电机拖动重点归纳
电机拖动知识点范文
电机拖动知识点范文电机拖动是指通过电机控制实现机械设备的运动,实现机械设备的启停、速度调节、位置控制等功能。
电机拖动知识点主要包括电机的类型、电机控制方法和相关的电机驱动器等内容。
下面是对电机拖动知识点的详细介绍。
一、电机的类型1.直流电机:直流电机是一种将直流电能转变为机械运动的电动机。
直流电机具有启动转矩大、速度调节范围广、反应快等特点,主要应用于需要精确控制转速和转矩的场合。
2.交流电机:交流电机是一种将交流电能转变为机械运动的电动机。
交流电机具有结构简单、制造成本低等优点,主要应用于功率较大、转速较高的场合。
-异步电机:异步电机是交流电机的一种,它的转速稍低于同步速度。
异步电机结构简单、功率密度高、制造成本低,广泛应用于家用电器、机械设备等领域。
-同步电机:同步电机是交流电机的一种,它的转速与电源频率同步。
同步电机具有高效率、高功率因数等优点,主要应用于需要精确同步控制的场合。
3.步进电机:步进电机是一种将电脉冲转变为机械运动的电动机。
步进电机具有转速稳定、转矩大、位置控制精度高等特点,主要应用于需要定点定位的场合,如数控机床、印刷机等。
二、电机控制方法1.直流电机控制方法:-电压控制:通过调节直流电机的供电电压来实现转速调节。
电压越高,电机转速越高。
-电流控制:通过调节直流电机的电流来实现转速调节。
电流越大,电机转速越高。
-脉宽调制:通过调节占空比来控制直流电机的转速。
占空比越大,电机转速越高。
2.交流电机控制方法:-变频控制:通过改变交流电机的频率来实现转速调节。
频率越高,电机转速越高。
-矢量控制:通过测量交流电机的转子位置和转速来实现转速和转矩的精确控制。
-频率调制:通过调节交流电机供电电压的频率来实现转速调节。
频率越高,电机转速越高。
三、电机驱动器电机驱动器是实现电机控制的关键设备,常见的电机驱动器有直流电机驱动器和交流电机驱动器。
1.直流电机驱动器:直流电机驱动器主要包括直流电机控制器、逆变器、整流器等。
电机及拖动基础重点精讲,复习考试必备
U N 110V , 1、 一台他励直流电动机, 额定数据为,PN 1.1KW , I N 13 A , n N 1500r / min ,电枢回路电阻 Ra 1 。计算: (1)额
《电机原理及拖动》A 卷答案第 6 页 共 11 页
定电磁转矩; (2)额定输出转矩; (3)空载转矩; (4)理想空载转矩; (5) 实际空载转矩。
《电机原理及拖动》A 卷答案第 5 页 共 11 页
对位置。 5、简述建立并励直流发电机输出电压的条件。 ①发电机必须有剩磁,如果无剩磁,必须用另外的直流电源充磁。②励 磁绕组并联到电枢两端,线端的接法与旋转方向配合,以使励磁电源产生 的磁场方向与剩磁的磁场方向一致。③励磁回路的总电阻必须小于临界电 阻。 6、如何使他励直流电动机反转? 使他励直流电动机反转的方法有两种:(1)电枢绕组接线不变,将励磁 绕组反接,这种方法称为磁场方向。 (2) 励磁绕组接线不变,电枢绕组反 接,称为电枢反向。 7、自耦变压器有什么特点?应用时要注意什么问题? 自耦变压器的优点是节省原材料、体积小、重量轻、安装运输方便、 价格低、损耗小、效率高。它的缺点是一次绕组和二次绕组有电的联系, 因此,低压绕组及低压方的用电设备的绝缘强度及过电压保护等均需按高 压方考虑。使用时,需把原副边的公用端接零线,外壳必须接地。 8、三相异步电动机的起动电流为什么很大?有什么危害? 由于刚起动时,旋转磁场与转子导体相对转速大,转子导体以最大转 速切割磁力线,产生很大的电流。电流大的危害是(1)使线路产生很大的电 压降,影响同一线路的其它负载的正常工作。严重时还可能使本电机的起 动转矩太小而不能起动;(2)使电动机绕组过热,加速绝缘老化,缩短电动 机的使用寿命。 五、计算题
《电机原理及拖动》A 卷答案第 1 页 共 11 页
电机拖动知识点--整理版
第二章1.脉宽调制答:利用电力电子开关的导通与关断,将直流电压变成连续可变的电压,并通过控制脉冲宽度或周期达到变压变频的目的。
2. 直流蓄电池供电的电流可反向的两象限直流斩波调速系统,已知:电源电压Us=300V,斩波器占空比为30%,电动机反电动势E=100V,在电机侧看,回路的总电阻R=1Ω。
问蓄电池的电流Id是多少?是放电电流还是充电电流?答:因斩波电路输出电压u0的平均值: U0=ρ×Us=30%×300=90 V < EaId=( U0- E)/ R=(90-100)/1=-10A是充电电流,电动机工作在第Ⅱ象限的回馈制动状态, 直流蓄电池吸收能量。
3.单极式和双极式PWM变换器的主要区别答: 双极式变换器:V1、V4同时通,V2,V3同时关,为正转;V2,V3同时通,V1、V4同时关,为反转。
单极式变换器:V1,V2交替开关,V3,V4哪个开,决定是正转还是反转,如V3开为反转,V4开为正转。
3. PWM调速系统的开关频率答: 电力晶体管的开关频率越高,开关动态损耗越大;但开关频率提高,使电枢电流的脉动越小,也容易使电流连续,提高了调速的低速运行的平稳性,使电动机附加损耗减小;从PWM变换器传输效率最高的角度出发,开关频率应有一个最佳值;当开关频率比调速系统的最高工作频率高出10倍左右时,对系统的动态特性的影响可以忽略不计。
4.静差率s与空载转速n0的关系答:静差率s与空载转速n0成反比,n0下降,s上升。
所以检验静差率时应以最低速时的静差率为准。
5. 反馈控制有静差调速成系统原理图,各部件的名称和作用。
答:①比较器:给定值与测速发电机的负反馈电压比较,得到转速偏差电压ΔUn。
②比例放大器A:将转速偏差电压ΔUn放大,产生电力电子变换器UPE所需的控制电压Uc。
③电力电子变换器UPE:将输入的三相交流电源转换为可控的直流电压Ud。
④M电机:驱动电机。
⑤TG发电机:测速发电机检测驱动电机的转速。
电机与拖动复习笔记
第0章 绪论:1、电机:利用电磁感应原理实现能量转换的机械2、电力拖动系统包括:电动机、传动机构、生产机械、控制设备和电源。
第1章 直流电机1.2绕组1、单叠绕组:ε±=p Z y 21,即][pZy 21=(向下取整);1=k y ,k y y y -=12。
p 为磁极对数,Z 为槽数,1y 为第一节距(同一个元件的两个边跨过的距离),k y 为换向器节距。
画图步骤:1)计算1y ;2)根据Z 的数目画线(等间距),线的数目和Z 相同。
(Z=16,1y =4)(实线、虚线都画)3)根据1y 的值连接绕组,即编号为1的实线,需要跟编号为5(1+1y )的虚线相连。
4)将编号为1的实线连接到编号为1换向片(位置自己定,换向片宽度和实线间宽度一样),(换向器编号和实线编号一致),将编号为5的虚线连接到编号为2的换向片。
5)平移将其他的画出来6)画磁极,磁极宽度约为PZ270.倍的实线间宽度,极性交替放在线中,磁极平移距离为PZ2倍的实线宽度;在磁极中心下方画出电刷(N 极下为+,S 极下为—) 单叠绕组特点:1)并联支路对数等于磁极对数,即p a =;2)电刷数等于主磁极数,电刷间电动势等于并联支路电动势,电刷位置应使支路感应电动势最大(即电刷位置对准磁极中心);3)电枢绕组闭合回路中,感应电动势之和为0,内部无换流4)正负电刷引出的电枢电流a I 为各支路电流之和,a a ai I 2=。
a 为支路对数 5)元件的两个出线端连接于相邻两个换向片上,即1=k y 。
2、单波绕组:ε±=p Z y 21,即][p Z y 21=(向下取整);pK y k 1±=(向下取整),12y y y k -=。
画图与单叠类似。
特点:1)并联支路数=2,与磁极对数无关,即1=a 。
2)电刷数等于主磁极数,电刷间电动势等于并联支路电动势,电刷位置应使支路感应电动势最大(即电刷位置对准磁极中心);(理论上电刷用2个就够了,但为了可靠换向,采用全额电刷)3)正负电刷引出的电枢电流a I 为各支路电流之和,a a i I 2=。
电机与拖动基础知识点
电机与拖动基础知识点1. 电机分类:电机可以根据其用途、结构和工作原理进行分类。
