高一物理圆周运动专题训练附解析

合集下载

高一物理匀速圆周运动试题答案及解析

高一物理匀速圆周运动试题答案及解析

高一物理匀速圆周运动试题答案及解析1.如图所示,把一个小球放在玻璃漏斗中,晃动漏斗,可以使小球沿光滑的漏斗壁在某一水平面内做匀速圆周运动。

小球的向心力由以下哪个力提供A.重力B.支持力C.重力和支持力的合力D.重力、支持力和摩擦力的合力【答案】C【解析】小球受到重力和支持力,由于小球在水平面内做匀速圆周运动,所以小球的向心力由重力和支持力的合力提供,故C正确.【考点】考查了向心力2.图中所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则()A.ab两点的线速度大小相等B.ab两点的角速度大小相等C.ac两点的线速度大小相等D.ad两点的向心加速度大小相等【答案】CD【解析】由图可看出,a点的线速度等于c点的线速度,而c点的线速度大于b点的线速度,故a点的线速度大于b点的线速度,选项A错误,C正确;设c点的线速度为v,则a点的角速度为,b点的角速度,选项B错误;a点的向心加速度,d点的向心加速度,选项D正确。

【考点】线速度、角速度及向心加速度。

3.如图所示,A、B是两个摩擦传动轮(不打滑),两轮半径大小关系为RA =2RB,则两轮边缘上的( )A.角速度之比ωA :ωB=2:1B.周期之比TA :TB=2:1C.转速之比nA :nB=2:1D.向心加速度之比aA :aB=2:1【答案】B【解析】A、B两轮边缘线速度相同,由公式ɷ=得ωA :ωB=rB:rA=1:2,故选项A错误;由公式T=得,TA :TB=ωB:ωA=2:1,故B正确;由公式n=知,nA:nB=TB:TA=1:2,故选项C错误;由加速度公式a==知aA :aB=rB:rA=1:2,故选项D错误。

【考点】匀速圆周运动的公式4.如图所示,一个圆盘绕轴心O在水平面内匀速转动,圆盘半径R= 0.4m,转动角速度=15rad/s。

高中物理生活中的圆周运动专项训练100(附答案)及解析

高中物理生活中的圆周运动专项训练100(附答案)及解析

高中物理生活中的圆周运动专项训练100(附答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,半径为4l,质量为m 的小球与两根不可伸长的轻绳a ,b 连接,两轻绳的另一端分别固定在一根竖直光滑杆的A ,B 两点上.已知A ,B 两点相距为l ,当两轻绳伸直后A 、B 两点到球心的距离均为l ,重力加速度为g .(1)装置静止时,求小球受到的绳子的拉力大小T ;(2)现以竖直杆为轴转动并达到稳定(轻绳a ,b 与杆在同一竖直平面内). ①小球恰好离开竖直杆时,竖直杆的角速度0ω多大? ②轻绳b 伸直时,竖直杆的角速度ω多大?【答案】(1)1515T mg = (2)①ω0=15215g l②2g l ω≥【解析】 【详解】(1)设轻绳a 与竖直杆的夹角为α15cos 4α=对小球进行受力分析得cos mgT α=解得:415T =(2)①小球恰好离开竖直杆时,小球与竖直杆间的作用力为零。

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100(附答案)及解析

高考物理生活中的圆周运动专项训练100(附答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

高一物理圆周运动实例分析试题答案及解析

高一物理圆周运动实例分析试题答案及解析

高一物理圆周运动实例分析试题答案及解析1.如图所示,一圆筒绕其中心轴匀速转动,圆筒内壁上紧靠着一个物体与圆筒一起运动,相对筒无滑动,物体所受向心力是()A.筒壁对物体的弹力B.物体的重力C.筒壁对物体的静摩擦力D.物体所受重力与弹力的合力【答案】A【解析】物体做匀速圆周运动,合力指向圆心,对物体受力分析,受重力、向上的静摩擦力、指向圆心的支持力,如图所示其中重力G与静摩擦力f平衡,支持力N即弹力提供向心力,A正确【考点】考查了向心力2.如图,汽车过桥可近似看做圆周运动,当汽车以一定的速度通过拱桥顶点时向心力由重力和支持力的合力提供,关于两个力的关系正确的是A.N>G B.N<G C.N=G D.无法确定【答案】B【解析】汽车过拱桥顶时重力和支持力的合力充当向心力,方向竖直向下,根据牛顿第二定律可得:,故解得,所以,B正确。

【考点】考查了牛顿第二定律,向心力公式3.如图所示,汽车以受到v通过一弧形的拱桥顶端时,关于汽车受力的说法中正确()A.汽车的向心力就是它所受的重力B.汽车所受的重力与支持力的合力提供向心力,方向指向圆心C.汽车受重力、支持力、牵引力、摩擦力和向心力的作用D.以上说法均不正确【答案】B【解析】汽车过拱桥,做圆周运动,在最高点,重力和支持力的合力提供向心力,方向指向圆心,故A错误,B正确;汽车受重力、支持力、牵引力、摩擦力作用,不受向心力,故CD错误;【考点】考查了圆周运动实例分析4.套着弹簧与小球P的粗糙细杆固定在如图所示的装置上,弹簧的一端固定在装置的A点,另一端连接一质量为m的小球P,当整个装置静止时,弹簧处于拉伸状态,小球P离A点的距离为4L,离B点的距离为2L,那么当整个装置绕竖直中心轴以角速度ω匀速转动时,下列说法正确的是()A.小球P一定会更靠近B点B.小球P可能相对B点距离不变C.小球P受到的合力可能为D.小球受到的静摩擦力一定变小【答案】BC【解析】由题意知AB之间距离为6L,则OB=3L,则OP=3L-2L=L,若,则小球P相对B点距离不变,小球P受到的合力为;若小球转动的角速度比较大,则小球需要的向心力较大,可能会受到向左的较大的静摩擦力,因此小球受到的静摩擦力不一定变小,所以正确选项为B、C。

高一物理下册 圆周运动专题练习(解析版)

高一物理下册 圆周运动专题练习(解析版)

