第三章机器人运动学

合集下载

第三章机器人运动学

第三章机器人运动学

第三章机器人运动学机器人运动学是研究机器人如何在二维或三维空间中进行运动的学科。

它涉及到机器人的轨迹规划、运动控制和路径规划等重要内容。

本章将介绍机器人运动学的基本概念和常用模型,帮助读者全面了解机器人的运动规律和控制原理。

1. 机器人运动学的基本概念机器人运动学是研究机器人位置和姿态变化的学科,包括正运动学和逆运动学两个方面。

正运动学研究机器人的末端执行器的位置和姿态如何由关节变量确定;逆运动学则研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值。

机器人的运动学建模一般采用DH(Denavit-Hartenberg)参数表示方法。

DH 参数是由Denavit和Hartenberg提出的一种机器人坐标系的选择和旋转轴的确定方法。

通过定义一系列关节坐标系,建立起机器人的坐标系链,并确定各个关节的旋转轴和约定的方向,可以方便地描述机器人的运动学特性。

2. 机器人正运动学机器人正运动学是研究机器人末端执行器位置和姿态如何由关节变量确定的问题。

在机器人的正运动学中,常用的方法有几何法和代数法。

2.1 几何法几何法是一种较为直观的方法,通过对机器人各个关节坐标系的位置和旋转进行推导,得到机器人末端执行器的位置和姿态。

几何法适用于无约束和无外力干扰的情况,可以简单快速地推导出机器人的正运动学方程。

2.2 代数法代数法是一种基于运动学链的代数运算的方法,通过DH参数建立起机器人的坐标系链,并通过矩阵运算推导出机器人的正运动学方程。

代数法在机器人正运动学的推导和计算过程中更具有普适性和灵活性。

3. 机器人逆运动学机器人逆运动学是研究机器人如何通过末端执行器的位置和姿态来确定关节变量的值的问题。

机器人逆运动学在机器人运动规划和路径控制中起到重要的作用。

机器人逆运动学的求解一般采用迭代方法,通过迭代计算来逼近解析解,实现对机器人关节变量的求解。

逆运动学的求解过程中可能会出现奇异点和多解的情况,需要通过约束条件和优化方法来处理。

第3章 机器人运动

第3章 机器人运动

3 齐次坐标变换 3.1齐次坐标变换 3.1齐次坐标变换 假设机器人手部拿一个钻头在 工件上实施钻孔作业,已知钻 头中心P点相对于手腕中心的 位置,求P点相对于基座的位 置。
x i o
zb kb yb jb o, ib xb P
z
k
j
y
分别在基座和手部设置为固定坐标系和动坐标系, 如图所示。
P点 相对于固定坐标系
1 4 0 −3 0 7 0 1
T中第一列的三个元素(0,1,0)T表示活动坐标系的u轴与 固定坐标系三个坐标轴之间的投影,故u轴平行于y轴;T中第 二列的三个元素(0,0,1)T表示活动坐标系的v轴与固定坐 标系三个坐标轴之间的投影,故v轴平行于z轴;T中第三列的 三个元素(1,0,0)T表示活动坐标系的w轴与固定坐标系三 个坐标轴之间的投影,故轴w平行于x轴;T中第四列的三个元 素(4,-3,7)T表示活动坐标系的原点与固定坐标系原点之 间的距离。
b
3.3.2 举例 ⋅ i i
z kb k o, xb i o xi y j y j
1 0 0 R = 0 1 0 0 0 1
所以
x0 X 0 = y0 z0
0 0 1 0 0 1 0 0
1 0 A = Trans( x0 , y0 , z0 ) = 0 0
上面所述的坐标变换每步都是相对于固定坐标系进行的,也可以 相对于动坐标系进行变换: 坐标系 {o , : u , v, w} 初始与固定坐标系 {o:x, y, z} 相重合,首先相对于固定坐标系平移
4i − 3 j + 7 k ;然后绕活动系的v轴旋转900;最后绕w轴旋转900。
变换的几何表示如图所示。这是合成变换矩阵为

