一元一次方程提高训练
一元一次方程专题训练经典练习题(含答案)
![一元一次方程专题训练经典练习题(含答案)](https://img.taocdn.com/s3/m/f250a9aea32d7375a517800c.png)
一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、小华从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。
4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。
人教版七年级数学上《实际问题与一元一次方程》提高训练
![人教版七年级数学上《实际问题与一元一次方程》提高训练](https://img.taocdn.com/s3/m/f39f7b3eb307e87100f6963f.png)
《实际问题与一元一次方程》提高训练一、选择题1.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣42.关于x的方程|a|=x的解与方程2x﹣2=0的解相同,则a的值是()A.1B.﹣1C.±1D.03.若关于x的方程|2x﹣3|+m=0无解,|3x﹣4|+n=0只有一个解,|4x﹣5|+k=0有两个解,则m,n,k的大小关系是()A.m>n>k B.n>k>m C.k>m>n D.m>k>n4.若三个连续偶数的和为18,则它们的积为()A.216B.49C.192D.4805.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2二、填空题6.已知方程的解也是方程|2﹣7x|=a的解,则a等于.7.从2019年1月5日起,全国铁路将开始实施新的列车运行图,被誉为“最美高铁线路”的杭黄高铁即将开通运营,届时从无锡到黄山会有直达高铁,它的运行速度比原来的普通火车的运行速度快200km/h,约用3.5h到达,运行时间缩短了7小时.如果在相同的路线上,无锡东站到黄山北站的距离不变,设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为.8.按下面的程序计算:若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值为.9.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是人.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得.三、解答题11.阅读以下例题:解方程:|x﹣3|=2.解:(1)当x﹣3≥0时,方程化为x﹣3=2,所以x=5;(2)当x﹣3<0时,方程化为x﹣3=﹣2,所以x=1.根据上述阅读材料,解方程:|2x+1|=7.12.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?13.中国移动开设两种通讯业务,全球通用户,先缴50元月租费,每通话一分钟再付0.4元,神州行用户,不缴月租费,每通话一分钟,付话费0.6元.(1)假设一个月内通话时间为120分钟,两种通话方式的费用分别是多少?(直接写出答案)(2)一个月通话时间为多少分钟,两种通讯方式费用相同?(列方程计算)(3)某人预计一个月内使用话费120元,则他应该选择哪种通讯方式更合算?说明理由.14.冬季的哈尔滨,银装素裹,吸引来大批冰雪运动爱好者.某商场看准商机,需订购一批冰鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次购进的2倍多10双,如果你是商场经理该花多少钱进货?(3)在(2)的条件下,第一次购进的冰鞋商场加价12.5%,全部售出.如果第二次购进的冰鞋也能全部售出,则每双冰鞋售价是多少时,商场两批冰鞋的总利润率为25%?15.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是,若AB=2,那么x为;(3)当x是时,代数式|x+2|+|x﹣1|=5;(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,PQ=1?(请写出必要的求解过程)《实际问题与一元一次方程》提高训练参考答案与试题解析一、选择题1.方程|2x+1|=7的解是()A.x=3B.x=3或x=﹣3C.x=3或x=﹣4D.x=﹣4【分析】根据绝对值的性质,可化简方程,根据解一元一次方程,可得答案.【解答】解:当x≥﹣时,方程化简为2x+1=7,解得x=3;当x<﹣时方程化简为﹣2x﹣1=7,解得x=﹣4;故选:C.【点评】本题考查了含绝对值符号的一元一次方程,利用绝对值的性质化简方程是解题关键.2.关于x的方程|a|=x的解与方程2x﹣2=0的解相同,则a的值是()A.1B.﹣1C.±1D.0【分析】先求出第二个方程的解,把x1代入第一个方程,求出方程的解即可.【解答】解:解方程2x﹣2=0得:x=1,∵关于x的方程|a|=x的解与方程2x﹣2=0的解相同,∴代入得:|a|=1,解得:a=±1,故选:C.【点评】本题考查了含绝对值符号的一元一次方程,能得出关于a的方程是解此题的关键.3.若关于x的方程|2x﹣3|+m=0无解,|3x﹣4|+n=0只有一个解,|4x﹣5|+k=0有两个解,则m,n,k的大小关系是()A.m>n>k B.n>k>m C.k>m>n D.m>k>n【分析】比较m、n、k的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【解答】解:(1)∵|2x﹣3|+m=0无解,∴m>0.(2)∵|3x﹣4|+n=0有一个解,∴n=0.(3)∵|4x﹣5|+k=0有两个解,∴k<0.∴m>n>k.故选:A.【点评】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.4.若三个连续偶数的和为18,则它们的积为()A.216B.49C.192D.480【分析】根据三个连续偶数的和为18,设中间的数为x,列方程求出三个数,再计算它们的积.【解答】解:设中间一个偶数为x,列方程得(x﹣2)+x+(x+2)=18,解得x=6.则这三个偶数为4、6、8.其积为4×6×8=192.故选:C.【点评】本题是一元二次方程的应用,关键是知道相邻两个偶数的差是2,在解题时要能根据题意得出等量关系,列出方程即可解题.5.检修一台机器,甲、乙小组单独做分别需要7.5h,5h就可完成.两小组合作2h后,由乙小组单独完成,还需()小时才能完成机器的检修任务.A.1B.C.D.2【分析】利用总共量为1,进而表示出甲、乙的工作量得出等式求出答案.【解答】解:设两小组合做2h后,再由乙小组单独做,还需x小时才能完成这台机器的检修任务,根据题意可得:2(+)+x•=1,解得:x=.答:还需小时后才能完成这台机器的检修任务.故选:C.【点评】此题主要考查了一元一次方程的应用,根据总共量为1得出等式是解题关键.二、填空题6.已知方程的解也是方程|2﹣7x|=a的解,则a等于7.【分析】根据同解方程,可得关于a的方程,根据解方程,可得答案.【解答】解:由解得x=,由方程的解也是方程|2﹣7x|=a的解,将x=代入|2﹣7x|=a,得|2﹣7×|=a,解得a=7故答案为:7.【点评】本题考查了同解方程,利用同解方程得出关于a的方程是解题关键.7.从2019年1月5日起,全国铁路将开始实施新的列车运行图,被誉为“最美高铁线路”的杭黄高铁即将开通运营,届时从无锡到黄山会有直达高铁,它的运行速度比原来的普通火车的运行速度快200km/h,约用3.5h到达,运行时间缩短了7小时.如果在相同的路线上,无锡东站到黄山北站的距离不变,设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为 3.5x=(7+3.5)(x+200).【分析】根据“高铁速度×运行时间=普通火车速度×运行时间”可得方程.【解答】解:设“杭黄高铁”的运行速度为xkm/h,依题意,可列方程为:3.5x=(7+3.5)(x+200),故答案为:3.5x=(7+3.5)(x+200).【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,找到题目蕴含的相等关系.8.按下面的程序计算:若开始输入的x值为正整数,最后输出的结果为556,则开始输入的x值为22或111.【分析】由5x+1=556,解得x=111,即开始输入的x为111,最后输出的结果为556;当开始输入的x值满足5x+1=111,最后输出的结果也为556,可解得x=22;当开始输入的x值满足5x+1=22,最后输出的结果也为556,但此时解得的x的值为小数,不合题意.【解答】解:当输入一个正整数,一次输出556时,5x+1=556,解得:x=111;当输入一个正整数,两次后输出556时,5x+1=111,解得:x=22;当输入一个正整数,三次后输出556时,5x+1=22,解得:x=4.2(不合题意)故答案为:22或111.【点评】本题考查了一元一次方程的应用,解题的关键是根据程序框图列出方程,求出符合条件的x的值.9.经调查,某校学生上学所用的交通方式中,选择“自行车”、“公交车”、“其它”的比例为7:3:2,若该校学生有3200人,则选择“公交车”的学生人数是800人.【分析】设选择“公交车”的学生人数是3x,则自行车的有7x,其他的有2x,根据该校学生有3200人,列出方程,求出x的值,即可得出答案.【解答】解:设选择“公交车”的学生人数是3x,根据题意得:7x+3x+2x=3200,解得:x=,则选择“公交车”的学生人数是×3=800人;故答案为:800.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得1000(26﹣x)=2×800x.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故答案为:1000(26﹣x)=2×800x【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.三、解答题11.阅读以下例题:解方程:|x﹣3|=2.解:(1)当x﹣3≥0时,方程化为x﹣3=2,所以x=5;(2)当x﹣3<0时,方程化为x﹣3=﹣2,所以x=1.根据上述阅读材料,解方程:|2x+1|=7.