一、第六章 圆周运动易错题培优(难)1.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘的中心轴OO '转动.三个物体与圆盘的动摩擦因数均为0.1μ=,最大静摩擦力认为等于滑动摩擦力.三个物体与轴O 共线且OA =OB =BC =r =0.2 m ,现将三个物体用轻质细线相连,保持细线伸直且恰无张力.若圆盘从静止开始转动,角速度极其缓慢地增大,已知重力加速度为g =10 m/s 2,则对于这个过程,下列说法正确的是( )A .A 、B 两个物体同时达到最大静摩擦力 B .B 、C 两个物体的静摩擦力先增大后不变 C .当5/rad s ω>时整体会发生滑动D 2/5/rad s rad s ω<<时,在ω增大的过程中B 、C 间的拉力不断增大 【答案】BC 【解析】ABC 、当圆盘转速增大时,由静摩擦力提供向心力.三个物体的角速度相等,由2F m r ω=可知,因为C 的半径最大,质量最大,故C 所需要的向心力增加最快,最先达到最大静摩擦力,此时2122C mg m r μω= ,计算得出:112.5/20.4grad s rμω=== ,当C 的摩擦力达到最大静摩擦力之后,BC 开始提供拉力,B 的摩擦力增大,达最大静摩擦力后,AB 之间绳开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大时,且BC 的拉力大于AB 整体的摩擦力时物体将会出现相对滑动,此时A 与B 还受到绳的拉力,对C可得:22222T mg m r μω+= ,对AB 整体可得:2T mg μ= ,计算得出:2grμω=当15/0.2grad s rμω>== 时整体会发生滑动,故A 错误,BC 正确; D 、 2.5rad/s 5rad/s?ω<<时,在ω增大的过程中B 、C 间的拉力逐渐增大,故D 错误; 故选BC2.如图所示,可视为质点的、质量为m 的小球,在半径为R 的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )A .小球能够到达最高点时的最小速度为0B .小球能够通过最高点时的最小速度为gRC .如果小球在最低点时的速度大小为5gR ,则小球通过最低点时对管道的外壁的作用力为6mgD .如果小球在最高点时的速度大小为2gR ,则此时小球对管道的外壁的作用力为3mg 【答案】ACD 【解析】 【分析】 【详解】A .圆形管道内壁能支撑小球,小球能够通过最高点时的最小速度为0,选项A 正确,B 错误;C .设最低点时管道对小球的弹力大小为F ,方向竖直向上。

高一物理圆周运动实例分析试题答案及解析

高一物理圆周运动实例分析试题答案及解析

高一物理圆周运动实例分析试题答案及解析1.当气车行驶在凸形桥时,为使通过桥顶时减小汽车对桥的压力,司机应()A.以尽可能小的速度通过桥顶B.增大速度通过桥顶C.使通过桥顶的向心加速度尽可能小D.和通过桥顶的速度无关【答案】B【解析】当汽车驶在凸形桥时,重力和前面对汽车的支持力提供向心力,则,解得:,根据牛顿第三定律可知:汽车对桥的压力等于桥顶对汽车的支持力,为使通过桥顶时减小汽车对桥的压力,可以增大速度通过桥顶,故B正确,A、C错误;向心加速度小,桥顶对汽车的支持力就大,故C错误。

【考点】考查了圆周运动实例分析2.如图所示,拱桥的外半径为40m。

问:(1)当重1t的汽车通过拱桥顶点的速度为10m/s时,车对桥顶的压力多少牛?(2)当汽车通过拱桥顶点的速度为多少时,车对桥顶刚好没有压力(g=10m/s2)【答案】(1)7500N(2)20m/s【解析】(1)小车受到的mg 和N的合力提供向心力-----------------------------------------------4分带入数据得: N=7500N-----------------------------------1分由牛顿第三定律得: 小车对桥的压力N’=N=7500N------1分(2)当重力完全充当向心力时,车对桥顶没哟偶作用力,即,解得20m/s-4分【考点】考查了圆周运动实例分析3.图示小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则A受力情况()A.重力、支持力、摩擦力B.重力、支持力、向心力C.重力、支持力D.重力、支持力、向心力、摩擦力【答案】A【解析】因为小物体A与圆盘保持相对静止跟着圆盘一起做匀速圆周运动,则在竖直方向,A受到重力和圆盘的支持力;水平方向受静摩擦力作用,用来提供做圆周运动的向心力,故答案A 正确.【考点】受力分析;向心力。

4.铁路转弯处的圆弧半径为R,内侧和外侧的高度差为h.L为两轨间的距离,且L>h.如果列车转弯速率大于,则( )A.外侧铁轨与轮缘间产生挤压B.铁轨与轮缘间无挤压C.内侧铁轨与轮缘间产生挤压D.内、外铁轨与轮缘间均有挤压【答案】A【解析】设轨道平面与水平面的夹角为θ,如果列车所受的重力和支持力恰好提供转弯的向心力,=mgtanθ,θ很小的情况下,sinθ≈tanθ,即则F向,如果列车转弯速率大于v,列车所受重力和支持力的合力将不足以提供所需的向心力,会挤压外轨,A正确,BCD错误。

高一物理《圆周运动》六套练习题附答案

高一物理《圆周运动》六套练习题附答案

高一物理《圆周运动》六套练习题附答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN- 2 -匀速圆周运动练习1.一质点做圆周运动,速度处处不为零,则:①任何时刻质点所受的合力一定不为零,②任何时刻质点的加速度一定不为零,③质点速度的大小一定不断变化,④质点速度的方向一定不断变化其中正确的是( )A .①②③B .①②④C .①③④D .②③④2.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )①当以速度v 通过此弯路时,火车重力与轨道支持力的合力提供向心力 ②当以速度v 通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力 ③当速度大于v 时,轮缘挤压外轨 ④当速度小于v 时,轮缘挤压外轨A.①③B.①④C.②③D.②④3.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( )A .两轮的角速度相等B .两轮边缘的线速度大小相等C .两轮边缘的向心加速度大小相等D .两轮转动的周期相同4.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( )A .小球线速度大小一定时,线越长越容易断B .小球线速度大小一定时,线越短越容易断C .小球角速度一定时,线越长越容易断D .小球角速度一定时,线越短越容易断5.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2,则此时轻杆OA 将( ) A .受到6.0N 的拉力 B .受到6.0N 的压力 C .受到24N 的拉力 D .受到24N 的压力6.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( )A .滑块的重力B .盘面对滑块的弹力AB- 3 -C .盘面对滑块的静摩擦力D .以上三个力的合力 7.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( )A.V A >V BB.ωA >ωBC.a A >a BD.压力N A >N B 8.一个电子钟的秒针角速度为( )A .πrad/sB .2πrad/sC .60πrad/s D .30πrad/s9.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则( )A .甲的角速度最大、乙的线速度最小B .丙的角速度最小、甲的线速度最大C .三个物体的角速度、周期和线速度都相等D .三个物体的角速度、周期一样,丙的线速度最小10.如图所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点。

《圆周运动》练习题 (附解析)