机器人学第3章 机器人运动学

机器人学第3章 机器人运动学

(3.46)
如果已知一个表示任意旋转的齐次变换,那么就能够 确定其等价欧拉角。
3.2 机械手运动方程的求解
21
3.2.2 滚、仰、偏变换解
直接从显式方程来求解用滚动、俯仰和偏转表示的变 换方程。 RPY变换各角如下:
atan2(n y , n x ) 180 atan2(n z , cn x sn y ) atan2( sa x ca y , so x co y )
0
T6 0T1 (1 )1T2 (2 )2T3 (3 )3T4 (4 )4T5 (5 )5T6 (6 )
3.1 机器人运动方向的表示
5
3.1.1 运动姿态和方向角
用横滚、俯仰和偏转角表示运动姿态 另一种常用的旋转集合是横滚(roll)、俯仰(pitch) 和偏转(yaw)。
图3.3 用横滚、俯仰和偏转表示机械手运动姿态
3.1 机器人运动方向的表示 6
3.1.1 运动姿态和方向角
对于旋转次序,规定:
1
(3.16)
3.1 机器人运动方向的表示
15
3.1.3 连杆变换矩阵及其乘积
如果机械手与参考坐标系的相对关系是由变换 Z 来 表示的,而且机械手与其端部工具的关系由变换 E 表示,那么此工具端部对参考坐标系的位置和方向 可由变换 X 表示如下:
可求得:
X ZT6 E
T6 Z 1 XE 1
(3.52)
3.2 机械手运动方程的求解
22
3.2.3 球面变换解
把求解滚、仰和偏变换方程的技术用于球面坐标表示 的运动方程。 球面变换的解为:
atan2( p y , p x ), 180 atan2(cp x sp y , p z )

第三章_机器人运动学

第三章_机器人运动学

举例(example)
• 一个差动驱动机器人(针对图3.3所示机器人) 将滚动约束和滑动约束方程联合起来可得到式:
J1 ( s ) J C ( ) R( ) I 2 1 s 0
由于小脚轮无动力,并可在任何方向自由运动,因此可忽略第三个接触点。 其余两个轮不可操纵,因此 J1 ( s ) 和 C1 ( s ) 分别简化为
• 瞬时转动中心 ICR (instantaneous center of rotation) 在任何给定时刻,轮子必定沿着半径为 R的某个圆瞬时的运动,使得那个圆的中心 处在零运动直线上,该中心称为瞬时转动 中心。它可以位于沿零运动直线的任何地 方。

要使机器人运动存在一个单独的解,必须有 一个单独的ICR,即所有的零运动直线在一个单 独点相交。 • ICR的几何特性显示了机器人的活动性是机 器人运动上的独立约束数目的函数而不是轮子数 目的函数。 • 独立的滑动约束的数目可用 C1 (s ) 的秩来描述
.
.
.
.
(1)
• 其次,计算在YR 方向的贡献
由于没有一个轮子可以提供侧向运动, 所以沿YR 方向的速度总是零。 • 最后,计算旋转角速度分量。可独立的计 算各轮的贡献,且只要简单相加即可。 . .
r 1 r 2 1 2 2l 2l
(2)
ห้องสมุดไป่ตู้
• 联合式(1)和式(2)得到差动驱动机器人的 运动学模型如式(3)所示:
x I y
• 为了根据分量的移动描述机器人的移动, 需要将全局参考架下的移动映射到局部参 考框架下的运动。该运动可由正交旋转矩 阵来完成:
举例(example)