【分析】根据绝对值的性质,可化简绝对值方程,根据解方程,可得答案.【解答】解:当2x+1≥0时,方程化为2x+1=7,解得x=3;当2x+1<0时,方程化为2x+1=﹣7,解得x=﹣4.所以原方程的解为x=3或x=﹣4.【点评】本题考查了含绝对值符号的一元一次方程,利用绝对值的性质化简方程是解题关键.12.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品装满6箱后还剩8个.每台A型机器比每台B型机器一天少生产2个产品,求每箱装多少个产品?【分析】设每箱装x个产品,根据每台A型机器比每台B型机器一天少生产2个产品,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设每箱装x个产品,根据题意得:+2=,解得:x=12.答:每箱装12个产品.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.13.中国移动开设两种通讯业务,全球通用户,先缴50元月租费,每通话一分钟再付0.4元,神州行用户,不缴月租费,每通话一分钟,付话费0.6元.(1)假设一个月内通话时间为120分钟,两种通话方式的费用分别是多少?(直接写出答案)(2)一个月通话时间为多少分钟,两种通讯方式费用相同?(列方程计算)(3)某人预计一个月内使用话费120元,则他应该选择哪种通讯方式更合算?说明理由.【分析】(1)根据两种缴费方式,代入120分钟计算得结果;(2)设出未知数,根据两种通话费用相同列出方程,求解即可;(3)比较两种通讯方式的通话时间,得结论.【解答】解:(1)全球通用户通话120分钟需缴纳话费:50+0.4×120=98(元);神州行用户通话120分钟需缴纳话费:0.6×120=72(元).答:全球通用户的费用为98元,神州行用户的费用为72元.(2)设一个月通话x分钟,两种通讯方式费用相同.由题意,得50+0.4x=0.6x,解得x=250即一个月通话250分钟,两种通讯方式费用相同;(3)他选择神州行更合算.理由:若他选择的是全球通,可通话时间为t1,则50+0.4t1=120,t1=175(分钟);若他选择的是神州行,可通话时间为t2,则0.6t2=120,t2=200(分钟).∵200>175∴选择神州行更合算.【点评】本题考查了一元一次方程的应用,理解题意是解决本题的关键.14.冬季的哈尔滨,银装素裹,吸引来大批冰雪运动爱好者.某商场看准商机,需订购一批冰鞋,现有甲、乙两个供应商,均标价每双80元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果超出60双,则超出的部分打八折”(1)购进多少双时,去两个供应商处的进货价钱一样多?(2)第一次购进了100双,第二次购进的数量比第一次购进的2倍多10双,如果你是商场经理该花多少钱进货?(3)在(2)的条件下,第一次购进的冰鞋商场加价12.5%,全部售出.如果第二次购进的冰鞋也能全部售出,则每双冰鞋售价是多少时,商场两批冰鞋的总利润率为25%?【分析】(1)设购进x双时,去两个供应商处的进货价钱一样多,根据总价=单价×数量结合两供应商的优惠政策,即可得出关于x的一元一次方程,解之即可得出结论;(2)由(1)可得出第一次选择甲供应商实惠、第二次选择乙供应商实惠,分别求出两次进货所需资金,相加后即可得出结论;(3)设第二次购进的冰鞋售价为y元/双,根据利润=销售收入﹣成本,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设购进x双时,去两个供应商处的进货价钱一样多,根据题意得:80×0.9x=80×60+80×0.8(x﹣60),解得:x=120.答:购进120双时,去两个供应商处的进货价钱一样多.(2)第一次选择甲供应商实惠,需要80×0.9×100=7200(元),第二次选择乙供应商实惠,需要80×60+80×0.8×(100×2+10﹣60)=14400(元),∴7200+14400=21600(元).答:商场经理该花21600元钱进货.(3)设第二次购进的冰鞋售价为y元/双,根据题意得:7200×(1+12.5%)+(100×2+10)y﹣21600=21600×25%,解得:y=90.答:第二次购进的冰鞋售价是90元/双时,商场两批冰鞋的总利润率为25%.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)由(1)找出两次进货选择哪家供应商省钱;(3)找准等量关系,正确列出一元一次方程.15.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是|x+2|,若AB=2,那么x为0或﹣4;(3)当x是﹣3或2时,代数式|x+2|+|x﹣1|=5;(4)若点A表示的数﹣1,点B与点A的距离是10,且点B在点A的右侧,动点P、Q同时从A、B出发沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,PQ=1?(请写出必要的求解过程)【分析】(1)根据两点间的距离,可得答案;(2)根据两点间的距离,可得答案;(3)根据绝对值的性质,可化简方程,根据解方程,可得答案;(4)根据PQ的距离为1,可得方程,根据解方程,可得答案.【解答】解:(1)数轴上表示2和5的两点之间的距离是5﹣2=3,数轴上表示1和﹣3的两点之间的距离是1﹣(﹣3)=4;(2)数轴上若点A表示的数是x,点B表示的数是﹣2,则点A和B之间的距离是|x+2|,若AB=2,得x+2=2或x+2=﹣2,解得x=0或x=﹣4;(3)当x<﹣2时,﹣x﹣2﹣x+1=5,解得x=﹣3,当﹣2≤x<1时,x+2+1﹣x|=5,方程无解,当x≥1时,x+2+x﹣1=5,解得x=2,故答案为:3,4;|x+2|,0或﹣4;﹣3或2;(4)设运动x秒后,点Q与点P相距1个单位,由题意,得①P超过Q,3x﹣x=10+1,解得x=,②P在Q的后边,3x﹣x=10﹣1,解得x=,答:运动或秒后,点Q与点P相距1个单位.【点评】本题考查了一元一次方程的应用,实数与数轴,利用两点间的距离是解题关键,解(4)的关键是利用PQ的距离为1得出方程,要分类讨论,以防遗漏.。
实际问题与一元一次方程-产品配套问题 解答题专题提升训练 人教版七年级数学上册
![实际问题与一元一次方程-产品配套问题 解答题专题提升训练 人教版七年级数学上册](https://img.taocdn.com/s3/m/ae4236b3c9d376eeaeaad1f34693daef5ef71397.png)
2023-2024学年人教版七年级数学上册《3.4实际问题与一元一次方程-产品配套问题》解答题专题提升训练(附答案)1.用白铁皮做罐头盒,每张铁皮可制作盒身5个或盒底14个,一个盒身与两个盒底配成一套罐头盒,现有12张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?2.东方红机械厂加工车间有90名工人,平均每人每天可加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?3.一个车间每天生产甲种零件300个或生产乙种零件500个或生产丙种零件600个.从3种零件中各取一个配套使用,现在要在63天之内生产产品配套,则三种零件各需安排生产多少天?4.京华服装厂生产一批某种型号的秋装,已知每两米的某种布料可做上衣的衣身3件或衣袖5只,现计划用这种布料132米做这批秋装,则应分别用多少布料做衣身,多少布料做衣袖才能恰好配套?5.某车间有22名工人,每人每天可以生产1200个螺柱或2000个螺母,要求每天生产的螺柱和螺母刚好配套.(1)若1个螺柱需要配2个螺母,应安排生产螺柱的工人有多少名?(2)若3个螺柱需要配5个螺母,则安排生产螺柱的工人有多少名?6.为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,某教育集团准备了若干的桌子桌面、凳子凳面和桌子与凳子的腿(桌子腿与凳腿是完全一样的),举办组装4条腿的桌子和3条腿的凳子活动比赛.(1)某参赛队领取的桌子桌面和凳子凳面共12个,若桌子腿数与凳子腿数共40条,则该支参赛队能组装几张桌子和几条凳子?(2)若1张桌子和4个凳子为一套成品,现有100个桌面,400个凳面,1520条腿,则能组装成多少套成品?7.一套仪器由一个A部件和三个B部件构成.用1m3的钢材可以做40个A部件或240个B部件.现要用6m3钢材制作这种仪器,应用多少钢材做A部件多少钢材做B部件,恰好配成这种仪器多少套?8.某口罩生产厂加工一批医用口罩,全厂共78名工人,每人每天可以生产800个口罩面或1000根口罩耳绳,1个口罩面需要配2根口罩耳绳,为使每天生产的口罩面和口罩耳绳刚好配套,问需要安排生产口罩面和口罩耳绳的工人各多少名?9.七年级1班共有学生45人,其中男生比女生少3人.某节课上,老师组织同学们做圆柱形笔筒.每名学生每节课能做筒身30个或筒底90个.(1)七年级1班有男生、女生各多少人?(2)原计划女生负责做筒身,男生做筒底,要求每个筒身匹配2个筒底,那么每节课做出的筒身和筒底配套吗?如果不配套,男生要支援女生几人,才能使筒身和筒底配套?(列方程解决问题)10.某瓷器厂共有工人120人,每个工人一天能做200只茶杯或50只茶壶.如果8只茶杯和一只茶壶为一套.(1)应安排多少人生产茶杯,可使每天生产的瓷器配套.(2)按(1)中的安排,每天可以生产多少套茶具?11.列方程解应用题:某车间有15个工人,生产水桶、扁担两种商品;已知每人每天平均能生产水桶80个或扁担110个,则应分配多少人生产水桶、多少人生产扁担,才能使每天生产的水桶和扁担刚好配套?(每2个水桶和1个扁担配成一套)12.某家具工厂制作一张方桌要用1个桌面和4个桌腿,该工厂的木工师傅用1m3木材可制作25个桌面或200个桌腿,该工厂现有30m3的木材.(1)若将30m3的木材全部用完,且制作出来的桌面和桌腿恰好都配成方桌,求应安排多少立方米的木材制作桌面?(2)每张方桌的标价比成本多400元.该工厂欲将(1)中制作的方桌全部出售,为尽快回收资金,以标价的九折出售,这样全部出售后可获得的总利润为140000元,求每张方桌的成本是多少元?13.已知,某工地施工队,其中一部分工人挑土,一部分工人抬土,共有60根扁担和80个筐(已知挑土的是一个工人挑一根扁担,挂两个筐,抬土的是两个工人抬一根扁担,中间挂一个筐).