《圆周运动》练习题 (附解析)

在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

一、选择题1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是( )A.水滴受离心力作用而背离圆心方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是( )A.内、外轨一样高,以防列车倾倒造成翻车事故B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.以上说法均不正确3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( )A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是( )A.重力、弹力和向心力B.重力和弹力C.重力和向心力D.重力5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是( )A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力有可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球的重力6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( )A.sin θ=B.tan θ=C.sin 2θ=D.cot θ=7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是( )A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大二、非选择题8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?参考答案1.D [根据离心运动的特点知,水滴的离心现象是由于水滴与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.]4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.]5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1>时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]6.B[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:Nsin θ=m,Ncos θ=mg,解得:tan θ=,故B正确.]7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v 的极小值是零;v由零逐渐增大,由F=可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无作用力,向心力只由其自身重力来提供;当v由增大时,则=mg+F′F′=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球为支持力.此时,mg-F′=,F′=mg-,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]8.(1)2.5 m/s(2)1.76 N 平抛运动解析(1)小球通过圆周最高点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m解得:G=mg=mv0== m/s=2.5 m/s.(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m解得:F=m-mg=(0.4×-0.4×10) N=1.76 N若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).。

人教版高一下册物理 圆周运动单元测试题(Word版 含解析)

人教版高一下册物理 圆周运动单元测试题(Word版 含解析)

一、第六章 圆周运动易错题培优(难)1.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。

则( )A .当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心B .当圆盘角速度增加到足够大,弹簧将伸长C gLμ D .当弹簧的伸长量为x mg kxmLμ+【答案】BC 【解析】 【分析】 【详解】AB .开始时弹簧未发生形变,物块受到指向圆心的静摩擦力提供圆周运动的向心力;随着圆盘角速度缓慢地增加,当角速度增加到足够大时,物块将做离心运动,受到摩擦力为指向圆心的滑动摩擦力,弹簧将伸长。

在物块与圆盘没有发生滑动的过程中,物块只能有背离圆心的趋势,摩擦力不可能背离圆心,选项A 错误,B 正确;C .设圆盘的角速度为ω0时,物块将开始滑动,此时由最大静摩擦力提供物体所需要的向心力,有20mg mL μω=解得0gLμω=选项C 正确;D .当弹簧的伸长量为x 时,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则有2mg kx m x L μω+=+()解得mg kxm x L μω+=+()选项D 错误。

故选BC 。

2.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )A .此时绳子张力为T =3mg μB .此时圆盘的角速度为ω2grμC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有22T mg mr μω+=以A 为研究对象,有2T mg mr μω-=联立可得3T mg μ=2grμω=故AB 正确;D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC.3.如图甲所示,半径为R 、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A 时,小球受到的弹力F 与其过A 点速度平方(即v 2)的关系如图乙所示。

高一物理专题训练:圆周运动(带答案)

高一物理专题训练:圆周运动(带答案)

高一物理专题训练:圆周运动一、单选题1.甲、乙两物体做匀速圆周运动,甲物体的质量和转动半径都分别是乙物体的一半,当甲物体转60转时,乙物体正好转45转,则甲与乙的向心力大小之比为A .1:4B .4:1C .4:9D .9:4【答案】C2.如图所示,为一皮带传动装置,右轮半径为, 为它边缘上一点;左侧是一轮轴,大轮半径为,小轮半径为, 点在小轮上,到小轮中心的距离为. 点和点分别位于小轮和大轮的边缘上.若传动过程中皮带不打滑,则( )A .点和点的角速度大小之比为1:2B .点和点的线速度大小之比为1:2C .点和点的向心加速度大小之比为2:1D .点和点的向心加速度大小之比为1:1【答案】D3.如图所示,质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内做半径为R 的匀速圆周运动,且角速度为ω,则杆的上端受到小球对其作用力的大小为( )A .mω2RB .242m g R ω+C .242m g R ω-D .条件不足,不能确定【答案】B4.如图所示,放于水平面内的光滑金属细圆环半径为R ,质量为m 的带孔小球穿于环上,同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点,绳上的最大拉力为2mg ,当圆环以角速度ω绕竖直直径转动时,发现小球收到3个力的作用,则ω可能为( )A .R g 31 B .R g 23 C .Rg 5 D .R g 7【答案】BC5.如图所示为内壁光滑的固定半球面,球心为O ,最低点为C ,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线OC间的夹角分别为a=53°和β=37°,则(sin 37°=0.6,cos 37°=0.8)A.A、B两球所受支持力的大小之比为3:4B.A、B两球运动的周期之比为2:3C.A、B两球的角速度之比为2:3D.A、B两球的线速度之比为8:9【答案】CD6.如图所示,在自行车后轮轮胎上粘附着一块泥巴现将自行车后轮撑起,使后轮离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴被甩下来图中四个位置泥巴最容易被甩下来的是()A.a点B.b点C.C点D.d点【答案】C7.如图所示,长为L的轻杆一端固定一个质量为m的小球,另一端固定在水平转轴O 上,杆绕转轴O在竖直平面内匀速转动,角速度为ω.某时刻杆对球的作用力恰好与杆垂直,则此时杆与水平面的夹角θ满足()A.sinθ=B.tanθ=C.sinθ=D.tanθ=【答案】A8.如图,在竖直平面内,滑到ABC关于B点对称,且A、B、C三点在同一水平线上。

高中物理生活中圆周运动试题(有答案和解析)

高中物理生活中圆周运动试题(有答案和解析)