常见的电机类型包括直流电机、异步电机(感应电机)、同步电机和步进电机等。
2. 磁场和磁通:电机中的磁场是由电流通过线圈产生的。
磁通是指通过线圈的磁力线数量,它与电机的性能密切相关。
3. 绕组和电枢:电机中的绕组是由导线绕制而成的,用于产生磁场。
电枢是指电机中的旋转部分,它可以是转子或定子。
4. 电磁感应:当磁通通过导体时,会在导体中产生电动势,这种现象称为电磁感应。
异步电机和同步电机都是基于电磁感应原理工作的。
5. 直流电机:直流电机是将直流电转换为机械能的设备。
它包括定子和转子两部分,通过电刷和换向器实现电流的换向。
6. 异步电机:异步电机也称为感应电机,是一种广泛应用的交流电机。
它的转子转速略低于同步转速,通过转子感应的磁场与定子磁场的相互作用产生转矩。
7. 同步电机:同步电机的转子转速与定子磁场的转速相同,因此称为同步电机。
它通常用于发电机和大功率驱动装置。
8. 电机拖动:电力拖动是指利用电动机作为原动机来驱动生产机械。
它涉及电机的选择、控制和传动等方面。
9. 电机控制:电机的控制包括调速、反转、起动和制动等。
常见的电机控制方法包括变频调速、直流调速和步进电机控制等。
10. 电机性能:电机的性能指标包括转矩、功率、效率、转速、起动电流和转矩等。
了解这些指标对于选择和应用电机非常重要。
以上是《电机与拖动基础》课程中的一些重要知识点。
通过深入学习这些内容,您将能够理解电机的工作原理、特性和应用,为进一步学习和应用电机技术打下坚实的基础。
电机拖动重点归纳
第二章一、负载的转矩特性:负载的转矩特性是指生产机械工作机构的负载转矩与转速之间的关系即:n=f(TL)___恒转矩负载特性恒转矩负载是指负载转矩为常数,其大小与转速n无关,恒转矩负载分反抗性恒转矩负载和位能性恒转矩负载。
反抗性恒转矩负载特性:恒值负载转矩Tf 总是与转速nf的方向相反,即作用方向是阻碍运动的方向。
当正转时nf 为正,Tf与nf方向相反,应为正,即在第一象限,当反转时nf为负,Tf 与nf方向相反,应为负,即在第三象限;当转速nf=0时外加转矩不足以使系统运动。
位能性恒转矩负载特性特点:Tf 的方向与nf的方向无关。
Tf具有固定不变的方向。
例如:起重机的提升机构,不论是提升重物还是下放重物,重力的作用总是方向朝下的,即重力产生的负载转矩方向固定。
当nf >0时,Tf>0,是阻碍运动的制动性转矩;当nf <0时,Tf>0,是帮助运动的拖动性转矩。
故转矩特性在第一和第四象限。
恒功率负载转矩特性特点:当转速n变化时,负载功率基本不变。
电力拖动系统的稳定运行的必要条件:动转矩为零,即n不变,T=TL第三章直流电机的用途:把机械能转变为直流电能的电机为直流发电机;把直流电能转变为机械能的电机是直流发电机。
直流发电机用来作为直流电动机和交流发电机的励磁直流电源。
直流电动机的工作原理:线圈不由原动机拖动;电刷接直流电源;直流电源通过静止的电刷与随电枢转动的换向器的滑动接触把直流电源转换成电枢中的交流电,保证电枢转矩的方向不变,电枢保持逆时针旋转。
直流发电机的工作原理:用两个相对放置的导电片(换向片)代替交流发电机的两个滑环,电刷接触的换向片始终是相同一侧的线圈边,所以N极一侧的电刷得到的电压始终是(+),S极一侧的电刷得到的电压始终是(-)。
直流电机的可逆性:一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行,只是外界条件不同而已。
如果用原动机拖动电枢恒速旋转,就可以从电刷端引出直流电动势而作为直流电源对负载供电;如果在电刷端外加直流电压,则电动机就可以带动轴上的机械负载旋转,从而把电能转变成机械能。
电机拖动知识点总结
电机拖动知识点总结电机拖动知识点总结总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以使我们更有效率,快快来写一份总结吧。
那么我们该怎么去写总结呢?以下是小编精心整理的电机拖动知识点总结,希望能够帮助到大家。
1、低压电器:是指在交流额定电压1200V,直流额定电压1500V及以下的电路中起通断、保护、控制或调节作用的电器。
2、主令电器:自动控制系统中用于发送控制指令的电器。
3、熔断器:是一种简单的短路或严重过载保护电器,其主体是低熔点金属丝或金属薄片制成的熔体。
4、时间继电器:一种触头延时接通或断开的控制电器。
5、电气原理图:电气原理图是用来表示电路各电气元器件中导电部件的连接关系和工作原理的电路图6、联锁:“联锁”电路实质上是两个禁止电路的组合。
K1动作就禁止了K2的得电,K2动作就禁止了K1的得电。
7、自锁电路:自锁电路是利用输出信号本身联锁来保持输出的动作。
8、零压保护:为了防止电网失电后恢复供电时电动机自行起动的保护叫做零压保护。
9、欠压保护:在电源电压降到允许值以下时,为了防止控制电路和电动机工作不正常,需要采取措施切断电源,这就是欠压保护。
10、星形接法:三个绕组,每一端接三相电压的一相,另一端接在一起。
11、三角形接法:三个绕组首尾相连,在三个联接端分别接三相电压。
12、减压起动:在电动机容量较大时,将电源电压降低接入电动机的定子绕组,起动电动机的'方法。
13、主电路:主电路是从电源到电动机或线路末端的电路,是强电流通过的电路,14、辅助电路:辅助电路是小电流通过电路15、速度继电器:以转速为输入量的非电信号检测电器,它能在被测转速升或降至某一预定设定的值时输出开关信号。
16、继电器:继电器是一种控制元件,利用各种物理量的变化,将电量或非电量信号转化为电磁力(有触头式)或使输出状态发生阶跃变化(无触头式)17、热继电器:是利用电流的热效应原理来工作的保护电器。
电拖知识点
电拖知识点第一章电机中的电磁学基本知识1.4铁磁材料1.起始磁化曲线、磁滞回线、基本磁化曲线的特点2.简单了解磁滞损耗与涡流损耗这两个概念。
第二章电力拖动系统动力学2.1 运动方程式及转矩的符号分析1.电动机工作状态的确定方法2.2 复杂电力拖动系统的简化1.折算原则2.旋转运动简化:转矩折算、转动惯量、飞轮矩的折算3.直线运动:转矩折算、质量折算,提升下放与提升重物效率关系2.3负载特性三种负载的特性2.4稳定运行1.稳定含义2.电力拖动系统稳定运行的充要条件3.根据充要条件进行平衡点稳定与否的判定第三章直流电机3.1 .3 直流电机铭牌数据定义3.2直流电机的电枢绕组1.实槽、虚槽等的概念及相互关系2.电枢绕组分类3.几个节距的定义及相互关系4.各种类型绕组并联支路对数与电机极对数之间的关系3.3电枢磁动势对电机运行的影响1.空载磁化曲线2.直流电机励磁方式:分类及各方式电压电流关系,很重要3.电枢反应的定义,交轴直轴电枢反映对每极总磁通的影响3.4电枢电动势与电磁转矩Ea与Tem的表达式,电势常数与转矩常数的关系3.5运行原理1.按电动机定向,各参数的方向定义(掌握运行原理图)。
2.电动机运行状态判断方法。
3.直流电机(发电机、电动机)稳态电压平衡方程4.电动机功率传递关系:注意并励与他励不同,并励要加上励磁电阻损耗5.定值损耗与变值损耗的区别,及其与效率的关系6.电机工作特性:他励电动机各工作特性的变化规律。
他、串、并、复四种电动机的比较7.他励直流发电机空载特性、外特性的特点8.自励直流发电机自励条件第四章直流电机的电力拖动4.1机械特性1.他励直流电动机基本方程(重要)2.机械特性方程式、固有机械特性表达式,斜率及几个重要点的对应坐标3. 人为机械特性(重要):三种人为机械特性的图形、特点,表达式。
4.人为机械特性的绘制:根据各特性的特点绘制,并考虑电枢绕组电阻Ra的计算法(系数一般取0.5),课本例题要弄明白,主要是几何图形的计算。
电机拖动总复习
②移动电刷位置:其原理是利用主磁极对换向元件感应的电势 来改善换向,这里的关键是电刷移动的方向
发电机:顺转向移动一个小角度; 电动机;逆转向移动一个小角度。
1、直流电机的电枢导体里流过的是直流电流还是交流电流?
答;直流电机电枢导体里流过的是交流电流, 其频率f=np/60 Hz,其 中P为电机的极对数, n为转子转速, 单位为r/min, 通过换向器和电刷 引出来的电流才是直流电.