(1)施工队中挑土工人有多少人?(2)若挑土工人一天的工资为90元,抬土工人一天的工资为50元,则施工队一天该付工资多少钱?(3)由于人工成本较高,而且施工队欲提高工作效率,故将抬土工人全部转为挑土,请问后勤部门要多购进多少根扁担、多少个筐?14.12月21日华为mate40在各大电商中台预约销售,预售不到24小时,天猫、京东等平台的mate40就被抢完,显示无货,为了加快生产进度,某工厂连夜生产mate40中的某种AB型电子配件,这种配件由A型装置和B型装置组成.已知该工厂共有1200(1)据了解,在日常工作中,该工厂生产A型装置的人比生产B型装置的人数的3倍少400人,请问工厂里有多少名工人生产B型装置?(2)若急需AB型电子配件每套由2个A型装置和1个B型装置配套组成,每人每天只能加工40个A型装置或30个B型装置.现将所有工人重新分成两组,每组分别加工一种装置,并要求每天加工的A、B型装置正好配套,请问该工厂每天应分别安排多少名工人生产A型装置和B型装置?15.七(31)班有43名志愿者,由于疫情每人捐7个医用口罩或5个抗原检测试剂.现把3个口罩和4个检测试剂配成一套健康包,有意思的是该班捐赠的口罩和抗原试剂刚好配套成整套的健康包,试求该班捐赠口罩和抗原试剂的志愿学生各多少名?16.某食品厂元宵节前要生产一批元宵礼袋,每袋中装4颗大元宵和8颗小元宵.生产一颗大元宵要用肉馅15g,一颗小元宵要用肉馅10g.现共有肉馅2100kg.(1)假设肉馅全部用完,生产两种元宵应各用多少肉馅,才能使生产出的元宵刚好配套装袋?(2)最多能生产多少袋元宵?17.“2022卡塔尔世界杯”期间,某工厂接到一批紧急订单,要按期生产A、B两种款式的球衣共69万套,已知7名工人能按期生产一万套A款球衣,10名工人能按期生产一万套B款球衣.工厂通过调度,安排600名工人按期同时完成了两种款式球衣的生产任务.(1)生产A款球衣和B款球衣的工人各多少人?(2)工厂生产一套A款球衣的利润是6元,生产一套B款球衣的利润是8元,工厂完成该订单的总利润是多少?18.小敏和小强假期到某厂参加社会实践,该工厂用白板纸做包装盒,设计每张白板纸做盒身2个或者做盒盖3个,且一个盒身和两个盒盖恰好做成一个包装盒.为了充分利用材料,要求做成的盒身和盒盖正好配套.(1)现有14张白板纸,问最多可做几个包装盒?(用一元一次方程的应用解答)(2)现有27张白板纸,问最多可做几个包装盒?为了解决这个问题,小敏和小强各设计了一种解决方案:小敏:把这些白板纸分成两部分,一部分做盒身,一部分做盒盖;小强:先把一张白板纸适当套裁出一个盒身和一个盒盖,余下白板纸分成两部分,一部分做盒身,一部分做盒盖.请探究:小敏和小强设计的方案是否可行?若可行,求出最多可做包装盒的个数;若不行,请说明理由.面,其余木料制作桌腿.(1)若木料全部制作圆桌,已知一张圆桌由一个桌面和一条桌腿组成,1m3木料可制作40个桌面,或制作20条桌腿.要使制作出的桌面、桌腿恰好配套,直接写出制作桌面的木料为多少;(2)若木料全部制作方桌,已知一张方桌由一个桌面和四条桌腿组成.根据所给条件,解答下列问题:①如果1m3木料可制作50个桌面,或制作300条桌腿,那么应怎样计划用料才能使做好的桌面和桌腿恰好配套?②如果3m3木料可制作20个桌面,或制作320条桌腿,那么应怎样计划用料才能制作尽可能多的桌子?20.某工厂车间有60个工人生产A零件和B零件,每人每天可生产A零件15个或B 零件20个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A 零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B 零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?参考答案:1.解:设用x张制作盒身,则(12−x)张制作盒底,由题意得:2×5x=14(12−x),解得x=7,则12−x=5,答:用7张制作盒身,5张制作盒底,正好制成整套罐头盒.2.解:设加工大齿轮的为x人,则加工小齿轮的为(90−x)人,由题意得:20x×3=15(90−x)×2,解得:x=30,90−30=60(人).答:需要分别安排30、60名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套.3.解:∵300、500、600的最小公倍数为3000,∴3000÷300=10,3000÷500=6,3000÷600=5,∴设甲种零件需安排生产10x天,则乙种零件需安排生产6x天,丙种零件需安排生产5x天,根据题意得:10x+6x+5x=63,解得:x=3,∴10x=30,6x=18,5x=15.答:甲种零件需安排生产30天,乙种零件需安排生产18天,丙种零件需安排生产15天.4.解:设应用x米布料做衣身,则用(132−x)米布料做衣袖才能恰好配套,依题意,得:2×3x2=5(132−x)2,解得:x=60,∴132−x=72.答:应用60米布料做衣身,用72米布料做衣袖才能恰好配套.5.(1)解:设安排生产螺柱的工人有x名,2×1200x=2000(22−x),解得:x=10,答:安排生产螺柱的工人有10名.(2)设安排生产螺柱的工人有y名,53×1200y=2000(22−y),解得:y=11,答:安排生产螺柱的工人有11名.6.(1)解:设桌子桌面x个,则凳子凳面(12−x)个,由题意得:4x+3(12−x)=40,解得:x=4,12−4=8,答:该支参赛队能组装4张桌子和8条凳子;(2)设能组装成x套成品,x≤100则4x+4×3x=1520,解得:x=95,答:能组装成95套成品7.解:设应用xm3钢材做A部件,(6−x)m3钢材做B部件,根据题意得,3×40x=240(6−x),解得x=4,6−x=6−4=2m3,40x=40×4=160套.答:应用4m3钢材做A部件,2m3钢材做B部件,恰好配成这种仪器160套.8.解:设安排x名工人生产口罩面,能使每天生产的口罩面与口罩耳绳刚好配套,则生产口罩耳绳的工人有(78−x)名,依题意得2×800x=1000(78−x),解得x=30,即安排生产口罩面工人30名,安排口罩耳绳的工人78−30=48名.答:安排生产口罩面工人30名,安排口罩耳绳的工人48名.9.(1)解:设女生有x人,则男生有(x−3)人,由题意可得:x+(x−3)=45,解得x=24,∴x−3=21,答:七年级1班有男生21人,女生24人;(2)解:女生可以做筒身:24×30=720(个),男生可以做筒底:21×90=1890(个),∵720×2<1890,∴原计划每节课做出的筒身和筒底不配套;设男生要支援女生a人,才能使筒身和筒底配套,(24+a)×30×2=(21−a)×90,解得a=3,答:男生要支援女生3人,才能使筒身和筒底配套.10.(1)解:设安排x人生产茶杯,则(120−x)人生产茶壶,根据题意,得200x=8×50(120−x),解得x=80.答:应安排80人生产茶杯,可使每天生产的瓷器配套.(2)由(1)知:(120−80)×50=2000(套)答:每天可以生产2000套茶具.11.解:设分配x人生产水桶,则分配(15−x)人生产扁担,才能使每天生产的水桶和扁担刚好配套,由题意得:80x=2×110(15−x),解得:x=11,则15−x=15−11=4.答:分配11人生产水桶,4人生产扁担,才能使每天生产的水桶和扁担刚好配套.12.(1)解:设安排x立方米的木材制作桌面,则安排(30−x)立方米的木材制作桌腿.根据题意得:4×25x=200(30−x),解得x=20.答:应安排20立方米的木材制作桌面;(2)设每张方桌的成本是a元,根据题意可列方程为:20×25[0.9(a+400)−a]=140000,解得a=800.答:每张方桌的成本是800元.13.(1)解:设x根扁担挑土,(60−x)根扁担抬土,由题意得:2x+1×(60−x)=80,解得∴x=20,所以,20根扁担挑土,40根扁担抬土,所以20人挑土,80人抬土;答:施工队中有20人挑土;(2)工资费用:90×20+50×80=5800元;(3)一共有工人:20+80=100人,共需要100根扁担,100×2=200个筐,100−60=40,200−80=120,所以还需40根扁担,120个筐.14.(1)解:设工厂里有x名工人生产B型装置,则有(3x−400)名工人生产A型装置,依题意有x+3x−400=1200,解得x=400.答:工厂里有400名工人生产B型装置;(2)解:设工厂里有y名工人生产A型装置,则有(1200−y)名工人生产B型装置,依题意有40y=2×30(1200−y),解得:y=720,则1200−y=1200−720=480.答:工厂里有720名工人生产A型装置,有480名工人生产B型装置.15.解:设捐赠口罩的有x人,则捐赠抗原试剂的有(43−x)人.7x 3=5(43−x)4整理得:28x=15(43−x),解得x=15,捐赠抗原:43−15=28(名)答:该班捐赠口罩的志愿学生有15名,捐赠抗原试剂的志愿学生有28名.16.(1)解:设生产大元宵要用肉馅x千克,2×1000x15=1000(2100−x)10解得:x=900∴小元宵要用肉馅2100−900=1200kg,答:大元宵和小元宵各用肉馅900kg,1200kg刚好配套装袋.(2)生产元宵袋数为:1000×120010×8=15000(袋)答:最多生产15000袋元宵.17.(1)解:设安排x人生产A款球衣,(600−x)人生产B款球衣,则x 7+600−x10=69,解得x=210答:安排210人生产A款球衣,390人生产B款球衣.(2)解:∴生产一套A款球衣的利润是6元,生产一套B款球衣的利润是8元,∴6×2107+8×39010=492(万元),答:订单总利润为492万元.18.(1)解:设x张白板纸做盒身,则有(14−x)张做盒盖,根据题意得:2x×2=3(14−x),解得:x=6,∴用6张白板纸做盒身,8张白板纸做盒盖,则最多可做12个包装盒;(2)解:小敏的方案不行,设x张白纸做盒身,则有(27−x)张做盒盖,根据题意得:2x×2=3(27−x),解得:x=817,∴x为正整数,∴该方案不符合题意;小强的方案可行,设余下的白纸板x张做盒身,则(26−x)张做盒盖,根据题意得:2(2x+1)=3(26−x)+1,解得:x=11,∴11×2+1=22+1=23,则最多做23个包装盒.19.解:(1)设用xm3木料制作桌面,用(15−x)m3木料制作桌腿恰好配套,由题意得40x= 20(15−x),解得:x=5,答:制作桌面的木料为5m3(2)①设用xm3木料制作桌面,用(15−x)m3木料制作桌腿恰好配套,由题意得4×50x=300(15−x),解得x=9,则制作桌腿的木料为15−9=6(m3).答:用9m3木料制作桌面,用6m3木料制作桌腿恰好配套.②设用ym3木料制作桌面,用(15−y)m3木料制作桌腿能制作尽可能多的桌子.由题意得4×20×y3=320×15−y3,解得y=12,则15−12=3(m3).答:用12m3木料制作桌面,用3m3木料制作桌腿能制作尽可能多的桌子.20.解:(1)设该工厂有x名工人生产A零件,则生产B零件有(60−x)名,根据题意得:2×15x=20(60−x)解得:x=24,答:该工厂有24名工人生产A零件;(2)由(1)知:生产B零件原有60−24=36名,设从生产B零件的工人中调出y名工人生产A零件.(24+y)×15×10+(36−y)×20×5−(24×15×10+36×20×5)=600,解得:y=12,答:从生产B零件的工人中调出12名工人生产A零件.。