高中物理生活中的圆周运动试题( 有答案和分析 )一、高中物理精讲专题测试生活中的圆周运动1.圆滑水平面AB 与竖直面内的圆形导轨在 B 点连结,导轨半径R= 0.5 m,一个质量m= 2 kg 的小球在 A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能 Ep= 49 J,如下图.松手后小球向右运动离开弹簧,沿圆形轨道向上运动恰能经过最高点C, g 取 10 m/s 2.求:(1)小球离开弹簧时的速度大小;(2)小球从 B 到 C 战胜阻力做的功;(3)小球走开 C 点后落回水平面时的动能大小.【答案】(1)7m / s( 2)24J( 3)25J【分析】【剖析】【详解】(1)依据机械能守恒定律E p=1mv12 ?①212Ep=7m/s ②v =m(2)由动能定理得- mg·2R- W f=1mv221mv12③22小球恰能经过最高点,故mg m v22④R由②③④得W f=24 J(3)依据动能定理:mg 2R E k 1mv22 2解得: E k25J故本题答案是:( 1)7m / s( 2)24J( 3)25J【点睛】(1)在小球离开弹簧的过程中只有弹簧弹力做功,依据弹力做功与弹性势能变化的关系和动能定理能够求出小球的离开弹簧时的速度v;(2)小球从 B 到 C 的过程中只有重力和阻力做功,依据小球恰巧能经过最高点的条件获得小球在最高点时的速度 ,进而依据动能定理求解从 B 至 C 过程中小球战胜阻力做的功 ;(3)小球走开 C 点后做平抛运动 ,只有重力做功,依据动能定理求小球落地时的动能大小2.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1)11m / s (2)9m / s(3)72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv02 22解得: v B11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L230.25m对整个过程,由能量守恒定律有:Q 1mv020 2解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.3.如下图,竖直平面内的圆滑的正上方, AD 为与水平方向成3/4 的圆周轨道半径为R, A 点与圆心O 等高, B 点在 O θ =45°角的斜面, AD 长为 72 R.一个质量为m 的小球(视为质点)在 A 点正上方 h 处由静止开释,自由着落至 A 点后进入圆形轨道,并能沿圆形轨道抵达 B 点,且抵达 B 处时小球对圆轨道的压力大小为mg,重力加快度为g,求:(1)小球到 B 点时的速度大小vB(2)小球第一次落到斜面上 C 点时的速度大小v(3)改变 h,为了保证小球经过 B 点后落到斜面上,h 应知足的条件【答案】 (1) 2gR (2)10gR (3) 3R h 3R2【分析】【剖析】【详解】(1)小球经过 B 点时,由牛顿第二定律及向心力公式,有2mg mg mv BR解得v B2gR(2)设小球走开 B 点做平抛运动,经时间t ,着落高度y,落到 C 点,则y 1gt 2 2y cot v B t两式联立,得2v B24gRy4Rg g对小球着落由机械能守恒定律,有1mv B2mgy 1 mv222解得vv22gy2gR8gR 10gRB(3)设小球恰巧能经过 B 点,过 B 点时速度为 v1,由牛顿第二定律及向心力公式,有mg m v12R又mg (h R)1mv122得h 3 R2能够证明小球经过 B 点后必定能落到斜面上设小球恰巧落到 D 点,小球经过 B 点时速度为 v2,飞翔时间为 t ,(72R2R)sin 1 gt22(72R2R)cos v2t解得v2 2 gR又mg (h R)1mv222可得h3R故 h 应知足的条件为 3 R h 3R2【点睛】小球的运动过程能够分为三部分,第一段是自由落体运动,第二段是圆周运动,此机遇械能守恒,第三段是平抛运动,剖析清楚各部分的运动特色,采纳相应的规律求解即可.4.如下图,长为3l 的不行伸长的轻绳,穿过一长为l 的竖直轻质细管,两头分别拴着质量为m、2m的小球 A 和小物块B,开始时 B 静止在细管正下方的水平川面上。

高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析

高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析

高考必备物理生活中的圆周运动技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

(g =10m/s 2)求:(1)小球从O 点的正上方某处A 点水平抛出的初速度v 0为多大? (2)小球第一次过C 点时轨道对小球的支持力大小为多少?(3)若将BC 段换成光滑细圆管,其他不变,仍将小球从A 点以v 0水平抛出,且从小球进入圆管开始对小球施加了一竖直向上大小为5N 的恒力,试判断小球在BC 段的运动是否为匀速圆周运动,若是匀速圆周运动,求出小球对细管作用力大小;若不是匀速圆周运动则说明理由。

【答案】(1)2m/s (2)20.9N (3)2N 【解析】 【详解】(1)小球从A 运动到B 为平抛运动,有:r sin45°=v 0t 在B 点有:tan45°0gt v =解以上两式得:v 0=2m/s (2)由牛顿第二定律得: 小球沿斜面向上滑动的加速度: a 14545mgsin mgcos m μ︒+︒==g sin45°+μg cos45°=22小球沿斜面向下滑动的加速度: a 24545mgsin mgcos mμ︒-︒==g sin45°﹣μg cos45°=2m/s 2设小球沿斜面向上和向下滑动的时间分别为t 1、t 2, 由位移关系得:12a 1t 1212=a 2t 22又因为:t 1+t 298=s 解得:t 138=s ,t 234=s小球从C 点冲出的速度:v C =a 1t 1=32m/s在C 点由牛顿第二定律得:N ﹣mg =m 2Cv r解得:N =20.9N(3)在B 点由运动的合成与分解有:v B 045v sin ==︒22m/s 因为恒力为5N 与重力恰好平衡,小球在圆管中做匀速圆周运动。

物理高一下册 圆周运动专题练习(解析版)

物理高一下册 圆周运动专题练习(解析版)

一、第六章 圆周运动易错题培优(难)1.如图所示,叠放在水平转台上的物体 A 、B 及物体 C 能随转台一起以角速度 ω 匀速转动,A ,B ,C 的质量分别为 3m ,2m ,m ,A 与 B 、B 和 C 与转台间的动摩擦因数都为 μ ,A 和B 、C 离转台中心的距离分别为 r 、1.5r 。

设最大静摩擦力等于 滑动摩擦力,下列说法正确的是(重力加速度为 g )( )A .B 对 A 的摩擦力一定为 3μmg B .B 对 A 的摩擦力一定为 3m ω2rC .转台的角速度需要满足grμωD .转台的角速度需要满足23grμω 【答案】BD 【解析】 【分析】 【详解】AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有()()233f m r m g ωμ=故A 错误,B 正确;CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有()()233m r m g ωμ对AB 整体有()()23232m m r m m g ωμ++对物体C 有()21.52m r mg ωμ解得grμω故C 错误, D 正确。

故选BD 。

2.如图所示,可视为质点的、质量为m 的小球,在半径为R 的竖直放置的光滑圆形管道内做圆周运动,下列有关说法中正确的是( )A .小球能够到达最高点时的最小速度为0B gRC 5gR 为6mgD .如果小球在最高点时的速度大小为gR ,则此时小球对管道的外壁的作用力为3mg 【答案】ACD 【解析】 【分析】 【详解】A .圆形管道内壁能支撑小球,小球能够通过最高点时的最小速度为0,选项A 正确,B 错误;C .设最低点时管道对小球的弹力大小为F ,方向竖直向上。

由牛顿第二定律得2v F mg m R-=将5v gR =代入解得60F mg =>,方向竖直向上根据牛顿第三定律得知小球对管道的弹力方向竖直向下,即小球对管道的外壁有作用力为6mg ,选项C 正确;D .小球在最高点时,重力和支持力的合力提供向心力,根据牛顿第二定律有2v F mg m R'+=将2v gR =30F mg '=>,方向竖直向下根据牛顿第三定律知球对管道的外壁的作用力为3mg ,选项D 正确。

