质体制备工艺流程:
1. 材料准备:准备脂质分子、胆固醇、表面活性剂等材料。
2. 溶解:将脂质分子、胆固醇等在有机溶剂中溶解,制备脂质体溶液。
3. 调节pH值:将脂质体溶液的pH值调节至合适的范围。
4. 加入水相:将脂质体溶液滴加入含有生理盐水的水相中。
5. 超声处理:利用超声波将脂质体均匀分散在水相中。
6. 离心:将制备好的脂质体溶液进行离心,分离出脂质体。
7. 洗涤:用生理盐水等洗涤剂洗涤脂质体,去除杂质。
8. 保存:将洗涤好的脂质体溶液保存在低温处,避免脂质体破坏。
以上就是脂质体的制备方法及工艺流程的介绍,希望能对相关
人员有所帮助。
脂质体的制备方法
脂质体的制备方法
脂质体是一种在生物医药领域中应用广泛的载体,可以用于药物传递、基因转
染等领域。
脂质体的制备方法多种多样,下面将介绍几种常用的制备方法。
首先,常见的脂质体制备方法之一是薄膜溶解法。
这种方法是将所需的脂质和
胆固醇按一定的摩尔比溶解在有机溶剂中,然后蒸发除去溶剂,得到薄膜,再用含有水溶液进行重溶,形成脂质体。
这种方法简单易行,制备的脂质体质量较好。
其次,还有脱水膜膨胀法。
这种方法是将所需的脂质和胆固醇溶解在有机溶剂中,然后蒸发除去溶剂,得到脂质膜,再用含有脱水剂的溶液使脂质膜膨胀,形成脂质体。
这种方法制备的脂质体内部结构较为均匀,适用于一些特殊药物的载体。
另外,还有超声法制备脂质体的方法。
这种方法是将所需的脂质和胆固醇溶解
在有机溶剂中,然后通过超声波作用使其形成脂质体。
这种方法制备的脂质体颗粒大小较为均匀,适用于一些需要粒径较小的药物载体。
除此之外,还有脂质体凝胶法。
这种方法是将所需的脂质和胆固醇溶解在有机
溶剂中,然后加入水溶液,形成脂质体凝胶,再用超声或机械方法使凝胶分散成脂质体。
这种方法制备的脂质体内部结构较为稳定,适用于一些需要长时间存储的药物。
总的来说,脂质体的制备方法多种多样,可以根据具体的需要选择合适的方法。
不同的方法制备的脂质体具有不同的特点,可以满足不同的药物载体需求。
希望以上介绍的方法可以为相关研究和实践提供一定的参考和帮助。
脂质体的制备课件
二、 脂质体作为药物载体的特点
• 质体表面结合不同的配基如抗体、糖脂等可将药
物递送到特定靶组织和靶细胞,具有靶向性。 目前作为药物载体系统的物质有很多,但是一般认 为最有前途的是脂质体。主要是因为脂质体作为药 物载体具有以下优点: (1) 制备简单, 磷脂无毒, 无 免疫原性, 可被生物膜吸收利用; (2) 易携载和释放
• 由于没有现成的经验可以借鉴,我们只能利用
实验室的生产仪器的原理进行设计。前面提到 用薄膜分散法制备是将脂质材料(磷脂、胆固 醇等)溶解在有机溶剂中,在旋转蒸发器上减 压蒸去溶剂,使脂质材料在器壁上形成薄膜, 然后再加缓冲液进行超声处理。即首先要将脂 质材料形成非常薄的薄膜,这就要求我们设计 的设备具备很大的成膜面积,才能生产出较大 量的脂质体,这一点需要同学们好好考虑一下。
你现在学习的是第6页,课件共15页
• 3、抗氧化剂:常用的抗氧化剂有维生素E、丁酸
羟甲醛等,加入适量的抗氧化剂可防止卵磷脂 中的不饱和脂肪酸被氧化。
• 4、有机溶剂:主要有甲醇、乙醇、氯仿等一种或
几种的混合液。
你现在学习的是第7页,课件共15页
四、脂质体的制备方法
超声法、 有机溶剂挥发法、 冻融法、 冷冻干燥 法、机械分散法、薄膜分散法、逆相蒸发法。但最 常用的是薄膜分散法和逆相蒸发法。 1、薄膜分散法. 将脂质材料(磷脂、胆固醇等) 溶解在有机溶剂中,然后在旋转蒸发器上减压蒸去 溶剂,使脂质材料在器壁上形成薄膜,再加入适量 缓冲液,通过超声使之充分水合分散,即形成乳白 色的脂质体混悬液。为降低脂质体的粒径或使脂质 体的粒径均匀,可在一定压力下通过一定孔径的滤 膜。即得到粒径均匀分布的载药脂质体。
• 相关资料上介绍的各种各样的脂质体的制
脂质体及其制备方法的选择..