(完整)一元一次方程提高训练
![(完整)一元一次方程提高训练](https://img.taocdn.com/s3/m/849e19aa524de518964b7d89.png)
实用标准文档文案大全一元一次方程提高训练一.选择题1.已知关于x的方程2x—a—5=0的解是x=—2,则a的值为()A. 1 B.﹣1 C. 9 D.﹣92.小亮在解方程时,由于粗心,错把—x看成了+x,结果解得x=—2,求a的值为()A. 11 B.﹣11 C.D.3.墨墨在解方程+=时,不小心用橡皮把其中的一项擦掉了,他只记得那一项是不含x的,看答案知道这个方程的解是x=5,那么“”处的数应该是()A.﹣1 B. 1 C . 2 D.﹣24.关于x的方程5x —a=0的解比关于y 的方程3y+a=0的解小2,则a的值是()A.B.﹣C.D.﹣5.下列方程中,解为x=3的方程是()A. B.C. D.x﹣2=﹣16.一元一次方程的解是()A.B. x=﹣1 C. x=1 D. x=﹣27.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程,未知数系数化为1,得t=1D .方程,化成3x=68.已知(m﹣4)x|m|﹣3=18是关于x的一元一次方程,则()A. m=4 B.m=﹣4 C. m=±4 D. m=19.墨墨在解方程+=时,不小心用橡皮把其中的一项擦掉了,他只记得那一项是不含x的,看答案知道这个方程的解是x=5,那么“”处的数应该是()A.﹣1 B. 1 C.2 D.﹣210.如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg 的砝码,天平两端正好平衡,那么一块砖的重量是()A. 1kg B. 2kg C. 3kg D. 4kg11.下列变形中,错误的是()A .若x2=5x,则x=5 B.若﹣7x=7则x=﹣1C.若,则D .若,则ax=ay12.下列方程,变形错误的是()A.4x﹣1=5x+2→x=﹣3B.3(x+5)﹣4(x﹣)=2→3x+15﹣4x﹣2=2C.→6x+5﹣10x=92D.→2(x+5)﹣3(x﹣3)=613.下列方程变形正确的是()A.由方程,得3x﹣2x﹣2=6B.由方程,得3(x﹣1)+2x=1C.由方程,得2x﹣1=3﹣6x+3D.由方程,得4x﹣x+1=414、一列火车长100米,以每秒20米的速度通过800米长的隧道,从火车进入隧道起,至火车完全通过所用的时间为( ).A.50秒 B.40秒 C.45秒 D.55秒15、一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x的方程是()A.24245.56x x-=+ B.24245.56x x-+=C.2245.56 5.5x x=-+D.245.56x x-=16、某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售()A.80元B.100元 C.120元D.160元二.填空题1.若k是方程3x+1=4的解,则5k+3= __ .已知方程2235522ax x x x a++=-+是关于x的一元一次方程,则这个方程的解为________.2、已知|4|m n-+和2(3)n-互为相反数,则22m n-=______.3、当x=________时,代数式453x-的值为-14、若方程3x﹣5=1与方程1﹣=0有相同的解,则a的值等于_____ .5.已知方程4x+2m=3x+1和方程3x+2m=6x+1的解相同,则m= ____ .6.如果方程(k﹣1)x|k|+3=0是关于x的一元一次方程,那么k的值是______ .7.已知方程(m+1)x|m+2|+5=9是关手x的一元一次方程,则m= ______ .8.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”_______ 个.9.下列说法中:①若ax=ay,则x=y(其中a是有理数);②若,则a<0;③代数式﹣3a+10b+3a﹣10b﹣2的值与a,b都无关;④当x=3时,代数式1+(3﹣x)2有最大值l;⑤若|a|=|﹣9|,则a=﹣9.其中正确的是:_______ (填序号)10.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则3个球体的重量等于_________ 个正方体的重量.11.用适当的数或式子填空,使所得结果仍是等式,并说明变形是根据等式的哪一条性质以及怎样变形的.(1)若3x+5=8,则3x=8 ;(2)若,则x= ;(3)若2m﹣3n=7,则2m=7+ ;(4)若,则x+12= .12.若3x m+5y2与x3y n的和是单项式,则n m=.13.如果2x+3的值与1﹣x的值互为相反数,那么x= .14.若2a2m+2b2与﹣a m+3b n﹣3是同类项,则m+n= .15.在有理数范围内定义一种运算“★”,规定:a★b=ab+a﹣b,若2★x=﹣6,则x的值是.16.若规定,则的实数x的值为.17.y取时,代数式2(3y+4)的值比5(2y﹣7)的值大3.18.在公式中,已知b=3,h=5,S=20,则a= .19、关于x的方程kx+2=4x+5有正整数解,求满足条件的k的正整数值为.二.解答题(共24小题)1、解方程(1)()()641521668x x x+-=--(2)()()()32181y y y---=-(3)()()()22152412x x x--+=-+-(4)()()()32321241y y y---=+(5)()()()72134153210x x x-+--++=23(6)53210232213+--=-+x x x (7)32116110412xx x --=+++ (8)2233534--+=+-+y y y y(9)2x-13 - 10x+16 = 2x+14-1(10)(11)(12)(13)12 (x -3)- 13(2x+1)=1(14)15 (x+15)=12 - 13(x -7)(15)()()()3413231121+-=-+++x x x(16)5.06.0x31x 5.1=--4(17)12.02.01.03.01.02.0++=-x x(18)x 0.7 -0.17-0.2x0.03 =1(19)12.02.01.03.01.02.0++=-x x(20)0.40.90.030.0250.50.032x x x ++--=(21)}17]532141[6181=++⎪⎭⎫⎝⎛+-⎩⎨⎧x x(22)x -12 [x -12 (x -1)]=2(x-1)3(22)x 3 +12 (2x3-4)=2(23))12(43)]1(31[21+=--x x x2.阅读以下材料:在做解方程练习时,学习卷中有一个方程“2y ﹣■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=3时代数式5(x ﹣1)﹣2(x ﹣2)﹣4的值相同.”聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数.3、小明的练习册上有一道方程题,其中一个数字被墨汁污染了,此时为,他翻看了书后的答案,知道了这个方程的解是x=,于是他把被污染的数字求了出来.请你把小明的计算过程写出来.4.在有理数集合里定义运算“*”,其规则为a*b=,试求方程2*(x*3)=1的解.5当m等于什么数时,代数式m﹣与代数式7﹣的值相等.6.(1)当k 取何当值时,代数式的值比的值小1?(2)当k取何值时,代数式与的值互为相反数?7.已知方程4x﹣3=5的解与方程4(x﹣a)+9=x的解相同,多项式﹣a2+b的值比多项式2(b﹣a)的值小6,求多项式a﹣b2的值?8.已知方程与+1有相同的解,求m的值.9.已知关于x的方程4x+2m=3x+1和3x+2m=6x+1的解相同.求:(1)m的值;(2)代数式(m+2)2012•(2m﹣)2013的值.10.若x取一切有理数时,(2m+3n)x﹣(3m﹣n)=25x+1均成立,求m、n的值.511.已知关于x的方程4m(x﹣n)=3(x+2m)有无数多个解,求m,n的值.12.小华同学在解方程= ﹣1去分母时,方程右边的﹣1没有乘3,因而求得方程的解为x=﹣2,请帮小华正确求出方程的解.13.已知关于x的方程a(2x﹣1)=3x﹣2无解,试求a的值.14.阅读下题和解题过程:化简|x﹣2|+1﹣2(x﹣2),使结果不含绝对值.解:当x﹣2≥0时,即x≥2时:原式=x﹣2+1﹣2x+4=﹣x+3;当x﹣2<0,即x<2时:原式=﹣(x﹣2)+1﹣2x+4=﹣3x+7.这种解题的方法叫“分类讨论法”.请你用“分类讨论法”解一元一次方程:2(|x+1|﹣3)=x+2.15.解方程:(1)|4x﹣1|=7;(2)2|x﹣3|+5=13.(3)|4x﹣2|=316.阅读下列材料并解决有关问题:我们知道:,现在我们可以用这一结论来解含有绝对值的方程.例如,解方程|x+1|+|2x﹣3|=8时,可令x+1=0和2x﹣3=0,分别求得x=﹣1和,(称﹣1和分别为|x+1|和|2x﹣3|的零点值),在实数范围内,零点值x=﹣1和可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1 ②③,从而解方程|x+1|+|2x﹣3|=8可分以下三种情况:①当x<﹣1时,原方程可化为﹣(x+1)﹣(2x﹣3)=8,解得x=﹣2.②当时,原方程可化为(x+1)﹣(2x﹣3)=8,解得x=﹣4,但不符合,故舍去.③当时,原方程可化为(x+1)+(2x﹣3)=8,解得.综上所述,方程|x+1|+|2x﹣3|=8的解为,x=﹣2和.通过以上阅读,请你解决以下问题:6(1)分别求出|x+2|和|3x﹣1|的零点值.(2)解方程|x+2|+|3x﹣1|=9.17、我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:(1)方程|x|=5的解是_________ .(2)方程|x﹣2|=3的解是_________ .(3)画出图示,解方程|x﹣3|+|x+2|=9.18.解方程:(1)…=2 005;19.解下列方程:(1)|x+3|﹣|x﹣1|=x+1(2)|x﹣1|+|x﹣5|=4.720、右图的数阵是由一些奇数排成的.(1)右图框中的四个数有什么关系?(设框中第一行第一个数为x)(2)若这样框出的四个数的和是200,求这四个数.(3)是否存在这样的四个数,它们的和为420,为什么?1 3 5 7 911 13 15 17 19………………91 93 95 97 9921.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?8。