【物理】物理生活中的圆周运动题20套(带答案)含解析

【物理】物理生活中的圆周运动题20套(带答案)含解析

【物理】物理生活中的圆周运动题20套(带答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。

【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R5.如图所示,A 、B 两球质量均为m ,用一长为l 的轻绳相连,A 球中间有孔套在光滑的足够长的水平横杆上,两球处于静止状态.现给B 球水平向右的初速度v 0,经一段时间后B 球第一次到达最高点,此时小球位于水平横杆下方l /2处.(忽略轻绳形变)求:(1)B 球刚开始运动时,绳子对小球B 的拉力大小T ; (2)B 球第一次到达最高点时,A 球的速度大小v 1;(3)从开始到B 球第一次到达最高点的过程中,轻绳对B 球做的功W .【答案】(1)mg+m 20v l (2)2012v gl v -=(3)204mgl mv - 【解析】 【详解】(1)B 球刚开始运动时,A 球静止,所以B 球做圆周运动对B 球:T-mg =m 2v l得:T =mg +m 20v l(2)B 球第一次到达最高点时,A 、B 速度大小、方向均相同,均为v 1以A 、B 系统为研究对象,以水平横杆为零势能参考平面,从开始到B 球第一次到达最高点,根据机械能守恒定律,2220111112222l mv mgl mv mv mg -=+- 得:2012v gl v -=(3)从开始到B 球第一次到达最高点的过程,对B 球应用动能定理 W -mg221011222l mv mv =- 得:W =204mgl mv -6.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :2h t g=y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =7.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R =①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.8.光滑水平面上放着质量m A =1kg 的物块A 与质量m B =2kg 的物块B ,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,用手挡住B 不动,此时弹簧弹性势能E P =49J 。

物理生活中的圆周运动题20套(带答案)

物理生活中的圆周运动题20套(带答案)

物理生活中的圆周运动题20套(带答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 32gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-=222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.4.如图所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相接,导轨半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右速度后脱离弹簧,当它经过B 点进入导轨瞬间对导轨的压力为其重力的7倍,之后向上运动恰能完成半个圆周运动到达C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从B 点运动至C 点克服阻力做的功. (3)物体离开C 点后落回水平面时的速度大小. 【答案】(1)3mgR (2)0.5mgR (3)52mgR 【解析】试题分析:(1)物块到达B 点瞬间,根据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获得的动能,所以有(2)物块恰能到达C 点,重力提供向心力,根据向心力公式有:所以:物块从B运动到C,根据动能定理有:解得:(3)从C点落回水平面,机械能守恒,则:考点:本题考查向心力,动能定理,机械能守恒定律点评:本题学生会分析物块在B点的向心力,能熟练运用动能定理,机械能守恒定律解相关问题.5.如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?【答案】(1);(2)【解析】(1)A碰C前与平板车速度达到相等,设整个过程A的位移是x,由动量守恒定律得由动能定理得:解得满足的条件是(2)物块A与小球C发生碰撞,碰撞时两者的速度互换,C以速度v开始做完整的圆周运动,由机械能守恒定律得小球经过最高点时,有解得【名师点睛】A 碰C 前与平板车速度达到相等,由动量守恒定律列出等式;A 减速的最大距离为d ,由动能定理列出等式,联立求解。