脂质体及其制备方法的选择1.脂质体概述1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。
磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。
后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。
此两位学者曾获得过诺贝尔奖提名。
某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。
在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。
这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消失,当双分子层通过相变温度时,被封闭的水溶性标示物的漏出量增加。
磷脂种类相变温度(℃)卵磷脂(卵磷脂胆碱)-15—7脑磷脂酰丝氨酸6—8二棕榈磷脂41氢化大豆磷脂51脂质体的相变行为决定了脂质体的通透性、融合、聚集及蛋白结合能力,所有这些都明显影响脂质体的稳定性和它们在生物体系中的行为。
脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。
不同类型的脂质体其结构特点各不相同,见下图表。
1971年,英国Rymen等人开始将脂质体用作药物载体。
所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。
它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。
脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脂质体及其制备方法的选择1.脂质体概述1965年,英国学者Bangham和Standish将磷脂分散在水中进行电镜观察时发现了脂质体。
磷脂分散在水中自然形成多层囊泡,每层均为脂质的双分子层;囊泡中央和各层之间被水相隔开,双分子层厚度约为4纳米。
后来,将这种具有类似生物膜结构的双分子小囊称为脂质体。
此两位学者曾获得过诺贝尔奖提名。
某些磷脂分散在过量的水中形成了脂质体,该脂分子本身排成双分子层,在磷脂的主要相变温度(Tm)以上,瞬间形成泡囊,且泡囊包围水液,根据磷脂种类及制备时所用温度,双分子层可以是凝胶或液晶状态。
在凝胶态时磷脂烃链是一种有规律的结构,在液态时烃链是无规律的,每一种用来制备脂质体的纯磷脂由凝胶状态过渡到液晶状态时均具有特征的相变温度。
这种相变温度(Tin)是根据磷脂性质而变(见下表),它可在-20~+90℃之间变化,双分子层的不同成分混合物可引起相变温度的变化或相变完全消失,当双分子层通过相变温度时,被封闭的所有这些都明显影响脂质体的稳定性和它们在生物体系中的行为。
脂质体根据其脂质膜的层数和腔室的数量,可以分为单层脂质体,多层脂质体和多囊脂质体,单层脂质体。
不同类型的脂质体其结构特点各不相同,见下图表。
1971年,英国Rymen等人开始将脂质体用作药物载体。
所谓载体,可以是一组分子,包蔽于药物外,通过渗透或被巨嗜细胞吞噬后载体被酶类分解而释放药物,从而发挥作用。
它具有类细胞结构,进入动物体内主要被网状内皮系统吞噬而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。
脂质体技术是被喻为“生物导弹”的第四代靶向给药技术,也是目前国际上最热门的制药技术。
至于药物在脂质体中的负载定位,其取决于所载药物的性质,见下图。
2.脂质体制备方法分类及其介绍脂质体是由磷脂分子在水相中通过疏水作用形成的,因此制备脂质体所强调的不是膜组装,而是如何形成适当大小、包封率高和稳定性高的囊泡。
制备的方法不同,脂质体的粒径可从几十纳米到几微米,并且结构也不尽相同。
目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。