一元一次方程计算专项训练
![一元一次方程计算专项训练](https://img.taocdn.com/s3/m/1e38083b03020740be1e650e52ea551810a6c905.png)
一元一次方程计算专项训练(100题)【人教版】1.解方程:−r12=35+1.2.解方程:3x﹣4(x+1)=3﹣2(2x﹣5).3.解方程:0.3K0.10.2−2r93=−6.4.解方程:2−15(x+2)=12(x﹣1).5.解方程:K34−1=5K43.6.解方程:2K23+1=r12.7.解方程:r24−2K36=1.8.解方程:2K13−3r16=1.9.解方程:23=4K89−2.10.解方程:2.4−K42=35.11.解方程:K32−1=2r13.12.解方程:1−K133=9−32+x.13.解方程:4x+3=2(x﹣1)+1.14.解方程:K23−1=3r24.15.解方程:1−2K13=2r12.16.解方程:2r14−K36=1.17.解方程:35+2.7=4.8.18.解方程:r12−K1=3.19.解方程:K14=1−3−2.20.解方程:4r16−2K12=1.21.解方程:25x﹣8=14−15x.22.解方程:K12−1=2+33.23.解方程:2K13−r46=1.24.解方程:3(x﹣2)=x﹣(8﹣8x).25.解关于x的方程:mx﹣3x=2(2﹣x).26.解方程:3﹣6(x+23)=23.27.解方程:2r35=1−K42.28.解方程:3K14−1=5K76.29.解方程:5−23−3r12=−1.30.解方程:K64−3r52=1.31.解方程:5r72−r173=3.32.解方程:0.4r30.2−K0.10.3=2.33.解方程:1−5K38=2+4.34.解方程:1−3−x=3−r22.35.解方程:x﹣1﹣3(x+2)=6x+1.36.解方程:r32=52+4K15.37.解方程:2r13−5K12=1.38.解方程:2r13=K14+1.39.解方程:4−2−2r13=4.40.解方程:r14−3K18=1.41.解方程:2K13=3r24−1.42.解方程:y−r12=2−r25.43.解方程:2x−13(x+2)=﹣x+2.44.解方程:3−23−2=3r112.45.解方程:x−r22=2K13−1.46.解方程:K30.2−r40.5=1.47.解方程:5K14=1−2−3.48.解方程:2r13−K15=1.49.解方程:1−3K14=3+2.50.解方程:14%x﹣9%(x+10)=7%x+0.2 51.解方程:2+K46=−K33.52.解方程:4(x+12)+9=5﹣3(x﹣1)53.解方程:2r15−1=K2354.解方程:5K76+1=3K14.55.解方程:x−K25=2K53−1.56.解方程:2r13−K16=1.57.解方程:K73−1+2=1.58.解方程:2K13=2r16−1.59.解方程:r13−2=x−K12.60.解方程:x−K12=23−r23.61.解方程:6(12−4)+2=7−(13−1).62.解方程:3x+K12=3−2K13.63.解方程:2K13−5r12−1=0.64.解方程:4(2x﹣1)﹣3(5x+1)=14.65.解方程:4x+3(2x﹣3)=12﹣(x+4)(写出检验过程).66.解方程:2−3−3(K1)2=1.67.解方程:K22+2(r2)5=2−210+1.68.解方程:x−r10.2=0.5.69.解方程:3−K35=3K12−x.70.解方程:16(2x﹣1)=18(5x+1)71.解方程:(x﹣4)−(K4)−12=3−(K4)+23 72.解方程:K0.20.4−0.37r10.2=173.解方程:0.1K0.20.02−r10.5=3.74.解方程:32[2(x−12)+23]=5x.75.解方程:2K13−r56=2x+1;76.解方程:13[x−12(x﹣1)]=23(x﹣2).77.解方程:0.2K0.40.5−=0.05K0.20.03.78.解方程:34[43(12t−14)﹣8]=32t﹣1.79.解方程:12(4x﹣3)﹣2=r13+2;80.解方程:12[3−12(32x﹣1)]=12,81.解方程:2K13−3=0.3r0.50.2.82.解方程:4y﹣3(2+y)=5﹣2(1﹣2y);83.解方程:0.4r0.90.5−0.03+0.020.03=K52.84.解方程:2−5r116=1+2K43.85.解方程:0.8r0.90.5=r52+0.3K0.20.3.86.解方程:13[−12(−1)]=23(−2).87.解方程:0.4r30.2−K0.10.3=2.88.解方程:−K12=2−r25;89.解方程:10.2(+1)−=2K30.3.90.解方程:3r12−2=3K210−2r35,91.解方程:0.5(x﹣3)−4r15=1,92.解方程:4−60.01−6.5=0.2−200.2−7.5,93.解方程:3(x+1)−13(x﹣1)=2(x﹣1)−12(x+1),94.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x);95.解方程:3+0.20.2−0.2+0.030.01=0.75 96.解方程:2K13−5r26=1−22−2;97.解方程:3.1+0.20.2−0.2+0.030.01=32.98.解方程:0.8−91.2−1.3−30.2=5r10.3.99.解方程:0.1−0.20.3−1=0.7−0.4.100.解方程:3+0.20.2−0.2+0.030.01=0.75.一元一次方程计算专项训练(100题)参考答案与试题解析1.解方程:−r12=35+1.【解答】解:去分母得:10x﹣5(x+1)=6x+10,去括号得:5x﹣5=6x+10,移项得:5x﹣6x=10+5,合并得:﹣x=15,解得:x=﹣15.2.解方程:3x﹣4(x+1)=3﹣2(2x﹣5).【解答】解:去括号得:3x﹣(4x+4)=3﹣(4x﹣10),即3x﹣4x﹣4=3﹣4x+10,移项合并得:3x=17,解得:x=173.3.解方程:0.3K0.10.2−2r93=−6.【解答】解:方程整理得:3K12−2r93=−6,去分母得:3(3x﹣1)﹣2(2x+9)=﹣36,去括号得:9x﹣3﹣4x﹣18=﹣36,移项合并得:5x=﹣15,解得:x=﹣3.4.解方程:2−15(x+2)=12(x﹣1).【解答】解:去分母,可得:20﹣2(x+2)=5(x﹣1),去括号,可得:20﹣2x﹣4=5x﹣5,移项,可得:﹣2x﹣5x=﹣5﹣20+4,合并同类项,可得:﹣7x=﹣21,系数化为1,可得:x=3.5.解方程:K34−1=5K43.【解答】解:去分母,可得:3(x﹣3)﹣12=4(5x﹣4),去括号,可得:3x﹣9﹣12=20x﹣16,移项,可得:3x﹣20x=﹣16+9+12,合并同类项,可得:﹣17x=5,系数化为1,可得:x=−517.6.解方程:2K23+1=r12.【解答】解:2K23+1=r12,方程两边同时乘6,得2(2x﹣2)+6=3(x+1),去括号,得4x﹣4+6=3x+3,移项,得4x﹣3x=3+4﹣6,合并同类项,得x=1.7.解方程:r24−2K36=1.【解答】解:方程两边同乘以12得:12×r24−12×2K36=12,则3(x+2)﹣2(2x﹣3)=12,故3x+6﹣4x+6=12,移项合并同类项得:﹣x=0,解得:x=0.8.解方程:2K13−3r16=1.【解答】解:去分母,可得:2(2x﹣1)﹣(3x+1)=6,去括号,可得:4x﹣2﹣3x﹣1=6,移项,可得:4x﹣3x=6+2+1,合并同类项,可得:x=9.9.解方程:23=4K89−2.【解答】解:23=4K89−2,去分母,得6x=4x﹣8﹣18,移项,得6x﹣4x=﹣8﹣18,系数化为1,得x=﹣13.10.解方程:2.4−K42=35.【解答】解:去分母,可得:24﹣5(x﹣4)=6x,去括号,可得:24﹣5x+20=6x,移项,可得:﹣5x﹣6x=﹣24﹣20,合并同类项,可得:﹣11x=﹣44,系数化为1,可得:x=4.11.解方程:K32−1=2r13.【解答】解:去分母,得:3(x﹣3)﹣6=2(2x+1),去括号,得:3x﹣9﹣6=4x+2,移项,得:3x﹣4x=2+9+6,合并同类项,得:﹣x=17,系数化1,得:x=﹣17.12.解方程:1−K133=9−32+x.【解答】解:去分母得:6﹣2(x﹣13)=3(9﹣3x)+6x,去括号得:6﹣2x+26=27﹣9x+6x,移项得:﹣2x+9x﹣6x=27﹣6﹣26,合并同类项得:x=﹣5.13.解方程:4x+3=2(x﹣1)+1.【解答】解:4x+3=2(x﹣1)+1,去括号,得4x+3=2x﹣2+1,移项,得4x﹣2x=1﹣2﹣3,合并同类项,得2x=﹣4,系数化为1,得x=﹣2.14.解方程:K23−1=3r24.【解答】解:去分母,得4(x﹣2)12=3(3x+2),去括号,得4x﹣8﹣12=9x+6,合并同类项,得﹣5x=26,系数化为1,得=−265.15.