高中物理圆周运动及天体运动试题及答案解析

高中物理圆周运动及天体运动试题及答案解析

圆周运动试题一、单选题1、关于匀速圆周运动下列说法正确的是A、线速度方向永远与加速度方向垂直,且速率不变B、它是速度不变的运动C、它是匀变速运动D、它是受力恒定的运动2、汽车以10m/s速度在平直公路上行驶,对地面的压力为20000N,当该汽车以同样速率驶过半径为20m的凸形桥顶时,汽车对桥的压力为A、10000N B、1000N C、20000N D、2000N3、如图,光滑水平圆盘中心O有一小孔,用细线穿过小孔,两端各系A,B两小球,已知B球的质量为2Kg,并做匀速圆周运动,其半径为20cm,线速度为5m/s,则A的重力为A、250NB、C、125ND、4、如图O1 ,O2是皮带传动的两轮,O1半径是O2的2倍,O1上的C 点到轴心的距离为O2半径的1/2则A、VA:VB=2:1B、aA:aB=1:2C、VA:VC=1:2D、aA:aC=2:15、关于匀速圆周运动的向心加速度下列说法正确的是A.大小不变,方向变化 B.大小变化,方向不变C.大小、方向都变化D.大小、方向都不变6、如图所示,一人骑自行车以速度V 通过一半圆形的拱桥顶端时,关于人和自行车受力的说法正确的是:A 、人和自行车的向心力就是它们受的重力B 、人和自行车的向心力是它们所受重力和支持力的合力,方向指向圆心C 、人和自行车受到重力、支持力、牵引力、摩擦力和向心力的作用D 、人和自行车受到重力、支持力、牵引力、摩擦力和离心力的作用 7、假设地球自转加快,则仍静止在赤道附近的物体变大的物理量是 A 、地球的万有引力 B 、自转所需向心力 C 、地面的支持力 D 、重力 8、在一段半径为R 的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的μ倍,则汽 车拐弯时的安全速度是 9、小球做匀速圆周运动,半径为R ,向心加速度为 a ,则下列说法错误..的是 A 、 小球的角速度Ra=ω B 、小球运动的周期aRT π2=C 、t 时间内小球通过的路程aR t S =D 、t 时间内小球转过的角度aRt=ϕ 10、某人在一星球上以速度v 0竖直上抛一物体,经t 秒钟后物体落回手中,已知星球半径为R,那么使物体不再落回星球表面,物体抛出时的速度至少为11、假如一人造地球卫星做圆周运动的轨道半径增大到原来的2倍,仍做圆周运动;则A.根据公式V=r ω可知卫星的线速度将增大到原来的2倍B.根据公式r v m F 2=,可知卫星所受的向心力将变为原来的21C.根据公式2r MmGF =,可知地球提供的向心力将减少到原来的41D.根据上述B 和C 给出的公式,可知卫星运动的线速度将减少到原来的2倍 12、我们在推导第一宇宙速度时,需要做一些假设;例如:1卫星做匀速圆周运动;2卫星的运转周期等于地球自转周期;3卫星的轨道半径等于地球半径;4卫星需要的向心力等于它在地面上的地球引力;上面的四种假设正确的是 A 、123 B 、234 C 、134 D 、12413、如图所示,在固定的圆锥形漏斗的光滑内壁上,有两个质量相等的小物块A 和B,它们分别紧贴漏斗的内 壁.在不同的水平面上做匀速圆周运动,则以下叙述正确的是 A.物块A 的线速度小于物块B 的线速度 B.物块A 的角速度大于物块B 的角速度C.物块A 对漏斗内壁的压力小于物块B 对漏斗内壁的压力D.物块A 的周期大于物块B 的周期14、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆;已知火卫一的周期为7小时39分;火卫二的周期为30小时18分,则两颗卫星相比较,下列说法正确的是:A 、火卫一距火星表面较远;B 、火卫二的角速度较大C 、火卫一的运动速度较大;D 、火卫二的向心加速度较大; 15、如图所示,质量为m 的物体,随水平传送带一起匀速运动,A 为传送带的终端皮带轮,皮带轮半径为r,则要使物体通过终端时能水平抛出,皮带轮每秒钟转动的圈数至少为A 、rg π21 B 、rg C 、gr D 、π2gr16、如图所示,碗质量为M,静止在地面上,质量为m 的滑块滑到圆弧形碗的底端时速率为v,已知碗的半径为R,当滑块滑过碗底时,地面受到碗的压力为:A 、M+mgB 、M+mg +R mv 2C 、Mg +R mv 2D 、Mg +mg -m Rv 217、1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为16km;若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同;已知地球半径R=6400km,地球表面重力加速度为g;这个小行星表面的重力加速度为 A 、g 400 B 、g 4001 C 、g 20 D 、g 20118、银河系的恒星中大约四分之一是双星;某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动;由天文观察测得其运动周期为T 1,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G;由此可求出S 2的质量为A 、2122)(4GTr r r -π B 、23124GT r π C 、2224GT r π D 、21224GT r r π 19、2001年10月22日,欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞,命名为MCG6—30—15;由于黑洞的强大引力,使得太阳绕银河系中心运转;假定银河系中心仅此一个黑洞,且太阳绕银河系中心做的是匀速圆周运动;则下列哪一组数据可估算该黑洞的质量A.、地球绕太阳公转的周期和速度 B 、太阳的质量和运动速度C 、太阳质量和到该黑洞的距离D 、太阳运行速度和到该黑洞的距离20、质量不计的轻质弹性杆P 插入桌面上的小孔中,杆的另一端套有一个质量为m 的小球,今使小球在水平面内作半径为R 的匀速圆周运动,且角速度为ω,则杆的上端受到球对其作用力的大小为A 、m ω2RB 、242R g m ω-C 、242R g m ω+D 、不能确定21、已知万有引力恒量G,要计算地球的质量,还必须知道某些数据,现给出下列各组数据,算不出地球质量的有哪组:A 、地球绕太阳运行的周期T 和地球离太阳中心的距离R ;B 、月球绕地球运行的周期T 和月球离地球中心的距离R ;C 、人造卫星在近地表面运行的线速度v 和运动周期T ;D 、地球半径R 和同步卫星离地面的高度;第二卷二、计算题共37分22、如图所示,一质量为m=1kg 的滑块沿着粗糙的圆弧轨道滑行,当经过最高点时速度V=2m/s,已知圆弧半经R=2m,滑块与轨道间的摩擦系数μ=,则滑块经过最高点时的摩擦力大小为多少12分23.一个人用一根长L=1m,只能承受T=46N绳子,拴着一个质量为m=1kg 的小球,已知圆心O离地的距离H=6m,如图所示,速度转动小球方能使小球到达最低点时绳子被拉断,绳子拉断后,小球的水平射程是多大 13分24、经天文学观察,太阳在绕银河系中心的圆形轨道上运行,这个轨道半径约为3×104光年约等于×1020m,转动周期约为2亿年约等于×1015s 太阳作圆周运动的向心力是来自于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看作集中在银河系中心来处理问题;根据以上数据计算太阳轨道内侧这些星体的总质量M 以及太阳作圆周运动的加速度a;G =×10-11Nm 2/kg 212分答案22、12分 解:由 所以 N = mg – m v 2/R =8 N 6分再由 f = μN 得 f = 4 N 6分23、13分 设小球经过最低点的角速度为ω,速度为v 时,绳子刚好被拉断,则T – m g = m ω2L∴ s rad mLmgT /6=-=ω v = ωL = 6 m/s 7分 小球脱离绳子的束缚后,将做平抛运动,其飞行时间为s gL H gh t 1)(22=-==3分 所以,小球的水平射程为 s = v t = 6 m 3分班级_____________ 姓名_________________________ 座号______________24、12分 M =×1041kg a=×10-10m /s 2若算出其中一问得8分 两问都算出的12分高中物理复习六 天体运动一、关于重力加速度1. 地球半径为R 0,地面处重力加速度为g 0,那么在离地面高h 处的重力加速度是A. R h R h g 022020++()B. R R h g 02020()+ C. h R h g 2020()+D.R hR h g 0020()+二、求中心天体的质量2.已知引力常数G 和下列各组数据,能计算出地球质量的是 A .地球绕太阳运行的周期及地球离太阳的距离 B .月球绕地球运行的周期及月球离地球的距离C. 人造地球卫星在地面附近绕行的速度及运行周期 D .若不考虑地球自转,己知地球的半径及重力加速度 三、求中心天体的密度3.中子星是恒星演化过程的一种可能结果,它的密度很大,,现有一中子星,观测到它的自转周期为T,问:该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解;计算时星体可视为均匀球体; 6π/GT 2四、卫星中的超失重求卫星的高度4. m = 9kg 的物体在以a = 5m/s 2 加速上升的火箭中视重为85N, ,则火箭此时离地面的高度是地球半径的_________倍地面物体的重力加速度取10m/s 25.地球同步卫星到地心的距离可由r 3 = a 2b 2c / 4π2求出,已知a 的单位是m, b的单位是s, c 的单位是m/ s2,请确定a、b、c 的意义地球半径地球自转周期重力加速度五、求卫星的运行速度、周期、角速度、加速度等物理量6.两颗人造地球卫星的质量之比为1:2,轨道半径之比为3:1,求其运行的周期之比为;线速度之比为 ,角速度之比为;向心加速度之比为;向心力之比为 ;331/2:1 31/2:3 31/2:9 1:3 1:97.地球的第一宇宙速度为v1,若某行星质量是地球质量的4倍,半径是地球半径的1/2倍,求该行星的第一宇宙速度;221/2v18.同步卫星离地心距离r,运行速率为V1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,线速度为V2,第一宇宙速度为V3,以第一宇宙速度运行的卫星向星加速度为a3,地球半径为R,则a2=r/R >a1>a2V2=R/r D. V3>V1>V2六、双星问题9.两个星球组成双星;设双星间距为L,在相互间万有引力的作用下,绕它们连线上某点O 转动,转动的角速度为ω,不考虑其它星体的影响,则求双星的质量之和;L3ω2/G七、变轨问题年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有 ABCA.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 八、追击问题11. 如图,有A 、B 两颗行星绕同一颗恒星M 做圆周运动,旋转方向相同,A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星相距最近,则A .经过时间 t=T 1+T 2两行星再次相距最近B .经过时间 t=T 1T 2/T 2-T 1,两行星再次相距最近C .经过时间 t=T 1+T 2 /2,两行星相距最远D .经过时间 t=T 1T 2/2T 2-T 1 ,两行星相距最远 课堂练习1.宇宙飞船在半径为R 1的轨道上运行,变轨后的半径为R 2,R 1>R2.宇宙飞船绕地球做匀速圆周运动,则变轨后宇宙飞船的A .线速度变小B .角速度变小C .周期变大D .向心加速度变大2.两个质量均为M 的星体,其连线的垂直平分线为HN,O 为其连线的中点,如图所示,一个质量为m 的物体从O 沿OH 方向运动,则它受到的万有引力大小变化情况是A.一直增大B.一直减小C.先减小,后增大D.先增大,后减小3. “嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道半径为r ,运行速率为v ,当探测器在飞越月球上一些环形山中的质量密集区上空时、v 都将略为减小 、v 都将保持不变将略为减小,v将略为增大 D. r将略为增大,v将略为减小4. 为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”;假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2;火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G;仅利用以上数据,可算出A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力C.火星的半径和“萤火一号”的质量 D .火星表面的重力加速度和火星对“萤火一号”的引力5.设地球半径为R,在离地面H 高度处与离地面h 高度处的重力加速度之比为A. H 2/h 2 / h C.R+ h/R+ H D. R+ h2/R+ H26.如图所示,在同一轨道平面上,有绕地球做匀速圆周运动的卫星A、B、C某时刻在同一条直线上,则A.卫星C的速度最小 B.卫星C受到的向心力最小C.卫星B的周期比C小 D.卫星A的加速度最大7. 气象卫星是用来拍摄云层照片,观测气象资料和测量气象数据的;我国先后自行成功研制和发射了“风云Ⅰ号”和“风云Ⅱ号”两颗气象卫星,“风云Ⅰ号”卫星轨道与赤道平面垂直并且通过两极,称为“极地圆轨道”,每12h巡视地球一周;“风云Ⅱ号”气象卫星轨道平面在赤道平面内,称为“地球同步轨道”,每24h巡视地球一周,则“风云Ⅰ号”卫星比“风云Ⅱ号”卫星A.发射速度小 B.线速度大 C.覆盖地面区域大 D.向心加A B速度小8. 我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭动力的航天飞机在月球引力作用下向月球靠近,并将与空间站在B处对接,已知空间站绕月轨道半径为r,周期为T,引力常量为G,下列说法中正确的是A.图中航天飞机正加速飞向B处B.根据题中条件可以算出月球质量C.航天飞机在B处由椭圆轨道进入空间站轨道必须点火减速D.根据题中条件可以算出空间站受到月球引力的大小9. 物体在一行星表面自由落下,第1s内下落了,若该行星的半径为地球半径的一半,那么它的质量是地球的倍. 110.已知火星的一个卫星的圆轨道的半径为r,周期为T,火星可视为半径为R的均匀球体. 不计火星大气阻力,则一物体在火星表面自由下落H高度时的速度为_____________. 8π2r3H/T2R21/211.地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上的物体“飘”起来,则地球的角速度应为原来的倍g+a/a1/212.一个行星探测器从所探测的行星表面竖直升空,探测器的质量为1500 kg,发动机推力恒定.发射升空后9 s末,发动机突然间发生故障而关闭.下图是从探测器发射到落回地面全过程的速度图象.已知该行星表面没有大气.不考虑探测器总质量的变化.求:(1)探测器在行星表面上升达到的最大高度 H;(2)该行星表面附近的重力加速度g;3发动机正常工作时的推力F. 1800m24m/s2317000N。