机器人技术基础课件第三章-机器人运动学精选全文完整版

机器人技术基础课件第三章-机器人运动学精选全文完整版
03T 01T12T 23T
如此类推,对于六连杆机器人,有下列矩阵:
06T 01T 12T 23T 34T 45T 56T
3.2 3.2 机械手运动学方程
26
0 6
T
3.1.4 连杆变换矩阵及其乘积
06T 01T12T 23T 34T 45T 56T
机器人运动学方程
此式右边表示了从固定参考系到手部坐标系的各连杆
一个六连杆机械手可具有六个自由度,每个连杆含 有一个自由度,并能在其运动范围内任意定位与定向。 其中三个自由度用于规定位置,而另外三个自由度用 来规定姿态。
8
3.1.1 连杆坐标系
机械手的运动方向
机器人手部的位置和姿态也可以
用固连于手部的坐标系{B}的位姿
来表示
关节轴为ZB, ZB轴的单位方向 矢量α称为接近矢量,指向朝外。
(1) 坐标系{i-1}绕xi-1轴转角αi-1,使Zi-1与Zi平行,算子为Rot(x, αi-1) ; (2) 沿Xi-1轴平移ai-1,使Zi-1和Zi共线, 算子为Trans(ai-1,0,0); (3)绕Zi轴转角θi; 使得使Xi-1与Xi平行, 算子为Rot(z,θi);
(4) 沿Zi轴平移di。使得i-1系和i系重合, 算子为Trans(0,0,di)。
3.2.1 机器人正运动学方程
连杆 i 1
2
3
连杆长 度ai-1
0
a0
a1
连杆偏距 di 0
0
d2
连杆扭角 αi-1 00
00
-900
关节角 θi
θ1(00) θ2(00) θ3(00)
3.2.1 机器人正运动学方程
该3自由度机器人的运动学方程为:

机器人基础与数字孪生系统 第3章 机器人运动学

机器人基础与数字孪生系统 第3章 机器人运动学
《机器人基础与数字孪生系统》
第3章 机器人运动学
【3.1齐次变换】
【3.1.1】位置描述——位置矢量
● 刚体位姿描述:齐次变换(矩阵)、矢量法、四元数
● 齐次变换法:
▲ 将运动、变换和映射与矩阵运算联系起来,具有明显的几何特征。
▲ 在操作臂运动/动力学、机器人控制算法、计算机图学、视觉信息处理、手-眼建模标
BT
0
● 齐次变换:
A
p = BA R B p A pBo
A
pBo

1
齐次坐标
A p BA R

1 0
旋转矩阵
齐次坐标
A
pBo B p

1 1
平移矢量
【3.2 DH约定和MDH约定】
【3.2.1】关节与连杆
Z
R3
● 自由度:物体能够相对于坐标系进行独立运动的数目称为自由度
最后根据右手定则确定Yi 轴。
i -1
i+1
i
P
Zi -1
Yi -1 d
i
ai - 1
{
θi
ai
X i -1
Oi -1
Yi
i
Zi
Oi
Xi
【3.2 DH约定和MDH约定】
【3.2.2】连杆坐标系
Ji
Ji-1
Ji+1
Ci-1
Ci+1
Ci
● 方法二:对于相邻两个连杆Ci 和Ci+1,有3个关节,
r31
r12
r22
r32
r13
r23
r33
A
B
R 是正交矩阵,满足如下关系:

第三章-工业机器人运动学-2运动学方程

第三章-工业机器人运动学-2运动学方程

(2.30)
cosθ -sinθ 0 0 1 0 0 a 1 0
00
sinθ cosθ 0 0 0 1 0 0 0 cosα -sinα 0
An = 0
0 1 0 0 0 1 d 0 sinα cosα 0
(2.31)
0
0 01 0001 0 0
01
cosθ -sinθcosα sinθsinα acosθ
对于棱形关节,an = 0,则式(2.32)A矩阵简化为
cosθ -sinθcosα sinθsinα 0
sinθ cosθcosα -cosθsinα 0
An = 0
sinα
cosα d
0
0
0
1
(2.33)
RPY(ø, θ, ψ) =
cosøcosθ cosøsinθsinψ – sinøcosψ cosøsinθcosψ + sinøsinψ 0
sinøcosθ sinøsinθsinψ + cosøcosψ sinøsinθcosψ–cosøsinψ 0
-sinθ
cosθsinψ
cosθcosψ
Sph(α,β,γ) = Rot(z,α)Rot(y,β)Trans(0,0,γ) Rot(y,-β) Rot(z,-α) (2.27)
Sph(α,β,γ) =
1 0 0 γcosαsinβ
0 1 0 γsinαsinβ
0 0 1 γcosβ
000
1
(2.28)
2.7 T6的确定 ( Specification of T6 )
Sph(α,β,γ) = Rot(z,α) Rot(y,β)
Trans(0,0,γ)
(2.23)