答:由于电枢电动势和转速成正比,因此,如果把他励发电机转速升 高20%,则其电枢电动势就升高20%。而空载端电压等于电枢电动势, 因此它也就升高20%。 在并励发电机个,空载端电压也随转速的升高而升高,端电压 升高引起励磁电流增大,使电枢电动势和空载端电压进一步升 高.所以,并励发电机电压升高得比他励发电机的大.
电机的效率公式中,P1泛指输入功率,P2泛指输出功率。 P2 P1 · 电动机轴上输出的额定转矩
T2 N PN PN PN (W ) PN (kW ) 9.55 9.55 2n N N nN nN 60 ( N m)
4. 电枢绕组 电枢绕组一般装在直流电机的转子上。有叠绕组(单叠、复 叠)、波绕组(单波、复波)和混合绕组。最基本的是单叠绕组、 单波绕组。 各种绕组的规律常用绕组展开图来表示。 (二) 直流电机的磁场分析 1. 励磁方式 直流电机绕组,一般包括定子磁极上的励磁绕组和转子上 的电枢绕组。两个绕组的不同连接方式,决定直流电机的励磁 方式。励磁方式有两大类四种:他励方式;自励方式—并励、 串励、复励。 不同励磁方式电机的运行特性也不同。特别是并励电机的 电流关系: (1) 对直流电动机 I a I I f (2) 对直流发电机 I a I I f I a、I、I f 分别为电枢电流、负载电流和励磁电流。
(完整版)电机拖动必考点总结
考点总结第四章e T L T —生产机械的阻转矩 n —转速(r/min)】第五章一、直流电机的励磁方式:III f I I f1图5-15直流电机的励磁方式a) 他励式 b) 并励式 b) 串励式 b) 复励式a)b)c)d)按励磁绕组的供电方式不同,直流电机分4种:○1他励直流电机 ○2并励直流电机 ○3串励直流电机 ○4复励直流电机 二、基础公式 1. 额定功率N P直流电动机中,N P 是指输出的机械功率的额定值:(N T 为额定输出转矩,N n 为额定转速) 直流发电机中,N是指输出的电功率的额定值:N N N I U P ⋅=2. 电枢电动势a E直流电机的电动势:n C E e a ⋅Φ⋅=(单位 V ) e C 为电动势常数aZn C P e 60⋅=(P n —磁极对数,Z —电枢总有效边数,a —支路对数)3. 电磁转矩e T直流电机的电磁转矩:a T e I C T ⋅Φ⋅= (单位m N ⋅) T C 为转矩常数aZn C P T ⋅⋅=π2 (P n —磁极对数,Z —电枢总有效边数,a —支路对数)4. 常数关系式由于55.9260≈=πe T C C 故 e T C C ⋅=55.9三、直流电机(一) 分类:直流电动机和直流发电机。
直流电动机:直流电能→→机械能 直流发电机:机械能→→直流电能(二) 直流电动机(考点:他励直流电动机【如下图】)I 图5-18直流电动机物理量的正方向与等效电路a) 物理量的参考正方向 b) 等效电路a)b)1. 电压方程:励磁回路:f f f I R U =电枢回路:a a a a I R E U += (特点:a a E U >) (a R ——包括电枢绕组和电刷压降的等效电阻 a E ——直流电机感应电动势)其中 ΦnC E e a =2. 转矩方程:0L e T T T +=3. 功率方程:○1输入电功率→电磁功率 输入电功率1P =励磁回路输入电功率f P +电枢回路输入电功率a P(注意:一般题目没有给出励磁信息,那么输入电功率=电枢回路输入电功率)电枢回路输入电功率a P =电磁功率em P +铜耗功率Cua p ∆ 励磁回路输入的电功率:2f f f f f I R I U P ==电枢回路输入的电功率:()Cua em 2a a a a a a a a a a a p P I R I E I I R E I U P ∆+=+=+== (2a a Cua I R p =∆——电枢回路的铜耗 a a em I E P =——电机的电磁功率)且有ωωωe a p a p a p a a π2π2606060T ΦI aZn ΦI a Z n ΦnI Z n I E ==⋅== 即ωe a a T I E =(原本基础公式为a e ΦI C T T =)而由上式可得电动机电磁转矩的另一种计算公式:n Pn P P T em em eme 55.960π2===ω 故n PT em e 55.9=(em P 的取值单位为w 才适用)nP T eme 9550=(em P 的取值单位为kW 才适用) ○2电磁功率→输出机械功率 电磁功率=机械功率=机械空载功率(损耗)+机械负载功率(输出功率)由于0L e T T T +=和ωe T P em = 故 ωωωL 0e T T T += L 0em P p P +∆=L P ——电机的机械负载功率0p ∆——电机的空载损耗,包括机械摩擦损耗m p ∆和铁心损耗Fe p ∆○3输入电功率1P →输出机械功率2P 电功率电磁功率机械功率P 1P em P 2p Cua p Fe p mec p CufCufp ∆Cuap ∆Fep ∆mp ∆图5-19直流电动机的功率图p P P p p p p P p p P P P ∑∆+=+∆+∆+∆+∆=+∆+∆=+=22add m Fe Cu em Cua Cuf a f 1式中2P ——电动机的输出功率,有P2=PL ;add p ∆——电动机的附加损耗,是未被包括在铜耗、铁耗和机械损耗之内的其他损耗; p ∑∆——电动机的总损耗,并有add 02a a 2f f add m Fe Cua Cuf p p I R I R p p p p p p ∆+∆++=∆+∆+∆+∆+∆=∑∆故电动机的效率为:p P pP P ∑∆+∑∆-==2121η4. 工作特性:5. 如何避免造成“飞车”? 答:直流电动机在使用时一定要保证励磁回路连接可靠,绝不能断开。
电机拖动复习资料
电机拖动复习资料1.直流电动机和直流发电机有什么相同点和不同点?物理量分别用什么手进行判定?一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行,只是外界条件不同而已。
所以电动机和发电机的结构是一样的。
只是如果用原动机拖动电枢恒速旋转,就可以从电刷端引出直流电动势而作为直流电源对负载供电;如果在电刷端外加直流电压,则电动机就可以带动轴上的机械负载旋转,从而把电能转变成机械能。
电动机的受力旋转方向用左手定则(楞次定律也叫安培力定则)判定,发电机的发电电流方向用右手定则(法拉第电磁感应定律)判定。
2.什么是电磁铁?内部带有铁芯的通电螺线管。
利用电流的磁效应,使得铁芯通电变成磁铁。
3.什么是电磁转矩?根据电磁力定律,当电枢绕组中有电枢电流通过时,在磁场内将受到电磁力的作用,该力与电机电枢铁芯半径之积成为电磁转矩。
可用左手定则判断电枢导体的受力方向,从而确定电磁转矩的实际方向。
4.直流电机的主要部件有哪些?它们各起什么作用?定子,转子。
5.在直流发电机中是否有电磁转矩?如有,电磁转矩的方向与电枢旋转方向相同还是相反?电枢回路是否有感应电动势产生?如有,电动势的方向与电枢电流的方向相同还是相反? 是,相反。
是,相同。
6.直流电动机工作时电磁转矩起什么作用?电枢回路是否有感应电动势产生?如有,电动势的方向与电枢电流的方向相同还是相反? 驱动,是。
相反。
7.什么是电枢反应?它对电机有什么影响?空载时,直流电机内部的磁场是由定子励磁绕组所产生的主磁场。
负载后,除了主磁场之外,由电枢绕组中流过的电枢电流所产生的电枢磁势也要产生磁场,从而对主磁场造成一定影响。
通常把电枢磁势对主磁场的影响称为电枢反应。
电枢磁势对主磁场的影响结果造成1气隙磁场发生畸变2主磁场削弱,电枢反应呈去磁作用。
8..直流电动机为什么不能直接起动?如果直接起动回引起什么后果?电动机在未启动前n=0,E=0,而Ra很小,所以将电动机直接接入电网并施加额定电压时,启动电流将很大Ist=U N/Ra,故不能直接起动。
电机及拖动基础知识要点复习