【物理】物理生活中的圆周运动练习题及答案含解析

【物理】物理生活中的圆周运动练习题及答案含解析

【物理】物理生活中的圆周运动练习题及答案含解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2 讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J3.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-= 由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =+ 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得42μ-=4.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m5.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR = (2)123gRv =,253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =6.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,7.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L ,重力加速度g ,小球半径不计,质量为m ,电荷q .不加电场时,小球在最低点绳的拉力是球重的9倍。

【物理】高中必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

【物理】高中必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析

【物理】高中必备物理生活中的圆周运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,光滑轨道CDEF 是一“过山车”的简化模型,最低点D 处入、出口不重合,E 点是半径为0.32R m =的竖直圆轨道的最高点,DF 部分水平,末端F 点与其右侧的水平传送带平滑连接,传送带以速率v=1m/s 逆时针匀速转动,水平部分长度L=1m .物块B 静止在水平面的最右端F 处.质量为1A m kg =的物块A 从轨道上某点由静止释放,恰好通过竖直圆轨道最高点E ,然后与B 发生碰撞并粘在一起.若B 的质量是A 的k 倍,A B 、与传送带的动摩擦因数都为0.2μ=,物块均可视为质点,物块A 与物块B 的碰撞时间极短,取210/g m s =.求:(1)当3k =时物块A B 、碰撞过程中产生的内能; (2)当k=3时物块A B 、在传送带上向右滑行的最远距离;(3)讨论k 在不同数值范围时,A B 、碰撞后传送带对它们所做的功W 的表达式.【答案】(1)6J (2)0.25m (3)①()21W k J =-+②()221521k k W k +-=+【解析】(1)设物块A 在E 的速度为0v ,由牛顿第二定律得:20A A v m g m R=①,设碰撞前A 的速度为1v .由机械能守恒定律得:220111222A A A m gR m v m v +=②, 联立并代入数据解得:14/v m s =③;设碰撞后A 、B 速度为2v ,且设向右为正方向,由动量守恒定律得()122A A m v m m v =+④;解得:21141/13A AB m v v m s m m ==⨯=++⑤;由能量转化与守恒定律可得:()22121122A AB Q m v m m v =-+⑥,代入数据解得Q=6J ⑦; (2)设物块AB 在传送带上向右滑行的最远距离为s ,由动能定理得:()()2212A B A B m m gs m m v μ-+=-+⑧,代入数据解得0.25s m =⑨;(3)由④式可知:214/1A A Bm v v m s m m k==++⑩;(i )如果A 、B 能从传送带右侧离开,必须满足()()2212A B A B m m v m m gL μ+>+,解得:k <1,传送带对它们所做的功为:()()21J A B W m m gL k μ=-+=-+; (ii )(I )当2v v ≤时有:3k ≥,即AB 返回到传送带左端时速度仍为2v ; 由动能定理可知,这个过程传送带对AB 所做的功为:W=0J ,(II )当0k ≤<3时,AB 沿传送带向右减速到速度为零,再向左加速, 当速度与传送带速度相等时与传送带一起匀速运动到传送带的左侧. 在这个过程中传送带对AB 所做的功为()()2221122A B A B W m m v m m v =+-+, 解得()221521k k W k +-=+; 【点睛】本题考查了动量守恒定律的应用,分析清楚物体的运动过程是解题的前提与关键,应用牛顿第二定律、动量守恒定律、动能定理即可解题;解题时注意讨论,否则会漏解.A 恰好通过最高点E ,由牛顿第二定律求出A 通过E 时的速度,由机械能守恒定律求出A 与B 碰撞前的速度,A 、B 碰撞过程系统动量守恒,应用动量守恒定律与能量守恒定律求出碰撞过程产生的内能,应用动能定理求出向右滑行的最大距离.根据A 、B 速度与传送带速度间的关系分析AB 的运动过程,根据运动过程应用动能定理求出传送带所做的功.2.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