第三章机器人运动学

第三章机器人运动学
机器人运动学
XX,a click to unlimited possibilities
汇报人:XX
目录
01 机 器 人 运 动 学 基 础 03 机 器 人 运 动 学 求 解
方法
05 机 器 人 运 动 学 的 发
展趋势和挑战
02 机 器 人 关 节 类 型 和 运动学模型
04 机 器 人 运 动 学 在 实 践中的应用
迭代求解算法
迭代求解算法的基本思想是通过不断迭代逼近解的过程 常见的迭代求解算法包括雅可比迭代法、高斯-赛德尔迭代法等 迭代求解算法的收敛性和收敛速度是评价算法优劣的重要指标 迭代求解算法在机器人运动学中具有广泛的应用,可以提高机器人的运动精度和稳定性
Part Four
机器人运动学在实 践中的应用
添加标题
添加标题
添加标题
添加标题
变换矩阵:描述机器人末端执行器 相对于参考坐标系的位姿变化,由 平移和旋转矩阵组合而成。
齐次坐标和变换矩阵的应用场景: 机器人轨迹规划、姿态控制、碰撞 检测等。
运动学方程
定义:描述机器 人关节运动的数 学模型
建立方法:根据 机器人结构和运 动需求进行建模
求解过程:通过 数值计算得到机 器人末端执行器 的位置和姿态
添加标题
添加标题
添加标题
添加标题
变换矩阵:描述机器人末端执行器 在各个坐标系之间位置和姿态关系 的数学工具
逆运动学:已知目标位置和姿态, 求解机器人关节角度的过程
齐次坐标和变换矩阵
齐次坐标:描述机器人末端执行器 的位置和姿态,通过将实际坐标系 与参考坐标系进行转换得到。
齐次坐标和变换矩阵在机器人运动 学中的重要性:实现机器人末端执 行器的精确控制和定位。

机器人学基础_第3章机器人运动学

机器人学基础_第3章机器人运动学

移动连杆坐标系的建立
移动连杆坐标系的规定:
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿移动关节i轴线与关节i+1轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂线与关节i轴
动到使其原点与连杆i坐标系原点重合的地方。 • (4) 绕Xi旋转αi角,使Zi–1转到与Zi同一直线上。 • 连杆i–1的坐标系经过上述变换与连杆i的坐标系
重合。如果把表示相邻连杆相对空间关系的矩阵 称为A矩阵,那么根据上述变换步骤,从连杆i到 连杆i–1的坐标变换矩阵Ai为

(3.13)
• 同理,对联轴器的齐次坐标变换矩阵有 •
• 手部的位置矢量为固定参考系原点指向手 部坐标系{B}原点的矢量P,手部的方向矢 量为n、o、a。于是手部的位姿可用4 4 矩阵表示为


nX oX a X PX
T
nY
oY
aY
PY
nZ 0
oz 0
aZ 0
PZ 1
• 思考:
• ①说明位姿矩阵的左上角3×3矩阵的几何 意义。
• ②分别说明n, o, a, P的几何意义。
a1 = l 1 =100
a2 = l 2 =100
旧课复习与总结
转动连杆坐标系的建立
• 坐标轴Zi:与i+1关节的轴线重合; • 坐标轴Xi:沿连杆i两关节轴线的公垂线,指向i+1关节; • 坐标轴Yi:按右手直角坐标系法则确定; • 坐标原点Oi: (1)当关节i轴线和关节i+1轴线相交时,取交点; (2)当关节i轴线和关节i+1轴线异面时,取两轴线的公垂