电机复习提纲第一章:一、概念:主磁通,漏磁通,磁滞损耗,涡流损耗磁路的基本定律:安培环路定律: 磁路的欧姆定律作用在磁路上的磁动势 F 等于磁路内的磁通量 Φ乘以磁阻R m磁路与电路的类比:与电路中的欧姆定律在形式上十分相似;E=IR 磁路的基尔霍夫定律1磁路的基尔霍夫电流定律穿出或进入任何一闭合面的总磁通恒等于零2磁路的基尔霍夫电压定律沿任何闭合磁路的总磁动势恒等于各段磁路磁位差的代数和;第二节 常用铁磁材料及其特性一、铁磁材料1、软磁材料:磁滞回线较窄;剩磁和矫顽力都小的材料;软磁材料磁导率较高,可用来制造电机、变压器的铁心;2、硬磁材料:磁滞回线较宽;剩磁和矫顽力都大的铁磁材料称为硬磁材料,可用来制成永久磁铁;二、铁心损耗1、磁滞损耗——材料被交流磁场反复磁化,磁畴相互摩擦而消耗NiHL的能量;2、涡流损耗——铁心内部由于涡流在铁心电阻上产生的热能损耗;3、铁心损耗——磁滞损耗和涡流损耗之和;第二章:一、尽管电枢在转动,但处于同一磁极下的线圈边中电流方向应始终不变,即进行所谓的“换向”;二、一台直流电机作为电动机运行——在直流电机的两电刷端上加上直流电压,电枢旋转,拖动生产机械旋转,输出机械能;作为发动机运行——用原动机拖动直流电机的电枢,电刷端引出直流电动势,作为直流电源,输出电能;三、直流电机的主要结构定子、转子定子的主要作用是产生磁场转子又称为“电枢”,作用是产生电磁转矩和感应电动势要实现机电能量转换,电路和磁路之间必须在相对运动,所以旋转电机必须具备静止的和转动的两大部分,且静止和转动部分之间要有一定的间隙称为:气隙四、直流电机的铭牌数据直流电机的额定值有:1、额定功率P NkW2、额定电压U NV3、额定电流I NA4、额定转速n Nr/min5、额定励磁电压U fNV五、直流电机电枢绕组的基本形式有两种:一种叫单叠绕组,另一种叫单波绕组;单叠绕组的特点:元件的两个端子连接在相邻的两个换向片上; 元件的跨距:上层元件边与下层元件边的距离称为跨距,元件跨距称为第一节距y1用所跨的槽数计算;一般要求元件的跨距等于电机的极距;上层元件边与下层元件边所连接的两个换向片之间的距离称为换向器节距yc用换向片数计算;直流电机的电枢绕组除了单叠、单波两种基本形式以外,还有其他形式,如复叠绕组、复波绕组、混合绕组等;各种绕组的差别主要在于它们的并联支路,支路数多,相应地组成每条支路的串联元件数就少;原则上,电流较大,电压较低的直流电机多采用叠绕组;电流较小,电压较高,就采用支路较少而每条支路串联元件较多的波绕组;所以大中容量直流电机多采用叠绕组,而中小型电机采用波绕组;六、直流电机的励磁方式1、他励直流电机——励磁绕组与电枢绕组无联接关系,而是由其他直流电源对励磁绕组供电;2、并励直流电机——励磁绕组与电枢绕组并联;3、串励直流电机——励磁绕组与电枢绕组串联;4、复励直流电机——两个励磁绕组,一个与电枢绕组并联, 另一个与电枢绕组串联;七、直流电机负载时的磁场及电枢反应当直流电机带上负载以后,在电机磁路中又形成一个磁动势,这个磁动势称为电枢磁动势;此时的电机气隙磁场是由励磁磁动势和电枢磁动势共同产生的;电枢磁动势对气隙磁场的影响称为电枢反应;第五节 感应电动势和电磁转矩的计算一、感应电动势的计算先求出每个元件电动势的平均值,然后乘上每条支路中串联元件数;感应电动势的计算公式为 直流电机的感应电动势的计算公式是直流电机重要的基本公式之一; 感应电动势Ea 的大小与每极磁通Φ有效磁通和电枢转速的乘积成正比;如不计饱和影响,它与励磁电流If 和电枢机械角速度乘积成正比;二、电磁转矩的计算ΩΦf af f f e I G n I K C n C E ===e a 24π2πe a a T a Z pZ T p I I C I a a===ΦΦΦ电磁转矩计算公式是直流电机的重要基本公式,它表明:电磁转矩Te 的大小与每极磁通Φ和电枢电流Ia 的乘积成正比;或:如不计饱和影响,它与励磁电流If 和电枢电流Ia 的乘积成正比;三、几个重要关系式直流电机感应电动势计算公式: 直流电机电磁转矩计算公式: 电动势常数: 转矩常数: 电动势常数与转矩常数的关系: 电动机电枢回路稳态运行时的电动势平衡方程式;U =Ea +RaIa Ea =Ce Φn四、 直流电动机的工作特性是指其端电压U =UN 额定电压,电枢回路中无外加电阻、励磁电流If =IfN 额定励磁电流时,电动机的转速n 、电磁转矩Te 和效率η三者与输出功率P 2之间的关系;一并励直流电动机的工作特性1. 转速特性2. 转矩特性电磁转矩也可以表示为e af f a T G I I =其中G af =C T K f nC E a Φ=e aT e I C T Φ=a PZ C e 60=apZC T π2=eT C C 55.9=a e a e I C R C U n Φ-Φ=e T a Ta T C I C I '==Φ3. 效率特性η=P2/P1×100%电机励磁损耗、机械损耗、铁耗等于电枢铜耗时,效率最大;二串励直流电动机的工作特性串励电机不允许在空载或负载很小的情况下运行;五、直流发电机的工作特性直流电动机的固有机械特性1、空载特性当他励直流发电机被原动机拖动,n=n N时,励磁绕组端加上励磁电压Uf ,调节励磁电流If0 ,得出空载特性曲线U0=fI0;2、负载运行无论他励、并励还是复励发电机,建立电压以后,在n = n N 的条件下,加上负载后,发电机的端电压都将发生变化;第七节直流电机的换向元件内电流方向改变的过程就是换向;直流电动机换向器节距单位是换向片数;一、换向的电磁现象1、电抗电动势在换向过程中,元件中电流方向将发生变化,由于电枢绕组是电感元件,所以必存自感和互感作用;换向元件中出现的由自感与互感作用所引起的感应电动势,称为电抗电动势ex=Lx2ia/Tc;2、电枢反应电动势由于电刷放置在磁极轴线下的换向器上,在几何中心线处,虽然主磁场的磁密等于零,可是电枢磁场的磁密不为零;换向元件切割电枢磁场,产生一种电动势,称为电枢反应电动势ea =2NyBalv ;二、改善换向的方法改善换向一般采用以下方法:装设换向磁极——位于几何中性线处装换向磁极;换向绕组与电枢绕组串联,在换向元件处产生换向磁动势抵消电枢反应磁动势;大型直流电机在主磁极极靴内安装补偿绕组,补偿绕组与电枢绕组串联,产生的磁动势抵消电枢反应磁动势;第二章课后习题2-15、2-19、2-21第三章 变压器一、变压器的工作原理变压器的主要部件——铁心和套在铁心上的两个绕组;两绕组只有磁耦合没电联系;在一次绕组中加上交变电压,产生交链一、二次绕组的交变磁通,在两绕组中分别感应电动势;电动势平衡方程式:一次、二次绕组电压、电动势的有效值与匝数的关系:t N e u d d 111φ=-=tN e u d d 222φ-==111222U E N k U E N ===k ——匝比电压比变压器的额定值额定容量为变压器的视在功率用S N 表示,单位 kV·A ,V·A 额定电压一次和二次绕组上分别为U 1N 和U 2N ,单位V, kV 额定电流一次和二次绕组上分别为I 1N 和I 2N ,单位 A , kA二、负载运行时的基本方程式1、磁动势平衡方程式2、电动势平衡方程式变压器负载运行基本方程式第四节 变压器的等效电路归算:将变压器的二次或一次绕组用另一个绕组来等效,同时,对该绕组的电磁量作相应的变换,以保持两侧的电磁关系不变;目的:用一个等效的电路代替实际的变压器;归算原则:1保持二次侧磁动势不变;2保持二次侧各功率或损耗不变;一、绕组归算一电动势和电压的归算二次绕组归算后,变压器一次和二次绕组具有同样的匝数,即 要把二次侧电动势归算到一次侧,只需要乘以电压比k 即可; 12211N I N I N I m =+1212//E E N N k ==1111Z I E U +-=2222Z I E U -=m m Z I E =-122E kE '=二电流的归算三阻抗的归算二 、近似等效电路图考虑到一般变压器中,Z m>>Z 1,若把励磁支路前移,认为在一定的电源电压下,励磁电流I m=常数,不受负载变化影响,同时,忽略I m 在一次绕组中产生的漏阻抗压降;这样的电路称为“Γ”形等电路;根据这种电路对变压器的运行情况进行定量计算,所引起的误差是很小的;由于一般变压器I m<<I N,可以进一步把励磁电流I m 忽略不计;得到变压器的近似等效电路;要求会画第五节 