高一物理上册圆周运动专项练习答案及解析

高一物理上册圆周运动专项练习答案及解析

高一物理上册圆周运动专项练习一、选择题(1~5题为单选题,6~10题为多选题)1.关于做匀速圆周运动的物体,下列说法正确的是( )A.其速度、角速度不变 B.其加速度的方向始终不变C.向心力的作用是改变物体速度、产生向心加速度 D.向心力是恒力2.小易同学假期去游玩看到了一条弯曲的河流,图中A、B、C、D为四处河岸,他想根据所学知识分析一下河水对河岸的冲刷程度,你认为冲刷最严重最有可能的是( )A.A处 B.B处 C.C处 D.D处3.如图所示,在逆时针方向(俯视)加速转动的水平圆盘上有一个与转盘相对静止的物体,物体相对于转盘的运动趋势是( )A.无运动趋势 B.沿切线方向C.沿半径方向 D.既不是沿切线方向,也不是沿半径方向4.如图所示,小明正在荡秋干。

关于秋千绳上a、b两点的线速度v和角速度ω的大小,下列关系正确的是( )A.v a=v b B.v a>v bC.ωa=ωb D.ωa>ωb5.圆周运动在生活中处处可见。

下面四幅图用圆周运动知识来描述,其中正确的是( )A.图甲表示荡秋千。

人在竖直平面内做圆周运动,由人受到的重力和绳子的拉力提供向心力B.图乙表示一列拐弯的火车。

火车拐弯时速度越小,对铁路路基磨损就一定越小C.图丙表示一座拱形桥。

若有一车以一定速度安全过桥,桥受到车的压力一定小于车受到的重力D.图丁表示在室内自行车比赛中自行车在水平赛道上做匀速圆周运动。

将运动员和自行车看作一个整体时其受四个力作用6.如图甲所示,修正带是通过两个齿轮的相互咬合进行工作的。

其原理可简化为图乙中所示的模型。

A、B是转动的齿轮边缘的两点,则下列说法中正确的是( ) A.A、B两点的线速度相等B.A、B两点的角速度相等C.A点的周期大于B点的周期D.A点的向心加速度大于B点的向心加速度7.“南昌之星”摩天轮位于江西省南昌市红谷滩新区红角洲赣江边上的赣江市民公园,是南昌市标志性建筑。

该摩天轮总高度为160米,转盘直径为153米,比位于英国泰晤士河边的135米高的“伦敦之眼”摩天轮还要高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理圆周运动专题训练(附解析)高中物理是高中理科(自然科学)基础科目之一,小编准备了高一物理圆周运动专题训练,具体请看以下内容。

一、选择题
1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是()
A.水滴受离心力作用而背离圆心方向甩出
B.水滴受到向心力,由于惯性沿切线方向甩出
C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出
D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出
2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是()
A.内、外轨一样高,以防列车倾倒造成翻车事故
B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒
C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压
D.以上说法均不正确
3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是()
A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造页 1 第
成的
B.是由于赛车行驶到弯道时,没有及时加速造成的
C.是由于赛车行驶到弯道时,没有及时减速造成
D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的
4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是()
A.重力、弹力和向心力
B.重力和弹力
C.重力和向心力
D.重力
5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是()
A.小球在圆周最高点时所受的向心力一定为重力
B.小球在最高点时绳子的拉力有可能为零
C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0
D.小球过最低点时绳子的拉力一定大于小球的重力
6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为,设拐弯路段是半径为R的圆弧,要使车速为v
时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,应等于()
页 2 第
A.sin =
B.tan =
C.sin 2=
D.cot =
7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是()
A.v的极小值为
B.v由零逐渐增大,向心力也增大
C.当v由逐渐增大时,杆对小球的弹力逐渐增大
D.当v由逐渐减小时,杆对小球的弹力逐渐增大
二、非选择题
8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:
(1)小球通过最高点时的最小速度;
(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?
参考答案
1.D [根据离心运动的特点知,水滴的离心现象是由于水滴
与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]
页 3 第
2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方
向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]
3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且
速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C
正确.]
4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力
为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.] 5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]
6.B
[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,
则有:Nsin =m,
Ncos =mg,
解得:tan =,故B正确.]
7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也页4 第
不会掉下来,因此v的极小值是零;v由零逐渐增大,由F=
可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无
作用力,向心力只由其自身重力来提供;当v由增大时,则
=mg+F?F=m-mg,杆对球的力为拉力,且逐渐增大;当v由减
小时,杆对球为支持力.此时,mg-F=,F=mg-,支持力F逐
渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]
8.(1)2.5 m/s
(2)1.76 N 平抛运动
解析 (1)小球通过圆周最高点时,受到的重力G=mg必须全
部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高
点的条件应为F向mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m
解得:G=mg=m
v0== m/s=2.5 m/s.
(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m
解得:F=m-mg=(0.4-0.410) N=1.76 N
页 5 第
若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高一物理圆周运动专题训练,希望大家喜欢。

页 6 第。

相关文档
最新文档