2.1被动载药法脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。
在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。
2.1.1 薄膜分散法此法最初由Bangham 等报道,是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。
将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。
这种方法对水溶性药物可获得较高的包封率,但是脂质体粒径在0.2~5 μm 之间,可通过超声波仪处理或者通过挤压使脂质体通过固定粒径的聚碳酸酯膜,在一定程度上降低脂质体的粒径。
2.1.2 超声分散法将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。
超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。
2.1.3 冷冻干燥法脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。
1978 年Vanleberghe 等首次报道采用冷冻干燥法提高脂质体的贮存稳定性。
目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。
脂质体冷冻干燥包括预冻、初步干燥及二次干燥 3 个过程。
冻干脂质体可直接作为固体剂型,如喷雾剂使用,也可用水或其它溶剂化重建成脂质体混悬液使用,但预冻、干燥和复水等过程均不利于脂质体结构和功能的稳定。
如在冻干前加入适宜的冻干保护剂,采用适当的工艺,则可大大减轻甚至消除冻干过程对脂质体的破坏,复水后脂质体的形态、粒径及包封率等均无显著变化。
单糖、二糖、寡聚糖、多糖、多元醇及其他水溶性高分子物质都可以用做脂质体冻干保护剂,其中二糖是研究最多也是最有效的,常用的有海藻糖、麦芽糖、蔗糖及乳糖。
本法适于热敏型药物前体脂质体的制备,但成本较高。
陈建明等以大豆磷脂为膜材,以甘露醇为冻干保护剂,采用冻干法制备了维生素A前体脂质体,复水化后平均粒径为0.6151μm ,包封率98.5%。
林中方等采用冻干法制备了鬼臼毒素体脂质体,复水化后平均粒径为 1.451μm ,包封率72.3%,但是这种方法仍然存在着不足之处,例如脂质体复水化后粒径分布不够均匀。
2.1.4 冻融法此法首先制备包封有药物的脂质体,然后冷冻。
在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。
何文等分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。
通过研究发现,冻融法制备的脂质体的包封率最高,但是粒径最大。
反复冻融可以提高脂质体的包封率,王健松制备了阿奇霉素脂质体,实验发现,经3次重复冻融后,阿奇霉素脂质体的包封率从61.4% 增加到78%,但是当冻融次数增加到4次,包封率变化很小。
该制备方法适于较大量的生产,尤其对不稳定的药物最适合。
2.1.5 复乳法此法第1步将磷脂溶于有机溶剂,加入待包封药物的溶液,乳化得到W/O 初乳,第2步将初乳加入到10倍体积的水中混合,乳化得到W/O/W乳液,然后在一定温度下去除有机溶剂即可得到脂质体。
Kim用乳化法制得脂质体的包封率比较高,但是粒径较大。
Tomoko等通过研究发现,第2步乳化过程和有机溶剂的去除过程的温度对脂质体的粒径有比较大的影响,较低的温度有利于减小脂质体的粒径,通过控制温度可以制得粒径为400 nm,包封率达到90%的脂质体。
2.1.6 注入法将类脂质和脂溶性药物溶于有机溶剂中(油相),然后把油相均速注射到水相(含水溶性药物)中,搅拌挥尽有机溶剂,再乳匀或超声得到脂质体。
根据溶剂的不同可分为乙醇注入法和乙醚注入法。
乙醇注入法避免了使用有机溶剂,丁丽燕用乙醇法制备了司帕沙星脂质体,通过研究发现慢速注入可制得具有较高包封率的脂质体,其包封率为47%。