等效电路的参数测定一、空载试验由空载试验可以测定变压器的电压比k 、铁耗pFe 以及等效电路中的励磁阻抗Z m;二、负载试验又称短路试验负载试验是以额定频率的额定电流通过变压器的一个绕组,另一个绕组的端子接成短路;读取p k 、U k 、I k 数据来计算变压器的短路电压百分数u k%、铜损p k 和短路阻抗Z k;标么值,就是指某一物理量的实际值与选定的同一单位的基准值的比值通常以额定值为基准值,即第六节 三相变压器 22I I k'=基准值实际值标么值=决定三相变压器联结组标号的步骤为:要求会画1按规定的绕组端子标志,连接成所规定的联结组,画出联结图; 2标明绕组的同名端和相电压的方向;3判断同一相的相电压相位,画出高、低压对称边三相电势的相量图,将相量E AX 与E ax 的头A 和a 画在一起;4根据高、低压线电势的相位差确定联结组的标号;第七节 变压器的稳态运行描述变压器运行特性的主要指标有两个:电压调整率和效率第三章课后习题3-13、3-16第四章 异步电机一—三相异步电动机的基本原理交流电机有两大类:异步电机和同步电机;第一节 三相异步电动机的工作原理及结构三相异步电动机实现机电能量转换的前提是产生一种旋转磁场;1、旋转磁场的产生当三相对称绕组接上三相对称电源,就产生旋转磁场;对称三相电流通入对称三相绕组时,必然会产生一个大小不变、转速一定的旋转磁场;2、三相异步电动机的工作原理3、三相异步电动机的转速与运行状态转差n s-n 的存在是异步电动机运行的必要条件;转差表示为同步转速的百分值,称为转差率,用s 表示;100%s s n n s n -=⨯s nn>n s s<0 发电机状态n<0 s>1 电磁制动状态n<n s 0<s<1 电动机状态第二节三相异步电动机的铭牌数据一、交流绕组的一些基本知识和基本量1、电角度与机械角度电机圆周按电角度计算就为p×360°,而机械角度总是360°; 电角度= p×机械角度2、线圈3、节距一个线圈的两个边所跨定子圆周上的距离称为节距,用y1表示,一般用槽数计算;节距应该接近极距τ;4、槽距角α——相邻槽之间的电角度称为槽距角若Q1为定子槽数,p为极对数,则槽距角5、每极每相槽数q ——每一极每相绕组所占槽数,用符号q表示m——相数第四节三相异步电动机的定子磁动势及磁场一、单相绕组的磁动势–脉振磁动势整距线圈所形成的磁动势在任何瞬时,空间的分布总是一个矩形波,而在空间上任意一点的大小随电流的变化而变化;这种从空间上看位置固定,从时间上看,大小在正负最大值之间变化的磁动势,称为脉振磁动势;脉振磁动势的频率就是交流电流的频率;对于单相绕组磁动势,可以归纳以下几点:1单相绕组的磁动势是一种空间位置上固定、幅值随时间变化的脉振磁动势;2单相绕组的基波磁动势幅值的位置与绕组的轴线相重合;3单相绕组脉振磁动势中的基波磁动势幅值为;而v次谐波磁动势幅值为:;谐波次数越高,幅值越小;二、三相绕组的磁动势–旋转磁动势三相基波合成磁动势具有以下特性:1是一个旋转磁动势,转速均为同步转速,旋转方向决定于电流的相序;2幅值F1不变,为各相脉振磁动势幅值的3/2倍,旋转幅值轨迹是一个圆;3三相电流中任意一相电流瞬时值达到最大值时,三相基波合成磁动势的幅值,恰好在这一组绕组的轴线上;第五章异步电机二—三相异步电动机运行原理及单相异步电动机第一节三相异步电动机运行时的电磁过程空载的情况下:n≈n s, I2≈0当电机带有机械负载后:n<n s, 这时,气隙中以同步转速旋转和主磁场与转子之间的相对转速增大,于是在转子绕组中感应电动势E2s和转子电流I2都增大;不能再认为E2s≈0及I2≈0,而且I2也形成了磁动势F2;第五章课后习题5-13、5-14、5-15第七章控制电机这些电磁元件就是各式各样的小功率电动机,根据它们的作用,我们统称其为控制电机;第一节伺服电动机伺服电动机具有服从控制信号的要求而动作的职能,在信号来之前,转子静止不动;信号来到之后,转子立即转动;当信号消失,转子能及时自行停转;按照自动控制系统的要求,伺服电动机必须具备可控性好、稳定性高和适应性强等基本性能;常用的伺服电动机有:交流伺服电动机、直流伺服电动机一、交流伺服电动机一控制方法交流伺服电动机的控制方法有以下三种方式:1、幅值控制——保持控制电压相位不变,改变其幅值进行控制;2、相位控制——保持控制电压幅值不变,改变其相位进行控制;3、幅—相控制——同时改变控制电压的幅值和相位来进行二机械特性和调节特性1、机械特性机械特性是指控制电压信号一定时,电磁转矩随转速变化的关系;2、调节特性调节特性是指输出转矩一定时,转速与控制电压信号变化的关系; 二、直流伺服电动机由直流电动机的调速方法可知,改变电枢电压或改变励磁电流调速时,特性有所不同;所以直流伺服电动机可由励磁绕组励磁,用电枢绕组进行控制;或由电枢绕组励磁,用励磁绕组进行控制;由于直流伺服电动机的功率不大,可以用永久磁铁制磁极,省去励磁绕组;直流伺服电动机多采用电枢控制方式;第二节测速发电机测速发电机是一种检测元件,其基本任务是将机械转速转换为电气信号;按照测速发电机的职能,对它的要求是:1输出电压与转速成严格的线性关系,以达到高的精确度;2输出电动势斜率要大,即转速变化所引起的电动势的变化要大,以满足灵敏度的要求;测速发电机也有交、直流两大类;第三节自整角机第四节旋转变压器第八章电力拖动系统的动力学基础第一节 电力拖动系统的运动方程式电力拖动装置可分为电动机、工作机构、控制设备及电源等四个组成部分一、运动方程式 电动机在电力拖动系统必须遵循两个基本方程 对于直线运动对于旋转运动二、运动方程式中转矩的正负符号分析运动方程式的一般形式式中正、负号的规定,预先规定某一旋转方向为正方向,如果转矩T 的方向与参考方向相同取正号,相反取负号;而阻转矩Tz 的方向如果与参考方向相同时取负号,相反取正号;1、当 z T T =0d d =t n 电动机静止或等速旋转,电力拖动系2、当 zT T >0d d >t n 电力拖动系统处于加速状态 3、当z T T <0d d <t n 电力拖动系统处于减速状态 tv mF F z d d =-tJ T T z d d Ω=-tn GD T T z d d 375)(2=±-±第四节 生产机械的负载转矩特性在运动方程式中,阻转矩或称负载转矩Tz 与转速n 的关系Tz=f n 即为生产机械的负载转矩特性;大多数生产机械的负载转 矩可归纳为以下三种类型一、恒转矩负载特性恒转矩负载特性,就是指负载转矩T z 与转速n 无关的特性,即当转速变化时,负载转矩T z 保持常值;二、通风机负载特性通风机负载的转矩与转速大小有关,基本上与转速的平方成正比 ;为反抗性负载;三、恒功率负载特性第九章 直流电动机的电力拖动第一节 他励直流电动机的机械特性电动机的机械特性是指电动机的转速n 与电磁转矩T 的关系 n =fT一、固有机械特性与人为机械特性当他励电动机电压及磁通均为额定值时,电枢没有串联电阻时的机械特性称为固有机械特性; 一电枢串联电阻时的人为机械特性二改变电压时的人为机械特性三减弱电动机磁通时的人为机械特性四、电力拖动稳定运行的条件2Kn T z =T C C R C U n e a e 2N T N N ΦΦ-=对于恒转矩负载,要得到稳定运行,电动机需要具有向下倾斜的机械特性,如果电动机的机械特性向上翘,则不能稳定运行;第二节他励直流电动机的起动一、他励直流电动机的起动方法第三节他励直流电动机的制动他励直流电动机有两种运转状态1电动运转状态——电动机转矩的方向与转速的方向相同,此时电网向电动机输入电能,并变为机械能以带动负载;2 制动运转状态——电动机转矩与转速的方向相反,此时,电动机吸收机械能并转化为电能;制动的目的是使拖动系统停车,最简单的方法是断开电源,使系统停下来,这叫自由停车,自由停车需要较长的时间;如果希望制动过程加快,可以使用电磁制动器,也可使用电气控制方法,常用的有能耗制动、反接制动、在调速系统减速过程中,还可应用回馈制动;第四节他励直流电动机的调速采用一定的方法来改变生产机械的工作速度,以满足生产的需要,这种方法通常称为调速;要改变电动机的转速,可以改变电枢电压Ua或改变励磁磁通Φ;但提高电动机的电枢电压受到绕组绝缘耐压的限制,根据规定,只允许比额定电压提高30%,因此提高电压的可能范围不大,实际上改变电压Ua常应用在减压时,从额定转速向下调速;改变励磁磁通,增加Φ的可能性也不大,因为一般电动机的额定磁通已设计得使铁心接近饱和;因此,改变励磁磁通一般应用也在减弱磁的方面,称为弱磁调速,使转速从额定值向上调节;在调速的范围要求较宽等情况下,可结合应用上述二种方法,即在额转速以下降低电压,而在额定转速以上弱磁;一、调速指标 最主要的有两大指标:即技术指标与经济指标 一调速的技术指标1. 