解方程:1−2K13=2r12.【解答】解:去分母得:6﹣2(2x﹣1)=3(2x+1),去括号得:6﹣4x+2=6x+3,移项得:﹣4x﹣6x=3﹣6﹣2,合并得:﹣10x=﹣5,解得:x=0.5.16.解方程:2r14−K36=1.【解答】解:去分母得:3(2x+1)﹣2(x﹣3)=12,去括号得:6x+3﹣2x+6=12,移项得:6x﹣2x=12﹣3﹣6,合并同类项得:4x=3,系数化为1得:x=34.17.解方程:35+2.7=4.8.【解答】解:移项得:35x=4.8﹣2.7,合并同类项得:35x=2.1,系数化为1得:x=3.5.18.解方程:r12−K1=3.【解答】解:去分母,可得:a(x+1)﹣2(x﹣1)=6a,去括号,可得:ax+a﹣2x+2=6a,移项,可得:ax﹣2x=6a﹣a﹣2,合并同类项,可得:(a﹣2)x=5a﹣2,系数化为1,可得:x=5K2K2(a≠2)或x无解(a=2).19.解方程:K14=1−3−2.【解答】解:去分母,可得:x﹣1=4﹣2(3﹣x),去括号,可得:x﹣1=4﹣6+2x,移项,可得:x﹣2x=4﹣6+1,合并同类项,可得:﹣x=﹣1,系数化为1,可得:x=1.20.解方程:4r16−2K12=1.【解答】解:去分母,可得:4x+1﹣3(2x﹣1)=6,去括号,可得:4x+1﹣6x+3=6,移项,可得:4x﹣6x=6﹣1﹣3,合并同类项,可得:﹣2x=2,系数化为1,可得:x=﹣1.21.解方程:25x﹣8=14−15x.【解答】解:去分母,可得:8x﹣160=5﹣4x,移项,可得:8x+4x=5+160,合并同类项,可得:12x=165,系数化为1,可得:x=13.75.22.解方程:K12−1=2+33.【解答】解:去分母,可得:3(x﹣1)﹣6=2(2+3x),去括号,可得:3x﹣3﹣6=4+6x,移项,可得:3x﹣6x=4+3+6,合并同类项,可得:﹣3x=13,系数化为1,可得:x=−133.23.解方程:2K13−r46=1.【解答】解:去分母,可得:2(2x﹣1)﹣(x+4)=6,去括号,可得:4x﹣2﹣x﹣4=6,移项,可得:4x﹣x=6+2+4,合并同类项,可得:3x=12,系数化为1,可得:x=4.24.解方程:3(x﹣2)=x﹣(8﹣8x).【解答】解:去括号,可得:3x﹣6=x﹣8+8x,移项,可得:3x﹣x﹣8x=﹣8+6,合并同类项,可得:﹣6x=﹣2,系数化为1,可得:x=13.25.解关于x的方程:mx﹣3x=2(2﹣x).【解答】解:mx﹣3x=2(2﹣x),去括号,得mx﹣3x=4﹣2x,移项,得mx﹣3x+2x=4,合并同类项,得(m﹣1)x=4,当m﹣1≠0,即m≠1时,方程的解是x=4K1;当m﹣1=0,即m=1时,方程无解.26.解方程:3﹣6(x+23)=23.【解答】解:3﹣6(x+23)=23,则3﹣6x﹣4=23,﹣6x=53,解得:x=−518.27.解方程:2r35=1−K42.【解答】解:2r35=1−K42,去分母,得2(2x+3)=10﹣5(x﹣4),去括号,得4x+6=10﹣5x+20,移项,得4x+5x=10+20﹣6,合并同类项,得9x=24,系数化为1,得=83.28.解方程:3K14−1=5K76.【解答】解:去分母得:3(3x﹣1)﹣12=2(5x﹣7)去括号得:9x﹣3﹣12=10x﹣14移项得:9x﹣10x=﹣14+15合并得:﹣x=1系数化为1得:x=﹣1.29.解方程:5−23−3r12=−1.【解答】解:5−23−3r12=−1,去分母,得2(5﹣2x)﹣3(3x+1)=﹣6,去括号,得10﹣4x﹣9x﹣3=﹣6,移项,得﹣4x﹣9x=3﹣6﹣10,合并同类项,得﹣13x=﹣13,系数化为1,得x=1.30.解方程:K64−3r52=1.【解答】解:K64−3r52=1,去分母,得x﹣6﹣2(3x+5)=4,去括号,得x﹣6﹣6x﹣10=4,移项,得x﹣6x=4+10+6,合并同类项,得﹣5x=20,系数化为1,得x=﹣4.31.解方程:5r72−r173=3.【解答】解:去分母得:3(5x+7)﹣2(x+17)=18,去括号得:15x+21﹣2x﹣34=18,移项得:13x=31,解得:x=3113.32.解方程:0.4r30.2−K0.10.3=2.【解答】解:0.4r30.2−K0.10.3=2,化简,得2+15−10K13=2,去分母,得6x+45﹣(10x﹣1)=6,去括号,得6x+45﹣10x+1=6,移项,得6x﹣10x=6﹣1﹣45,合并同类项,得﹣4x=﹣40,系数化为1,得x=10.33.解方程:1−5K38=2+4.【解答】解:去分母,可得:8﹣(5x﹣3)=2(2+x),去括号,可得:8﹣5x+3=4+2x,移项,可得:﹣5x﹣2x=4﹣8﹣3,合并同类项,可得:﹣7x=﹣7,系数化为1,可得:x=1.34.解方程:1−3−x=3−r22.【解答】解:去分母,可得:2(1﹣x)﹣6x=18﹣3(x+2),去括号,可得:2﹣2x﹣6x=18﹣3x﹣6,移项,可得:﹣2x﹣6x+3x=18﹣6﹣2,合并同类项,可得:﹣5x=10,系数化为1,可得:x=﹣2.35.解方程:x﹣1﹣3(x+2)=6x+1.【解答】解:去括号,可得:x﹣1﹣3x﹣6=6x+1,移项,可得:x﹣3x﹣6x=1+1+6,合并同类项,可得:﹣8x=8,系数化为1,可得:x=﹣1.36.解方程:r32=52+4K15.【解答】解:去分母,可得:5(x+3)=25+2(4x﹣1),去括号,可得:5x+15=25+8x﹣2,移项,可得:5x﹣8x=25﹣2﹣15,合并同类项,可得:﹣3x=8,系数化为1,可得:x=−83.37.解方程:2r13−5K12=1.【解答】解:去分母得:2(2x+1)﹣3(5x﹣1)=6,去括号得:4x+2﹣15x+3=6,移项得:4x﹣15x=6﹣2﹣3,合并得:﹣11x=1,解得:x=−111.38.解方程:2r13=K14+1.【解答】解:2r13=K14+1,方程两边同时乘以12得4(2x+1)=3(x﹣1)+12,∴8x+4=3x﹣3+12,∴5x=5,解得:x=1.39.解方程:4−2−2r13=4.【解答】解:去分母,可得:3(4﹣x)﹣2(2x+1)=24,去括号,可得:12﹣3x﹣4x﹣2=24,移项,可得:﹣3x﹣4x=24﹣12+2,合并同类项,可得:﹣7x=14,系数化为1,可得:x=﹣2.40.解方程:r14−3K18=1.【解答】解:去分母得:2(x+1)﹣(3x﹣1)=8,去括号得:2x+2﹣3x+1=8,移项得:2x﹣3x=8﹣2﹣1,合并得:﹣x=5,解得:x=﹣5.41.解方程:2K13=3r24−1.【解答】解:去分母得:4(2x﹣1)=3(3x+2)﹣12,去括号得:8x﹣4=9x+6﹣12,移项得:8x﹣9x=6﹣12+4,合并得:﹣x=﹣2,解得:x=2.42.解方程:y−r12=2−r25.【解答】解:去分母,可得:10y﹣5(y+1)=20﹣2(y+2),去括号,可得:10y﹣5y﹣5=20﹣2y﹣4,移项,可得:10y﹣5y+2y=20﹣4+5,合并同类项,可得:7y=21,系数化为1,可得:y=3.43.解方程:2x−13(x+2)=﹣x+2.【解答】解:去分母,可得:6x﹣(x+2)=﹣3x+6,去括号,可得:6x﹣x﹣2=﹣3x+6,移项,可得:6x﹣x+3x=6+2,合并同类项,可得:8x=8,系数化为1,可得:x=1.44.解方程:3−23−2=3r112.【解答】解:去分母,可得:2(3﹣2x)﹣12=3(3x+11),去括号,可得:6﹣4x﹣12=9x+33,移项,可得:﹣4x﹣9x=33﹣6+12,合并同类项,可得:﹣13x=39,系数化为1,可得:x=﹣3.45.解方程:x−r22=2K13−1.【解答】解:去分母,可得:6x﹣3(x+2)=2(2x﹣1)﹣6,去括号,可得:6x﹣3x﹣6=4x﹣2﹣6,移项,可得:6x﹣3x﹣4x=﹣2﹣6+6,合并同类项,可得:﹣x=﹣2,系数化为1,可得:x=2.46.解方程:K30.2−r40.5=1.【解答】解:去分母得:5(x﹣3)﹣2(x+4)=1,去括号得:5x﹣15﹣2x﹣8=1,移项得:5x﹣2x=1+8+15,合并得:3x=24,解得:x=8.47.解方程:5K14=1−2−3.【解答】解:去分母,可得:3(5x﹣1)=12﹣4(2﹣x),去括号,可得:15x﹣3=12﹣8+4x,移项,合并同类项,可得:11x=7,系数化为1,可得:x=711.48.解方程:2r13−K15=1.【解答】解:去分母,可得:5(2x+1)﹣3(x﹣1)=15,去括号,可得:10x+5﹣3x+3=15,移项,合并同类项,可得:7x=7,系数化为1,可得:x=1.49.解方程:1−3K14=3+2.【解答】解:4﹣(3x﹣1)=2(3+x),去分母,得4﹣3x+1=6+2x,移项,得﹣3x﹣2x=6﹣4﹣1,合并同类项,得﹣5x=1,系数化1,得x=−15.50.解方程:14%x﹣9%(x+10)=7%x+0.2【解答】解:方程整理得:14x﹣9(x+10)=7x+20,去括号得:14x﹣9x﹣90=7x+20,移项合并得:﹣2x=110,解得:x=﹣55.51.解方程:2+K46=−K33.【解答】解:去分母得:12+x﹣4=6x﹣2x+6,移项合并得:﹣3x=﹣2,解得:x=23.52.解方程:4(x+12)+9=5﹣3(x﹣1)【解答】解:去括号,得4x+2+9=5﹣3x+3,移项,得4x+3x=5+3﹣2﹣9,化简,得7x=﹣3,两边同除以x的系数7,得x=−37,所以,方程的解为x=−37.53.解方程:2r15−1=K23【解答】解:方程左右两边同时乘以15,得3(2x+1)﹣15=5(x﹣2),去括号得:x﹣2+8=4﹣4﹣2x,移项合并同类项得:x=2.54.解方程:5K76+1=3K14.【解答】解:2(5x﹣7)+12=3(3x﹣1),10x﹣14+12=9x﹣3,10x﹣9x=﹣3+14﹣12,x=﹣1.55.解方程:x−K25=2K53−1.【解答】解:15x﹣3(x﹣2)=5(2x﹣5)﹣15,15x﹣3x+6=10x﹣25﹣15,15x﹣3x﹣10x=﹣25﹣15﹣6,2x=﹣46,x=﹣23.56.解方程:2r13−K16=1.【解答】解:去分母,得:2(2x+1)﹣(x﹣1)=6,去括号,得:4x+2﹣x+1=6,移项,得:4x﹣x=6﹣2﹣1,合并同类项,得:3x=3,系数化为1,得:x=1.57.解方程:K73−1+2=1.