机器人学-第3章_机器人运动学

机器人学-第3章_机器人运动学
构参数。如果机器人6个关节均为转动关节,18个固定参数可以用6组(ai-1, i-
1, di)表示。
空间机械臂坐标系选择
为了获得机械臂末端执行器在3维空间的位置和姿态,需要在每个连杆上 定义与连杆固连的坐标系来描述相邻连杆之间的位置关系。
根据固连坐标系所在连杆的编号对固连坐标系命名,如在固连在连杆i上 的固连坐标系称为坐标系{i}。
若ai =0,两Z轴相交,则选Xi垂于Zi和Zi+1 ,坐标系{i}的选择不是唯一的。
9
轴i θi
轴 i-1
连杆坐标系中连杆参数确定
θi-1
连杆 i-1
DH参数按以下方法确定:
Zi
ai =沿Xi轴,从Zi移动到Zi+1的距离;
Yi
i =绕Xi轴,从Zi旋转到Zi+1的角度;
di =沿Zi轴,从Xi-1移动到Xi的距离;
系{1}与坐标系{0}重合。
对于坐标系{n},原点位置可以在关节轴
上任意选取, Xn的方向也是任意的。但在选 择时应尽量使更多的连杆参数为1=0 1=-90o d1=0
Y2
a2=L2 2=0 q2=-90o d2=L1
(b)
Z1
X2
Y2
Y1
X1
a1=0 1=90o d1=0
相邻连杆间坐标变换公式
建立 {P}、{Q}和{R}3个中间坐标系, 其中{i}和{i-1}是固定在连杆 i 和 i-1 上的固 连坐标系,如图3-13所示。
连杆 i-1 Zi
ZP
Xi ai
di ZQ XQ
ZR
qi
Zi-1
Xi-1XR ai-1
XP
i-1
1. 绕 Xi-1 轴旋转 i-1角

课件:第三章机器人运动学

课件:第三章机器人运动学

• 3.1 机器人运动方程的表示
• 3.1.2 运动位置和坐标
• 一旦机械手的运动姿态由某个姿态变换规定之后,它在基坐标系中的 位置就能够由左乘一个对应于矢量p的平移变换来确定。
1 0 0 px
T6
0 0
1 0
0 1
p
y
某姿态变换
pz
0 0
0
1
Robotics运动学
3.1 机器人运动方程的表示
3.1.3 连杆变换矩阵 1.广义连杆(D-H坐标)
所有关节全为转动关节时: Zi坐标轴; Xi坐标轴; Yi坐标轴;
连杆长度ai;连杆两端关节公共法线距离 连杆扭角αi;垂直于ai所在平面内两轴的夹角 两连杆距离di;两连杆的相对位置di 两杆夹角θ 两连杆法线的夹角
Robotics运动学
3.1 机器人运动方程的表示
s c 0 0ny
oy
ay
p
y
s
c
0 0
0
0
0 0
1 0
0 1
nz 1
oz 1
az 1
pz 1
sc
0
ss
0
c 0
0 1
(3-39)
Robotics运动学
3.2 机械手运动方程的求解
3.2.1欧拉变换解
重写为
f11(n) f11(o) f11(a) f11( p) cc cs s 0
保持姿态,执行器要绕其自身Y和Z轴反向旋转.
Sph( , , r) Rot(z, )Rot( y, )Trans(0,0, r)Rot( yA, )Rot(zA, )
1 0 0 rcs
0
1
0
rss