调速范围 D最大转速与最小转速之比,或最大线速度与最小线速度之比;2.静差率或称相对稳定性在一条机械特性上运行时,电动机由理想空载加载到额定负载,所出现的转降ΔnN 与理想空载转速比之;电动机的机械特性愈硬,则静差率愈小,相对稳定性就愈高;3.平滑性在一定的调速范围内,调速的级数愈多则认为调速愈平滑;它是相邻两级转速或线速度之比; 值愈接近于1,则平滑性愈好;时称为无级调速,即转速连续可调,级数接近无穷多,此时调速的平滑性最好;4.调速时的容许输出或调速时的功率与转矩容许输出是指电动机在得到充分利用的情况下,在调速过程中轴上所能输出的功率和转矩;%100%100000⨯-=⨯=∆=n n n n n N N δ11--==i ii i v v n n ϕ二调速的经济指标调速的经济指标决定于调速系统的设备投资及运行费用,而运行费用又决定于调速过程的损耗,它可用设备的效率来说明; 二、降低电枢端电压调速一电枢串联电阻电枢串电阻的调速方法的调速指标不高,调速范围不大,调速的平滑性不高,并且是有级调速;二降低电源电压三、弱磁调速弱磁调速的优点是,在功率较小的励磁电路中进行调节,控制方便,能量损耗小,调速的平滑性较高;由于调速范围不大,对于普通电动机最多为D=2,对于特殊设计的额定转速较低的调磁电动机D=3—4,因此,常和额定转速以下的降压调速配合应用,以扩大调整范围;四、调速时的功率与转矩第十章 三相异步电动机的机械特性及各种运转状态第一节 三相异步电动机机械特性的三种表达式与直流电动机相同,三相异步电动机的机械特性也是由转速与转矩间的关系n =fT ;其表达式有三种形式;一、物理表达式二、参数表达式得异步电动机的机械特性参数表达式 PP P Δ22+=η122cos T m T C I ''=ϕΦ三、实用表达式第二节 三相异步电动机的固有机械特性与人为机械特性一、固有机械特性固有机械特性是指异步电动机工作在额定电压及额定频率下,电动机按规定的接线方法接线,定子及转子电路中不外接电阻电抗或电容时所获得的机械特性曲线 ;二、人为机械特性第三节 三相异步电动机的各种运转状态一、电动运转状态电动运转状态的特点是电动机转矩的方向与旋转的方向相同;二、制动运转状态异步电动机可工作于回馈制动,反接制动及能耗制动三种制动状态;其共同特点是电动机转矩与转速的方向相反,以实现制动;此时,电动机由轴上吸收机械能,并转换为电能;第十一章 三相异步电动机的起动及起动设备的计算第一节 三相异步电动机的起动方法 ()221222112s R U m s T R R X X s φ'='⎛⎫'+++ ⎪⎝⎭Ω1max 212212m m m m R T s R T s R s s s s R ⎛⎫+ ⎪'⎝⎭=++'一、三相笼型异步电动机的起动方法一直接起动二减压起动有四种降压起动的方法1.电阻减压或电抗减压起动电动机在起动过程中,在定子电路串联电阻或电抗,起动电流在电阻或电抗上将产生压降,降低了电动机定子绕组上的电压,起动电流也减小了;2.自耦补偿起动自耦减压起动是利用自耦变压器降低加到电动机定子绕组的电压,以减小起动电流;3.星形一三角形Y—Δ起动4.延边三角形起动三软起动方法1.限流或恒流起动方法;用电子软起动器实现起动时限制电动机起动电流或保持恒定的起动电流,主要用于轻载软起动;2.斜坡电压起动法;用电子软起动实现电动机起动时定子电压由小到大斜坡线性上升,主要用于重载软起动;3.转矩控制起动法;用电子软起动实现电动机起动时起动转矩由小到大线性上升,起动的平滑性好,能够降低起动时对电网的冲击,是较好的重载软起动方法;4.转矩加脉冲突跳控制起动法;此方法与转矩控制起动法类似,其差别在于:起动瞬间加脉冲突跳转矩以克服电动机的负载转矩,然后转矩平滑上升;此法也适用于重载软起动;5.电压控制起动法;用电子软起动器控制电压以保证电动机起动时产生较大的起动转矩,是较好的轻载软起动方法;二、三相绕线转子异步电动机的起动方法三相绕线式转子异步电动机的起动方法有:转子串联电阻和转子绕组串联频敏变阻器两种起动方法;第三节三相笼型异步电动机定子对称起动电阻的计算第四节三相笼型电动机起动自耦变压器的计算第五节三相绕线转子异步电动机转子对称起动电阻的计算。
电机及拖动基础知识要点复习汇编
电机复习提纲第一章:一、概念:主磁通,漏磁通,磁滞损耗,涡流损耗磁路的基本定律:安培环路定律: 磁路的欧姆定律作用在磁路上的磁动势 F 等于磁路内的磁通量 Φ乘以磁阻R m磁路与电路的类比:与电路中的欧姆定律在形式上十分相似。
E=IR磁路的基尔霍夫定律(1)磁路的基尔霍夫电流定律穿出或进入任何一闭合面的总磁通恒等于零(2)磁路的基尔霍夫电压定律沿任何闭合磁路的总磁动势恒等于各段磁路磁位差的代数和。
第二节 常用铁磁材料及其特性一、铁磁材料1、软磁材料:磁滞回线较窄。
剩磁和矫顽力都小的材料。
软磁材料磁导率较高,可用来制造电机、变压器的铁心。
2、硬磁材料:磁滞回线较宽。
剩磁和矫顽力都大的铁磁材料称为硬磁材料,可用来制成永久磁铁。
二、铁心损耗1、磁滞损耗——材料被交流磁场反复磁化,磁畴相互摩擦而消耗 NiHL的能量。
2、涡流损耗——铁心内部由于涡流在铁心电阻上产生的热能损耗。
3、铁心损耗——磁滞损耗和涡流损耗之和。
第二章:一、尽管电枢在转动,但处于同一磁极下的线圈边中电流方向应始终不变,即进行所谓的“换向”。
二、一台直流电机作为电动机运行——在直流电机的两电刷端上加上直流电压,电枢旋转,拖动生产机械旋转,输出机械能;作为发动机运行——用原动机拖动直流电机的电枢,电刷端引出直流电动势,作为直流电源,输出电能。
三、直流电机的主要结构(定子、转子)定子的主要作用是产生磁场转子又称为“电枢”,作用是产生电磁转矩和感应电动势要实现机电能量转换,电路和磁路之间必须在相对运动,所以旋转电机必须具备静止的和转动的两大部分,且静止和转动部分之间要有一定的间隙(称为:气隙)四、直流电机的铭牌数据直流电机的额定值有:1、额定功率P N(kW)2、额定电压U N(V)3、额定电流I N(A)4、额定转速n N(r/min)5、额定励磁电压U fN(V)五、直流电机电枢绕组的基本形式有两种:一种叫单叠绕组,另一种叫单波绕组。
单叠绕组的特点:元件的两个端子连接在相邻的两个换向片上。
电机拖动重点整理归纳
--第二章一、负载的转矩特性:负载的转矩特性是指生产机械工作机构的负载转矩与转速之间的关系即: n=f(T L)___ 恒转矩负载特性恒转矩负载是指负载转矩为常数,其大小与转速 n 无关 , 恒转矩负载分反抗性恒转矩负载和位能性恒转矩负载。
反抗性恒转矩负载特性 :恒值负载转矩 Tf 总是与转速 nf 的方向相反,即作用方向是阻碍运动的方向。
当正转时 nf为正, T f 与 nf 方向相反,应为正,即在第一象限 , 当反转时 n 为负, T 与 n 方向相反,应为负,即在第三象限;当转速 n =0 时外f f f f特点 :T的方向无f 的方向与 nf 加转矩不足以使系统运动。
位能性恒转矩负载特性具有固定不变的方向。
例如:起重机的提升机构,不论是提升重物还是关。
T f下放重物,重力的作用总是方向朝下的,即重力产生的负载转矩方向固定。
当 >0,是帮助运动的拖 ; 当 n <0 时,T n >0 时, T >0,是阻碍运动的制动性转矩 f f f f 动性转矩。
故转矩特性在第一和第四象限。
恒功率负载转矩特性特点:当转速 n 变化时,负载功率基本不变。
电力拖动系统的稳定运行的必要条件:动转矩为零,即 T=T不变,nL第三章直流电机的用途:把机械能转变为直流电能的电机为直流发电机;把直流电能直流发电机用来作为直流电动机和交流发电机的励磁直转变为机械能的电机是直流发电机。