乙醚注入法制备的脂质体大多为单室脂质体,粒径绝大多数在2 μm以下,操作过程中温度比较低(40℃),因此,该方法适用于在乙醚中有较好溶解度和对热不稳定药物,同时通过调节乙醚中不同磷脂的浓度,可以得到不同粒径且粒径分布均匀的脂质体混悬液。
2.1.7 反相蒸发法最初由Szoka提出,一般的制法是将磷脂等膜材溶于有机溶剂中,短时超声振荡,直至形成稳定的W/O乳液,然后减压蒸发除掉有机溶剂,达到胶态后,滴加缓冲液,旋转蒸发使器壁上的凝胶脱落,然后在减压下继续蒸发,制得水性混悬液,除去未包入的药物,即得大单层脂质体脂质体。
此法可包裹较大的水容积,一般适用于包封水溶性药物、大分子生物活性物质等。
2.1.8 超临界法传统的脂质体制备方法,必须要使用氯仿、乙醚、甲醇等有机溶剂,这对环境和人体都是有害的。
超临界二氧化碳是一种无毒、惰性且对环境无害的反应介质。
严宾等用超临界法制备了头孢唑林钠脂质体,将一定量的卵磷脂溶解于乙醇中配得卵磷酯乙醇溶液,与头孢唑啉钠溶液一起放入加入高压釜中,将高压釜放入恒温水浴中,通入CO2。
在其超临界态下孵化30min,制备脂质体。
采用超临界CO2法制备的包封率高、粒径小,稳定性增强。
2.2 主动载药对于两亲性药物,如某些弱酸弱碱,其油水分配系数介质pH和离子强度的影响较大,用被动载药法制得的脂质体包封率低。
主动载药是利用两亲性的药物,能以电中性的形式跨越脂质双层,但其电离形式却不能跨越的原理来实现的。
通过形成脂质体膜内、外水相的pH梯度差异,使脂质体外水相的药物自发地向脂质体内部聚集。
此法通常用脂质体包封酸性缓冲盐,然后用碱把外水相调成中性,建立脂质体内外的pH 梯度。
药物在外水相的pH环境下以亲脂性的中性形式存在,能够透过脂质体双层膜。
而在脂质体内水相中药物被质子化转为离子形式,不能再通过脂质体双层回到外水相,因而被包封在脂质体中。
主动载药法广义上就是指pH 梯度法。
人们把其细分为:(1)pH梯度法;(2)硫酸铵梯度法;(3)醋酸钙梯度法。
其中硫酸铵梯度法和醋酸钙梯度法只是pH梯度法的两种特殊形式。
2.2.1 pH梯度法pH梯度法通过调节脂质体内外水相的pH值,形成一定的pH梯度差,弱酸或弱碱药物则顺着pH梯度,以分子形式跨越磷脂膜而使以离子形式被包封在内水相中。
赵妍等用以pH梯度法制备硫酸长春新碱脂质体,其包封率大于85%,而被动载药法制备的硫酸长春新碱脂质体的包封率最高为14.4%。
Jia等用pH梯度法内水相pH 0.5%外水相pH4.0制备了卡苯达唑脂质体,包封率高于95%。
杜松等用pH梯度法制备盐酸去氢骆驼蓬碱脂质体,包封率大于80%,研究表明,虽然制得的脂质体没有加强药物的抗癌活性,但是大大降低了其毒副作用。
跨膜pH梯度是影响包封率的最主要因素,通常pH梯度越大,载入脂质体内的药物越多,包封率也越高。
制备伊立替康脂质体时,当pH梯度≥3.7时包封率达97%以上,当pH梯度<2时,包封率不到5%;Mamyer等在研究中发现通过跨膜pH梯度法制备多柔比星脂质体,pH梯度达到3.5时包封率达98%,降低内水相缓冲液的pH可增大pH梯度,但会加剧磷脂的水解,降低脂质体的稳定性。
此外,药物自身性质如油水分配系数、膜渗透性等亦可影响包封率。
Quan 等用pH梯度法制备多巴胺脂质体,由于多巴胺亲水性较强,无法直接克服能量壁垒穿过脂质双分子层进入内水相,但与拉沙洛西(lasalocid)结合形成复合物可暴露出亲脂性表面,即可穿过脂质膜进入脂质体,包封率提高到85%。
氧化苦参碱水溶性较大,脂溶性较弱,因此采用pH梯度法制备脂质体包封率只有50%。
2.2.2 硫酸铵梯度法硫酸铵梯度法通过游离氨扩散到脂质体外,间接形成pH梯度,使药物积聚到脂质体内。
其方法为先将硫酸铵包与脂质体内水相,然后通过透析、凝胶色谱或超滤的方法除去脂质体外水相的硫酸铵。
由于离子对双分子层渗透系数的不同,氨分子渗透系数(0.13 cm/s)较高,能很快扩散到外水相中;H+的渗透系数远小于氨分子,因此会使脂质体内水相呈酸性,形成pH梯度,梯度大小由[NH4+]外水相/[NH4+]内水相比较决定,这样使药物逆硫酸铵梯度载入脂质体。