第三章机器人运动学PPT课件

第三章机器人运动学PPT课件
用一组关节变量(di或i)来描述。这组变量通常称为关节矢量或关节坐标,
由这些矢量描述的空间称为关节空间。
• 正向运动学:关节空间末端笛卡儿空间,单射 • 逆向运动学:末端笛卡儿空间关节空间,复射
不同的关节空间,相同的 末端笛卡儿空间
关节空间与末端笛卡儿空 间映射关系
第三章 机器人的运动学
3.1 工业机器人运动学
,它的齐
次坐标就是
,即满足Px=ωPx/ω,Py=ωPy/ω,
Pz=ωPz/ω(ω是非零整数)。可以看出,在三维直角坐标系中,
由于ω取值的不同,一个点的齐次坐标的表达不唯一。
齐次坐标不仅可以规定点的位置(ω为非零整数),还可以
用来规定矢量的方向(第四个元素为零时)。列向量
(
)表示空间的无穷远点,a,b和c称为它的方向
单位主矢量相对于坐标系{A}的方向余弦组成:
xB
yB
zB
xA
yA
zA
其中:co scoxB s ,xA ()
既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中的 姿态。
3.1.2.2 坐标变换
一、坐标平移
如图3-5,坐标系{B}与{A} 方向相同,但原点不重合。
图3-5 坐标平移
此式称为平移方程。其中 是B系中的原点在A系中的表示。
0
0
0
1
1
1
给定坐标系{A},{B}和{C},已知{B}相对{A}的描述为 ,
{C}相对{B}的描述为
AP A BTBP BPC BTCP APC ATCP
,则有
APA BTC BTCP
CATABTCBT
从而定义复合变换

同理得出:

第三章-机器人运动学

第三章-机器人运动学

在 量B。坐标系中的矢量rB
5i
9
j
0k
,求该点在A坐标系中的矢
解:由题意可得平移变换矩阵和旋转变换矩阵分别为:
轴移动6个单位,再绕z轴旋转30°,
求平移变换矩阵和旋转变换矩阵。
假设某点在B坐标系中的矢量rB
5i
9
j
0k
求该点在A坐标系中的矢量。
例:已知B坐标系的初始位置与A坐标系重合,首先把B坐标
系沿A坐标系的x轴移动12个单位,并沿y轴移动6个单位,再
绕z轴旋转30°,求平移变换矩阵和旋转变换矩阵。假设某点
机器人的位姿
机器人位姿的表示 位置可以用一个3×1的位置矩阵来描述。
p
px py
x
y
pz z

p(x,y,z)
o y

机器人的位姿
姿态可以用坐标系三个 坐标轴两两夹角的余弦值( 三个h坐标轴的单位矢量)组 成3×3的姿态矩阵来描述。

zh
xh oh p(x,y,z)

yh


cos(x, xh ) R cos(y, xh )
zi zj
oi
xi
oj
xj
yj yi
直角坐标变换
齐次变换及运算
旋转变换
——旋转变换矩阵,是一个3×3的矩阵,其中的每个元素 就是i坐标系和j坐标系相应坐标轴夹角θ的余弦值,它表明了 姿态(方向)。θ角的正负按右手法则确定,即由轴的矢端 看,逆时钟为正。
直角坐标变换
齐次变换及运算
联合变换
设i坐标系j和坐标系之间存在先平移变换,后
cos(z, xh )
cos(x, yh ) cos(y, yh ) cos(z, yh )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是正交矩阵,则
行列式和矩阵的区别:矩阵是按一定方式排成的数表;行列式是
一个数。
二、直角坐标系
若基矢量相互正交,即它们在原点o处两 两相交成直角,则它们构成直角坐标系或笛卡 儿坐标系。 若按右手法则绕oz轴转900可以使ox轴转向 oy轴,则称为右手坐标系;按左手法则形成的 坐标系称左手坐标系。
斜角坐标系
结论:齐次变换 不仅可以表示同一点相对不同坐标系{B}和{A}中 的变换,也可用来描述坐标系{B}相对于另一坐标系{A}的位姿,
同时还可用来作为点的运动算子。
例3.4 已知
,画出{A}和{B}的相互位姿关系图。
3.1.2.4
齐次变换的性质
Y R P
图3-8 RPY角
一.变换过程的相对性
1、绕固定坐标系依次进行的坐标 系转换,各齐次变换矩阵按“从右 向左”依次相乘原则进行运算(右 乘)。
Pz=ωPz/ω(ω是非零整数)。可以看出,在三维直角坐标系中, 由于ω取值的不同,一个点的齐次坐标的表达不唯一。
齐次坐标不仅可以规定点的位置(ω为非零整数),还可以
用来规定矢量的方向(第四个元素为零时)。列向量 ( 数。 分别代表了ox,oy和oz轴的无穷远 点,用它们分别表示这三个坐标轴的方向。另外, 坐标原点, 没有意义。 代表 )表示空间的无穷远点,a,b和c称为它的方向
旋转矩阵的几何意义:旋转矩阵在几何上表示了发生相互旋 转的两坐标系各主轴之间的相互方位关系。
因此写出三个基本的旋转矩阵,即分别绕x、y和z轴转θ角的旋转 矩阵:
z' θ z y' θ y
x θ x’
x’ x y z y’ z’ x y x’ y’ z’ x y z
z' θ z
z z'
y' y
x θ x’