电刷接直流电源;直流电源通过线圈不由原动机拖动;流电源。
直流电动机的工作原理:静止的电刷与随电枢转动的换向器的滑动接触把直流电源直流发电机的工作转换成电枢中的交流电,保证电枢转矩的方向不变,电枢保持逆时针旋转。
代替交流发电机的两个滑环,电刷接触的换向片用两个相对放置的导电片 : ( 换向片 ) 原理极一侧的电刷 +),S N始终是相同一侧的线圈边,所以极一侧的电刷得到的电压始终是(。
- 得到的电压始终是()直流电机的可逆性:一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行,只是外界条件不同而已。
电机拖动实验总结
电机拖动实验总结
电机拖动实验是指通过电机的转动来推动物体移动的实验。
在电机拖动实验中,主要包括电机与物体的连接方式以及电机转动的参数对物体移动的影响等内容。
首先,电机与物体可以通过多种方式连接,例如通过装配齿轮系统或者通过直接将电机轴与物体轴连接。
电机拖动实验时需要选择合适的连接方式,使得电机与物体能够有效地传递力量和转动。
其次,影响物体移动的因素包括电机的转速、扭矩以及装置的质量等。
在实验中可以通过改变电机的转速和扭矩来观察物体移动的速度和力的大小。
同时,物体的质量也会对物体移动的效果产生一定影响,较大的质量可能需要更大的力来推动。
最后,在电机拖动实验中还需要注意一些实验技巧。
例如,需要保持电机与物体的连接稳固,避免摩擦或松动造成的能量损失;同时,需要合理选择电机的转速和扭矩,以及物体的质量,使得实验结果更加准确可靠。
总之,电机拖动实验通过观察电机转动对物体移动的影响,可以帮助我们了解电机的工作原理和性能,并且可以应用于不同领域的实际应用中,如机械运动、运输等。
电机拖动知识点总结
电机拖动知识点总结电机拖动是电机作为驱动源,通过与被驱动设备的联接和控制,实现对被驱动设备的运动控制和传动。
电机拖动技术包括电机的选择、控制、传动系统设计等方面的知识。
本文将对电机拖动的相关知识进行总结,包括电机种类、选择原则、控制方法、传动系统设计等内容,以期帮助读者全面了解电机拖动技术。
一、电机种类根据电机工作原理和结构特点,电机可以分为直流电机和交流电机两大类。
1.直流电机:直流电机是利用电流的方向不变而大小可调来产生磁场的性质,使电机的旋转方向、转速、转矩等参数都可以很方便地通过改变电流来实现。
直流电机的种类繁多,包括有刷直流电机、无刷直流电机等。
2.交流电机:交流电机是利用交流电产生的磁场来驱动电机转动,按照不同的工作原理,交流电机可以分为异步电动机、同步电动机、感应电动机等几种类型。
以上两类电机各有其特点和适用范围,选择合适的电机种类需要根据具体的使用需求和工程要求来衡量。
二、电机选择原则在电机拖动系统设计中,选择合适的电机对系统的性能和运行效果起着至关重要的作用,因此需要遵循一定的选择原则。
1.需要根据所驱动机械的工作要求确定电机的功率和转速,然后再根据电机的转矩特性确定所需的电机型号。
2.考虑电机的动态响应特性,根据所驱动机械的运动特性和控制要求来选择合适的电机型号,以确保系统的动态性能满足需求。
3.考虑电机的工作环境和使用条件,选择具有较高防护等级和适应性的电机,以保证其在各种恶劣环境下的可靠性和稳定性。
4.根据电机所需的控制方式和驱动方式,选择相应的电机驱动控制器和传感器等辅助设备,使电机与控制系统能够有效地协同工作。
电机的选择不仅仅是根据其工作参数和性能来确定,还需要考虑到实际的使用环境和工程要求,以保证电机能够在拖动系统中发挥最佳的性能和效果。
三、电机控制方法电机的控制方法是电机拖动系统中的关键技术之一,不同的控制方法可以实现对电机速度、转速、转矩等参数的有效控制,从而实现对被驱动设备的精确、稳定的运动控制。
电机及拖动基础知识要点复习
电机及拖动基础知识要点复习一、电机的工作原理和分类:1.电机的工作原理:电机是将电能转换为机械能的装置,它的工作原理基于电磁感应和电磁力的作用。
2.电机的分类:根据电源的类型可分为直流电机和交流电机;根据工作原理可分为感应电动机、同步电动机和直流电动机;根据工作方式可分为单相电机和三相电机。
二、电机的结构和性能参数:1.电机的结构:电机主要包括定子、转子、端盖、轴和轴承等零部件,其中定子是固定的,转子是旋转的。
2.电机的性能参数:电机的主要性能参数有额定功率、额定电压、额定电流、额定转速和功率因数等,这些参数对电机的选型和运行具有重要意义。
三、电机的运行和控制方式:1.电机的运行方式:电机的运行方式可分为直接启动、正反转、调速和制动等,不同的运行方式适用于不同的工作场合。
2.电机的控制方式:电机的控制方式可分为手动控制和自动控制,其中自动控制常用的方法有PLC控制、变频器控制和电脑控制等。
四、拖动系统的组成和工作原理:1.拖动系统的组成:拖动系统主要由电机、传动装置和负载组成,其中电机提供动力,传动装置将电机的转动传递给负载。
2.拖动系统的工作原理:拖动系统的工作原理基于动力学和传动学的原理,电机通过传动装置将能量传递给负载,实现对负载的控制和操作。
五、拖动系统的应用领域:1.工业领域:拖动系统在工业生产中广泛应用,如机床、输送设备、起重设备等,它们能够提高生产效率和产品质量。
2.交通领域:拖动系统在交通运输中的应用主要包括电动汽车、电动车辆、电梯、自动扶梯和升降机等。
3.家居领域:拖动系统在家居生活中的应用主要包括家电、空调、洗衣机、电饭煲和电动窗帘等。
通过以上要点的复习,可以加深对电机及拖动基础知识的理解和掌握。
此外,还可以结合电机及拖动的实际应用案例进行学习,提高对相关概念和原理的理解能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章一、负载的转矩特性:负载的转矩特性是指生产机械工作机构的负载转矩与转速之间的关系即:n=f(TL)___恒转矩负载特性恒转矩负载是指负载转矩为常数,其大小与转速n无关,恒转矩负载分反抗性恒转矩负载和位能性恒转矩负载。
反抗性恒转矩负载特性:恒值负载转矩Tf 总是与转速nf的方向相反,即作用方向是阻碍运动的方向。
当正转时nf 为正,Tf与nf方向相反,应为正,即在第一象限,当反转时nf 为负,Tf与nf方向相反,应为负,即在第三象限;当转速nf=0时外加转矩不足以使系统运动。
位能性恒转矩负载特性特点:Tf 的方向与nf的方向无关。
Tf具有固定不变的方向。
例如:起重机的提升机构,不论是提升重物还是下放重物,重力的作用总是方向朝下的,即重力产生的负载转矩方向固定。
当nf>0时,Tf >0,是阻碍运动的制动性转矩;当nf<0时,Tf>0,是帮助运动的拖动性转矩。
故转矩特性在第一和第四象限。
恒功率负载转矩特性特点:当转速n变化时,负载功率基本不变。
电力拖动系统的稳定运行的必要条件:动转矩为零,即n不变,T=TL第三章直流电机的用途:把机械能转变为直流电能的电机为直流发电机;把直流电能转变为机械能的电机是直流发电机。
直流发电机用来作为直流电动机和交流发电机的励磁直流电源。
直流电动机的工作原理:线圈不由原动机拖动;电刷接直流电源;直流电源通过静止的电刷与随电枢转动的换向器的滑动接触把直流电源转换成电枢中的交流电,保证电枢转矩的方向不变,电枢保持逆时针旋转。
直流发电机的工作原理:用两个相对放置的导电片(换向片)代替交流发电机的两个滑环,电刷接触的换向片始终是相同一侧的线圈边,所以N极一侧的电刷得到的电压始终是(+),S极一侧的电刷得到的电压始终是(-)。
直流电机的可逆性:一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行,只是外界条件不同而已。
如果用原动机拖动电枢恒速旋转,就可以从电刷端引出直流电动势而作为直流电源对负载供电;如果在电刷端外加直流电压,则电动机就可以带动轴上的机械负载旋转,从而把电能转变成机械能。
这种同一台电机能作电动机或作发电机运行的原理,在电机理论中称为可逆原理。
主要结构:直流电机由定子、转子两大部分构成。
定子的作用是产生主磁场和在机械上支撑电机,它主要由主磁极、机座、电刷、端盖和轴承组成。