【解答】解:去分母得,2(x﹣7)﹣3(1+x)=6,去括号得,2x﹣14﹣3﹣3x=6,移项得,2x﹣3x=6+14+3,合并同类项得,﹣x=23,系数化为1得,x=﹣23.58.解方程:2K13=2r16−1.【解答】解:去分母得:4x﹣2=2x+1﹣6,移项合并得:2x=﹣3,解得:x=﹣1.5.59.解方程:r13−2=x−K12.【解答】解:去分母得:2(x+1)﹣12=6x﹣3(x﹣1),去括号得:2x+2﹣12=6x﹣3x+3,移项得:2x﹣6x+3x=3﹣2+12,合并得:﹣x=13,解得:x=﹣13.60.解方程:x−K12=23−r23.【解答】解:去分母得:6x﹣3x+3=4﹣2x﹣4,移项合并得:5x=﹣3,解得:x=﹣0.6.61.解方程:6(12−4)+2=7−(13−1).【解答】解:原方程可化为:3−24+2=7−13+1,即5+13=24+8,163=32,解得x=6.62.解方程:3x+K12=3−2K13.【解答】解:去分母得,18x+3(x﹣1)=18﹣2(2x﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=2325.63.解方程:2K13−5r12−1=0.【解答】解:去分母得,2(2x﹣1)﹣3(5x+1)﹣6=0,去括号的,4x﹣2﹣15x﹣3﹣6=0,移项得,4x﹣15x=2+3+6,合并同类项得,﹣11x=11,系数化为1得,x=﹣1.故答案为:x=﹣1.64.解方程:4(2x﹣1)﹣3(5x+1)=14.【解答】解:4(2x﹣1)﹣3(5x+1)=14,去括号,得8x﹣4﹣15x﹣3=14,移项,得8x﹣15x=14+4+3,合并同类项,得﹣7x=21,系数化为1,得x=﹣3.65.4x+3(2x﹣3)=12﹣(x+4)(写出检验过程).【解答】解:4x+3(2x﹣3)=12﹣(x+4),去括号得,4x+6x﹣9=12﹣x﹣4,移项得,4x+6x+x=12﹣4+9,合并同类项得,11x=17,系数化为1得,x=1711.检验:把x=1711代入方程,左边:4x+3(2x﹣3)=4×1711+3×(2×1711−3)=6811+311=7111;右边=12﹣(x+4)=12−(1711+4)=12−6111=7111,∴左边=右边,∴x=1711是方程的解.66.解方程:2−3−3(K1)2=1.【解答】解:2−3−3(K1)2=1,去分母,得:2(2﹣x)﹣9(x﹣1)=6,去括号,得:4﹣2x﹣9x+9=6,移项,得:﹣2x﹣9x=6﹣4﹣9,合并同类项,得:﹣11x=﹣7,系数化1,得:x=711.67.解方程:K22+2(r2)5=2−210+1.【解答】解:去分母得:5(x﹣2)+4(x+2)=2﹣2x+10,去括号得:5x﹣10+4x+8=2﹣2x+1,整理得:9x﹣2=12﹣2x,即9x+2x=12+2,化简得:11x=14,解得:x=1411.68.解方程:x−r10.2=0.5.【解答】解:−r10.2=0.5,去分母得:x﹣5(x+1)=2x,去括号得:x﹣5x﹣5=2x,移项得:x﹣5x﹣2x=5,合并同类项得:﹣6x=5,系数化为去得:x=−56.69.解方程:3−K35=3K12−x.【解答】解:方程可变形为:30﹣2(x﹣3)=5(3x﹣1)﹣10x,去括号得:30﹣2x+6=15x﹣5﹣10x,移项得:﹣2x﹣15x+10x=﹣5﹣6﹣30,合并得:﹣7x=﹣41,系数化为1,得:x=417.70.解方程:16(2x﹣1)=18(5x+1)【解答】解:去分母得:4(2x﹣1)=3(5x+1),去括号得:8x﹣4=15x+3,移项合并得:﹣7x=7,解得:x=﹣1.71.解方程:(x﹣4)−(K4)−12=3−(K4)+23【解答】解:去分母得:6(x﹣4)﹣3(x﹣5)=18﹣2(x﹣2),去括号得:6x﹣24﹣3x+15=18﹣2x+4,移项合并得:5x=31,解得:x=6.2;72.解方程:K0.20.4−0.37r10.2=1【解答】解:方程整理得:10K24−37r10020=1,去分母得:50x﹣10﹣37x﹣100=20,移项合并得:13x=130,解得:x=10.73.解方程:0.1K0.20.02−r10.5=3.【解答】解:方程整理得:10K202−10r105=3,即5y﹣10﹣2y﹣2=3,移项合并得:3y=15,解得:y=5.74.解方程:32[2(x−12)+23]=5x.【解答】解:去中括号得:3(x−12)+1=5x,去小括号得:3x−32+1=5x,移项得,3x﹣5x=﹣1+32,合并同类项得:﹣2x=12,解得:x=−14.75.解方程:2K13−r56=2x+1;【解答】解:去分母得:2(2x﹣1)﹣(x+5)=12x+6,去括号得:4x﹣2﹣x﹣5=12x+6,移项合并得:﹣9x=13,解得:x=−139;76.解方程:13[x−12(x﹣1)]=23(x﹣2).【解答】解:去括号得:13x−16(x﹣1)=23(x﹣2),去分母得:2x﹣(x﹣1)=4(x﹣2),去括号得:2x﹣x+1=4x﹣8,移项合并得:﹣3x=﹣9,解得:x=3.77.解方程:0.2K0.40.5−=0.05K0.20.03.【解答】解:方程可化为,2(0.2x﹣0.4)﹣x=5K203,去分母,得6(0.2x﹣0.4)﹣3x=5x﹣20,去括号,得1.2x﹣2.4﹣3x=5x﹣20,移项,得1.2x﹣3x﹣5x=2.4﹣20,合并同类项,得﹣6.8x=﹣17.6,把未知数系数化为1,得x=4417.78.解方程:34[43(12t−14)﹣8]=32t﹣1.【解答】解:34[43(12t−14)﹣8]=32t﹣1,12−14−6=32−1,移项,得12−32=6+14−1,合并同类项,得﹣t=214,系数化为1,得t=−214.79.解方程:12(4x﹣3)﹣2=r13+2;【解答】解:去分母,得3(4x﹣3)﹣12=2(x+1)+12,去括号,得12x﹣9﹣12=2x+2+12,移项,得12x﹣2x=2+12+9+12,合并同类项,得10x=35,系数化为1,得x=3.5;80.解方程:12[3−12(32x﹣1)]=12,【解答】解:去分母,得6[3−12(32x﹣1)]=x,化简,得2x﹣3(32x﹣1)=x,去括号,得2x−92+3=x,移项,得2x−92−x=﹣3,合并同类项,得−72=−3,系数化为1,得x=67.81.解方程:2K13−3=0.3r0.50.2.【解答】解:整理,得2K13−3=5(0.3+0.5),去分母,得2x﹣1﹣9=15(0.3x+0.5),去括号,得2x﹣1﹣9=4.5x+7.5,移项,得2x﹣4.5x=1+9+7.5,合并同类项,得﹣2.5x=17.5,系数化成1,得x=﹣7.82.解方程:4y﹣3(2+y)=5﹣2(1﹣2y);【解答】解:4y﹣3(2+y)=5﹣2(1﹣2y),去括号,得4y﹣6﹣3y=5﹣2+4y,移项,得4y﹣3y﹣4y=5﹣2+6,合并,得﹣3y=9,解得:y=﹣3;83.解方程:0.4r0.90.5−0.03+0.020.03=K52.【解答】解:整理,得4r95−3+23=K52,去分母,得6(4x+9)﹣10(3+2x)=15(x﹣5),去括号,得24x+54﹣30﹣20x=15x﹣75,移项,得24x﹣20x﹣15x=﹣75﹣54+30,合并,得﹣11x=﹣99,系数化为1,得x=9.84.解方程:2−5r116=1+2K43.【解答】解:去分母得:3x﹣(5x+11)=6+2(2x﹣4),去括号得:3x﹣5x﹣11=6+4x﹣8,移项得:3x﹣5x﹣4x=6﹣8+11,合并得:﹣6x=9,解得:x=−32;85.解方程:0.8r0.90.5=r52+0.3K0.20.3.【解答】解:方程整理得:8r95=r52+3K23,去分母得:6(8x+9)=15(x+5)+10(3x﹣2),移项得:48x﹣15x﹣30x=75﹣20﹣54,合并得:3x=1,解得:x=13.86.解方程:13[−12(−1)]=23(−2).【解答】解:整理,得−12(−1)=2(−2),去分母,得2x﹣(x﹣1)=4(x﹣2),去括号,得2x﹣x+1=4x﹣8,移项,得2x﹣x﹣4x=﹣8﹣1,合并同类项,得﹣3x=﹣9,系数化为1,得x=3;87.解方程:0.4r30.2−K0.10.3=2.【解答】解:整理,得5(0.4y+3)−103(y﹣0.1)=2,去分母,得15(0.4y+3)﹣10(y﹣0.1)=6,去括号,得6y+45﹣10y+1=6,移项,得6y﹣10y=6﹣1﹣45,合并同类项,得﹣4y=﹣40,系数化为1,得y=10.88.解方程:−K12=2−r25;【解答】解:去分母,可得:10y﹣5(y﹣1)=20﹣2(y+2),去括号,可得:10y﹣5y+5=20﹣2y﹣4,移项,可得:10y﹣5y+2y=20﹣4﹣5,合并同类项,可得:7y=11,系数化为1,可得:y=117.89.解方程:10.2(+1)−=2K30.3.【解答】解:去分母,可得:3(x+1)﹣0.6x=2(2x﹣3),移项,可得:3x﹣0.6x﹣4x=﹣6﹣3,合并同类项,可得:﹣1.6x=﹣9,系数化为1,可得:x=458.90.解方程:3r12−2=3K210−2r35,【解答】解:去分母,得5(3x+1)﹣20=3x﹣2﹣2(2x+3),去括号,得15x+5﹣20=3x﹣2﹣4x﹣6,移项,得15x﹣3x+4x=20﹣5﹣2﹣6,合并同类项,得16x=7,系数化为1,得x=716;91.解方程:0.5(x﹣3)−4r15=1,【解答】解:去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项,得5x﹣8x=10+15+2,合并同类项,得﹣3x=27,系数化为1,得x=﹣9;92.解方程:4−60.01−6.5=0.2−200.2−7.5,【解答】解:整理,得100(4﹣6x)﹣6.5=5(0.2﹣20x)﹣7.5,去括号,得400﹣600x﹣6.5=1﹣100x﹣7.5,移项,得100x﹣600x=﹣400+6.5+1﹣7.5,合并同类项,得﹣500x=﹣400,系数化为1,得x=45;93.解方程:3(x+1)−13(x﹣1)=2(x﹣1)−12(x+1),【解答】解:去分母,得18(x+1)﹣2(x﹣1)=12(x﹣1)﹣3(x+1),去括号,得18x+18﹣2x+2=12x﹣12﹣3x﹣3,移项,得18x﹣2x﹣12x+3x=﹣12﹣3﹣18﹣2,合并同类项,得7x=﹣35,系数化为1,x=﹣5.94.