A B P BT P B C B P CT P A C A P CT P
A
,则有
A
A B C P BT CT P
A C
B T AT CT B
从而定义复合变换

同理得出: 即一个坐标系变换至另一坐标系的齐次变换矩阵等于依次经历中
间坐标系各齐次变换矩阵的连乘积。
{T} {G} {S}
因此有 由上面两式得变换方程:
B W S T B T GT GT WT 1 S T T
例 3.5 如图所示,从{0}系到{3}系依次经过{1}系和{2}系的变换, ①用两种方法求 和 ,第一种根据齐次变换矩阵的几何意 (用两种
义求解,另一种采用坐标系依次变换的方法;②求 方法); ③画出{0}到{3}的空间尺寸链图。
将点乘和叉乘应用于右手笛卡尔坐标系的单位矢量i,j,k,有:
3.1.2 位姿描述与齐次变换
3.1.2.1 刚体位置姿态(位姿)描述
a) 位置的描述
采用直角坐标描述点的位置,因此,刚体F的位置描述,即 OB点在{A}中描述可用一个3×1的列矢量 (位置矢量)表示,即
其中Px、Py和Pz是点OB在{A}系中的三个坐标分量。
kx
oz a y
2 sin a nz ky x 2 sin n y ox kz 2 sin
两点注意:①多值性:K和θ的值不唯一。实际上,对于任意一组 K和θ,都对应另一组-K和-θ,(K,θ) 和(k, θ+n×360)对应的转动
效果相同,θ的取值也有多种,一般取在0°到180°之间。
A B PBO P 1 1
A
A B A P B R P PBO
11
简写成 综合地表示了平移和旋转变换。
一、齐次坐标
一般来说,以N+1维矢量表达N维位置矢量的方法称为齐次 坐标表示法。
在三维直角坐标系中,一个点可以表示 为
次坐标就是
,它的齐
,即满足Px=ωPx/ω,Py=ωPy/ω,
xB xE yE zE
zB zE xE yB xB yE
zB
(1,2,2)
zE xE yB
(1)
yB
zB
(2)
xB yE
(3) a=0,b=1,c=0
三、一般变换
最一般的情况:坐标系{B}的原点既不与{A}重合,方位也不相同。
{C}系与{B}系原点重合, 但方位不同,所以得
{C}系与{A}系原点不重合, 但方位相同,所以得 和
其中,sθ=sinθ;cθ=cosθ;Versθ=(1-cosθ)。 如果 与坐标轴重合,则可得到绕x,y和z轴旋转的基本旋转矩阵。
例:求绕过原点的轴线
转动1200的旋转矩阵
二. 等效转轴与等效转角
任何一组经过有限次基本旋转变换后的复合旋转总可以等
效成绕某一过原点的轴线转θ角的单一旋转。
对于给定的旋转矩阵R
30o
yB
yA
(10,5,0)
xA xB
所以有:
cos30 0 A R R( z,30 0 ) sin 30 0 B 0
A
sin 30 0 cos30 0 0
0 0.866 0.5 0 0 0.5 0.866 0 1 0 0 1
b) 姿态(方位)的描述 采用旋转矩阵来表示刚体姿态(方位) ,即由{B}系的三个 单位主矢量相对于坐标系{A}的方向余弦组成: xB yB zB
xA yA zA
其中:cos cos(x B , x A ) 既表示了刚体F在{A}系中的方位,也描述了{B}系在{A}系中
的姿态。
3.1.2.2
注意:位置矢量 究竟是3×1的直角坐标还是4×1的齐次坐标,应 根据上下文而定。
二、齐次变换
齐次变换矩阵是4×4的矩阵,它的完整形式可以看成是由 四个子矩阵组成:
R33 T f13
P31 旋转变换 位置矢量 11 透视变换 比例变换
在机器人研究中,齐次变换矩阵T为:
纯旋转的齐次变换矩阵中P3×1为零矩阵,即 因此写出绕x,y和z轴旋转θ角的基本齐次变换矩阵为:

纯平移的齐次变换矩阵中R3×3=I3×3(单位阵),因此可以 写出沿x,y和z轴移动Px,Py和Pz单位的基本平移变换阵:
给定坐标系{A},{B}和{C},已知{B}相对{A}的描述为 {C}相对{B}的描述为
{1}
空间尺寸链图:
{2} {0} {3}
3.1.2.5
旋转变换通式
一.旋转变换通式
如果不是单位 矢量,要化为 单位矢量
令 是过{A}系原点的单位矢量,求绕K旋 转θ角到{B}系的旋转矩阵R(K,θ),即 。
因此
图3-11 尺寸链图
将上式展开得
把上式右端相乘,并利用旋转矩阵的正交性质
进行化简整理后得
PBO
10 5 0
A B A 最后得: P B R P PBO
A
9.098 12 .562 0
3.1.2.3 齐次坐标与齐次变换
复合变换式 可以表示成等价的齐次变换式。
A A P B R 1 0
②病态情况:当转角θ很小时,转轴难确定;当θ接近0°或
180°时,转轴完全不能确定,需另寻解法。 例:求复合变换 的等效转轴k和转角θ。
3.1.3 工业机器人的运动学
1
{L1} {L2}
2
3
3.1.3.1 D-H方法建立坐标系
若为移动副连接,连杆长度 a i 已经没有意义,故令其为零。 A)中间连杆坐标系的建立: Zi——与关节i+1的轴线重合,方向任意 Oi——关节i和i+1轴线的公垂线与关节i+1轴线的交点。关节i和i+1 的轴线相交时,Oi选在交点上;关节i和i+1的轴线平行时,Oi选在 使di+1=0处(关节i+1和i+2的公垂线与关节i+1轴线的交点处)。
=
RPY角 反解:
2、绕动坐标系依次进行的齐次变换,按“从左向右”的原则依
次相乘(左乘)。
z-y-x欧拉角:
=
相对于固定坐标系运动
相对于活动坐标系运动
二.变换过程的可逆性 齐次坐标变换过程是可逆的. 若有 ,则逆变换 。
所以有
I 44 B T AT A B
B AR 0 B A PAO B R 1 0 A
PBO 1
B
B A A RBR 0
B A
B A
B A
R PBO PAO I 33 1 0
A
0 1
对应元素相等得
A R B R I 33
R APBO B PAO 0
所以得
三.变换过程的封闭性
{W}
画出空间尺 寸链图为:
{B}

所以有 利用点乘的性质和上式共同求解得

代入上面三式中并写成矩阵形式得
上式简写为:
此式称为坐标旋转方程。其中旋转矩阵 表示了坐标系{B}相
对于{A}的方位,正好与刚体姿态的描述相同。同理也可得

都是正交矩阵,因此满足


互逆,可得
若把
写成行向量的形式
,则其中 满足六个约束条件
每一个元素都是一个列向量。容易得出 (称正交条件):
x’ y’
y' θy
x x’
z’
z
例3.1 若从基坐标系
矩阵为
({B})到手爪坐标系
({E})的旋转变换
。(1)画出两坐标系的相互方位关系(不考虑{E}的
原点位置);(2)如果给出OE({E}系的原点)在{B}中的位置矢
量为(1,2,2),画出两坐标系的相对位姿关系;(3)求a,
相关文档
最新文档