主极的用是在定转子之间的气隙中建立磁场,使电枢绕组在此磁场的作用下感应电动势和产生电磁转矩。
大多数直流电机的主磁极都是由直流电流来励磁的,主磁极上还装有励磁线圈。
只有小直流电机的主磁极才用永磁磁铁,这叫永磁直流电机.电刷装置:电刷的作用是把转动的电枢绕组与静止的外电路相连接,并与换向器相配合,起到整流或逆变器的作用。
换向极:换向极又称附加极或间极,其作用是用以改善换向。
换向极装在相邻两主极之间,它也是由铁心和绕组构成。
直流电机转子部分:电枢铁心、电枢绕组、换向器、风扇、转轴和轴承等单叠绕组1)每个极下的元件组成一条支路,并联支路对数a等于极对数p:a=p2)正负电刷间感应电动势最大,被电刷短路的元件里感应的电动势最小。
3)电刷杆数等于极数。
电枢电动势(公式):电枢电动势是指直流电机正、负电刷之间感应的电动势,也是电枢绕组每个支路里的感应电动势。
电磁转矩(公式)P47内容(励磁磁通势和电枢反应磁通势)==直流发电机:电枢电动势—输出电动势(与电枢电流同方向)电磁转矩—制动(与转速方向相反)直流电动机:电枢电动势—反电动势(与电枢电流反方向)电磁转矩—拖动(与转速方向相同)。
PM(电磁功率)既是机械性质又是电性质的功率,反映了机械能转换成电能的实质.他励直流电动机的机械特性是指电动机加上一定的电压U和一定的励磁电流If,并在电枢回路中串入电阻R,电磁转矩与转速之间的关系,他励直流电动机固有机械特性是一条斜直线,跨越三个象限,特性较硬。
机械特性只表征电动机电磁转矩和转速之间的函数关系,是电动机本身的能力,至于电动机具体运行状态,还要看拖动什么样的负载。
固有机械特性是电动机最重要的特性,在此基础上,很容易得到电动机的人为机械特性。
人为机械特性:1.电枢回路串电阻的人为机械特性:n0不变,R增大,⊿n增大,特性变软,一组放射形直线2.改变电枢电压的人为机械特性:1)斜率不变,各条特性互相平行,T一定时,Δn不变,;2)n0与U成正比。
3.减小气隙磁通量的人为机械特性:Φ越小,n0越高,β越大,机械特性变软,T一定时,Δn也变大。
第四章除微型电机外,一般直流电动机不允许直接启动。
起动条件:满磁通起动;IS ≤(2~2.5)IN;TS≥(1.1~1.2)TN启动方式:1电枢回路串电阻启动;启动电流为is=un/(ra+r)负载转矩TL已知,根据启动条件的要求确定R的大小目标:(并且)保证电磁转矩持续较大及电流持续较小;电枢回路串电阻起动:一般采用多级电阻分级起动,起动过程中起动电阻逐步切除。
2降电压启动。
降低电源电压U,启动电流为is=u/ra,负载转矩TL已知,根据启动条件要求,可以确定U的大小;逐渐升高电压U,直至最后升高到UN(为了保持启动过程中电磁转矩一直较大及电枢电流一直较小)4.2他励直流电动机的调速:调速的性能指标是决定电动机选择哪一种调速方法的依据,主要的性能指标有四个方面:调速方式、调速范围与静差率、调速的平滑性、调速的经济性。
改变传动机构的传动比改变工作机构的速度,称为机械调速。
人为改变电动机的参数(如电压、励磁电流或电枢回路电阻),使同一负载得到不同转速,称为电气调速。
直流电动机的调速方法:(1)电枢串电阻调速只能在额定转速(基速)以下调速,一般称为由基速向下调速。
特点:①机械特性变软,受负载波动影响大;②在空载或轻载时,调速范围小③有级调速;④损耗大,电动机效率低它应用于对调速性能要求不高的场合(2)降低电源电压调速特点:①基速向下调速;②机械特性的硬度不变,速度稳定性好;③可实现无级调速;④损耗小,电动机效率高。
(3)弱磁调速(基速向上调)特点:a基速向上调速b可实现无级调速;c损耗小,电动机效率高。
通常与降低电源电压调速配合使用,可以得到较宽的调速范围,能较好地满足生产机械的要求。
----优点:在功率较小的励磁电路中进行调节,控制方便,能量损耗小,调速的平滑性较高。
缺由于电动机nmax不可能太高,主要受电动机机械强度及换向的限制。
另外,电机体积及耗材增多,不经济电动机允许输出转矩不变的调速方法称恒转矩调速。
电枢串电阻调速和降低电源电压调速都属于恒转矩调速,在保持电枢电流接近或等于额定值条件下,调速过程中电动机允许输出功率不变的调速方法称为恒功率调速。
弱磁调速属于恒功率调速。
最好的配合方式为:恒功率负载,采用恒功率的调速方法(弱磁调速);恒转矩负载,采用恒转矩的调速方法(变电压或变串入电阻调速)。
这样匹配,使电机在整个调速范围内容量能充分利用,且Ia=IN不变,电动机的调速转矩与负载一致时,电机容量能充分利用。
调速范围是指电动机在额定负载转矩调速时,其最高转速与最低转速之比,静差率或称转速变化率,是指电动机由理想空载到额定负载时转速的变化率。
注意:静差率越小,转速的相对稳定性越好,负载波动时,转速变化也越小。
(1)n0一定,硬度越大,静差率越小,稳定性越好;(2)硬度一定,n越大,静差率越小。
调速的平滑性a无级调速的平滑性最好;b有级调速的平滑性用平滑系数表示:相临两极转速中,高一级转速与低一级转速之比。
调速的经济性主要考虑调速设备的初投资、调速时电能的损耗、运行时的维修费用4.3他励直流电动机的电动与制动运行他励直流电动机拖动各种类型的负载运行时,若改变其电源电压、磁通及电枢回路所串电阻,工作点就会分布在四个象限之内。
在n-T二维坐标系中,若T与n同方向(同正同负),则电动机运行在电动状态。
若T与n反方向,则电动机运行在制动状态。
电动运行:当电机运行在第Ⅰ和第Ⅲ象限时,电机分别工作在正向和反向电动运行状态。
当电机运行在第Ⅱ和第Ⅳ象限时,电机处于制动运行状态。
在电动运行状态时,电机的电磁转距是拖动性转矩,而负载转矩为制动转矩。
能耗制动:倒拉反转和反接制动回馈制动功率流向负载机械能→电枢绕组→电能→电枢回路总电阻热能反接制动1电枢电压反向的反接制动——迅速停机回馈制动(发电状态)特点:n>n0,因而E>Ua,电机处于发电状态,降低电源电压调速:增强磁通调速第六章6.2.1电枢绕组:三相单层集中整距绕组:每一相只有一个整距线圈,定子上每个槽里只有一个线圈边。
这种绕组除了感应电动势的波形不理想外,电枢表面的空间也没有充分利用,不如采用分布绕组好三相单层分布绕组:基波电动势星形相量图最多可以并联的支路有p个当电机每相的总线圈数一定时,如用一路串联,则每相基波电动势要比并联时大,而电流比并联时的总电流小6.2.2三相双层绕组是指定子上每个槽里能放两个圈边,每个圈边为一层。
一个线圈有两个圈边,电机线圈的总数等于定子的槽总数。
双层绕组的优点是线圈能够任意短距,对改善电动势波形有好处6.2.3绕组的谐波电动势-实际的电机气隙里磁密的分布不完全都是基波,尚有谐波,如三次、五次、七次等奇数次谐波。
所谓三次、五次、七次谐波磁密,即在一对磁极极距中有三、五、七个波长的正弦形磁密波。
这些谐波也要在各槽里的导体中感应出各次谐波电动势。
当绕组采用了短距、分布以及三相连接时,可以使各次谐波电动势大大被消弱,甚至使某次谐波电动势为零。
当然,短距、分布也能降低基波电动势,只要设计合理,让基波电动势消弱的少,而大大消弱谐波电动势就可以了。
三相星接和角接,在三相线电动势中不会有三次谐波及三的倍数次谐波电动势出现。
这是由于三相三次谐波以及三的倍数次谐波电动势在时间相位上同相所造成的。
6.3磁通势介绍:在电机里,不管什么样的绕组,当流过电流时,都要产生磁通势。
所谓磁通势,指的是绕组里的全电流,或安培数。
交流电机电枢绕组产生的磁通势与直流电机相比,要复杂一些。
分析磁通势的大小及波形等问题,应从两大方面来考虑:1绕组在定子空间所在的位置;2再考虑该绕组流过的电流,在时间上又是如何变化的。
交流绕组产生的磁通势,既是空间的函数,又是时间的函数。
整距线圈磁通势从定子到转子的方向作为正方向。
线圈电流:i=根号2icoswt,磁通势的大小是由电流的大小决定的,当电流按正弦规律变化时,磁通势的大小也随之按正弦规律变化,称为脉振波。
磁通势交变的频率与电流的频率一样。
最大幅值:1/2根号2INy该磁通势的极数为一对,与电机的极数对数相等。
四极电机绕组产生的磁通势:该磁通势的极数为两对,与电机的极数对数相等2、磁通势展开:空间矩形波可用傅氏基数展成无穷多个正弦波。