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x);【解答】解:去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;95.解方程:3+0.20.2−0.2+0.030.01=0.75【解答】解:方程整理得:30+22−20+31=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=−238.96.解方程:2K13−5r26=1−22−2;【解答】解:去分母,得2(2x﹣1)﹣(5x+2)=3(1﹣2x)﹣12,去括号,得4x﹣2﹣5x﹣2=3﹣6x﹣12,移项,得4x﹣5x+6x=3﹣12+2+2,合并,得5x=﹣5,系数化为1,得x=﹣1;97.解方程:3.1+0.20.2−0.2+0.030.01=32.【解答】解:5(3.1+0.2p5×0.2−100(0.2+0.03p100×0.01=3×0.52×0.5,整理,得15.5+x﹣20﹣3x=1.5,移项,得x﹣3x=1.5﹣15.5+20,合并,得﹣2x=6,所以x=﹣3.98.解方程:0.8−91.2−1.3−30.2=5r10.3.【解答】解:方程整理得:8−9012−13−302=50r103,去分母得:8﹣90x﹣6(13﹣30x)=4(50x+10),去括号得:8﹣90x﹣78+180x=200x+40,移项得:﹣90x+180x﹣200x=40﹣8+78,合并同类项得:﹣110x=110,把x系数化为1得:x=﹣1.99.解方程:0.1−0.20.3−1=0.7−0.4.【解答】解:方程整理得:1−23−1=7−104,去分母得:4(1﹣2x)﹣12=3(7﹣10x),去括号得:4﹣8x﹣12=21﹣30x,移项合并得:22x=29,解得:x=2922.100.解方程:3+0.20.2−0.2+0.030.01=0.75.【解答】解:30+22−20+31=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=−238.。
苏科版七年级数学上册第四章《一元一次方程》应用易错题专项提升训练(附解析)
![苏科版七年级数学上册第四章《一元一次方程》应用易错题专项提升训练(附解析)](https://img.taocdn.com/s3/m/bcca106d76c66137ee06199e.png)
《一元一次方程》应用易错题专项提升训练(附解析)1.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90 超过17吨但不超过30吨的部分b0.90 超过30吨的部分 6.00 0.90 (说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)2.如图,∠AOB是直角,射线OC从OA出发,以每秒8度的速度顺时针方向转动;射线OD 从OB出发,以每秒2度的速度逆时针方向转动.当OC与OA成一直线时停止转动.(1)秒时,OC与OD重合.(2)当OC与OD的夹角是30度时,求转动的时间是多少秒?(3)若OB平分∠COD,求转动的时间是多少秒?并画出此时的OC与OD,写出图中∠AOD 的余角.3.下表是某网约车公司的专车计价规则:计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收1元.(1)若小李乘坐专车,行车里程为20公里,行车时间为30分,则需付车费元;(2)若小李乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则小李应付车费多少元?(用含x的代数式表示)(3)小李与小王各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中小王的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路程各为多少公里?4.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是;点P到点Q的距离是个单位长度;(2)动点P从点A运动至C点需要秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.5.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为.点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B 出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.6.已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t >0)秒.(1)数轴上点B表示的数是;当点P运动到AB的中点时,它所表示的数是.(2)动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q 同时出发.求:①当点P运动多少秒时,点P追上点Q?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?7.下表是中国电信两种”4G套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)月基本费/元主叫通话/分钟上网流量MB接听主叫超时部分/(元/分钟)超出流量部分/(元/MB)方式一49 200 500 免费0.20 0.3方式二69 250 600 免费0.15 0.2 (1)若某月小萱主叫通话时间为220分钟,上网流量为800MB,则她按方式一计费需元,按方式二计费需元;若她按方式二计费需129元,主叫通话时间为240分钟,则上网流量为MB.(2)若上网流量为540MB,是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t的值;若不存在,请说明理由.(3)若上网流量为540MB,直接写出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱;当每月主叫通话时间t(分钟)满足什么条件时,选择方式二省钱.8.某快车的计费规则如表1,小明几次乘坐快车的情况如表2,请仔细观察分析表格解答以下问题:(1)填空:a=,b=;(2)列方程求解表1中的x;(3)小明的爸爸23:10打快车从机场回家,快车行驶的平均速度是100公里/小时,到家后小明爸爸支付车费603元,请问机场到小明家的路程是多少公里?(用方程解决此问题)表1:某快车的计费规则里程费(元/公里)时长费(元/分钟)远途费(元/公里)5:00﹣23:00 a9:00﹣18:00 x12公里及以下23:00﹣次日5:00 3.2 18:00﹣次日9:000.5 超出12公里的部分1.6(说明:总费用=里程费+时长费+远途费)表2:小明几次乘坐快车信息上车时间里程(公里)时长(分钟)远途费(元)总费用(元)7:30 5 5 0 13.510:05 20 18 b66.7 9.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?10.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为40?如果能,求出这三个数;如果不能,请说明理由.11.综合与实践情境再现:举世瞩目的港珠澳大桥东接香港,西接珠海、澳门,全长55千米,是世界上最长的跨海大桥,被誉为“新世界七大奇迹”之一.如图,香港口岸点B至珠海口岸点A约42千米,海底隧道CD全长约7千米,隧道一端的东人工岛点C到香港口岸的路程为12千米,某一时刻,一辆穿梭巴士从香港口岸发车,沿港珠澳大桥开往珠海口岸.10分钟后,一辆私家车也从香港口岸出发沿港珠澳大桥开往珠海口岸,在私家车出发的同时,一辆大客车从珠海口岸出发开往香港口岸.已知穿梭巴士的平均速度为72千米/时,大客车的平均速度为78千米/时,私家车的平均速度为84千米/时.问题解决:(1)穿梭巴士出发多长时间与大客车相遇?(2)私家车能否在到达珠海口岸前追上穿梭巴士?说明理由;(3)穿梭巴士到达珠海口岸后停车5分钟供乘客上下车,之后立即沿原路按原速度返回香港口岸.设该巴士从香港口岸出发后经过的时间为t小时.请从下列A,B两题中任选一题作答我选择题A:①该巴士返程途中到珠海口岸的路程为千米(用含t的代数式表示);②该巴士返程途中到东人工岛的路程为6千米时,t的值为.B:①该巴士返程途中到香港口岸的路程为千米(用含t的代数式表示);②私家车到达珠海口岸时,用5分钟办完事立即返回香港口岸.若其返程途中的速度为96千米/时,私家车返程途中与巴士之间相距的路程为4千米时,t的值为.12.某糕点厂中秋节前要制作一批盒装月饼,每盒装1个大月饼和7个小月饼.制作1个大月饼要用0.06kg面粉,1个小月饼要用0.015kg面粉.现共有面粉330kg,制作两种月饼各用多少kg面粉时,才能使生产的大小月饼刚好配套成盒?最多能生产多少盒月饼?13.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足|a﹣1|+|ab+4|+|a﹣b+c|=0.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时开始相向运动,设运动时间是t秒(t>0).i)若点C以每秒3个单位长度的速度向右与点A,B同时运动,t为何值时,点C为线段AB的中点?ii)是否存在一个常数k,使得2BC﹣k•AB的值在一定时间范围内不随运动时间t的改变而改变,若存在,求出k的值;若不存在,请说明理由.14.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a﹣8|+(b+6)2=0.(1)线段AB的长为;(2)点C在数轴上对应的数为10,在数轴上是否存在点D,使得DA+DB=DC?若存在,求出点D对应的数;若不存在,说明理由.(3)动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动;动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左移动;动点M从点A出发,以每秒3个单位长度的速度沿数轴向左匀速移动,点P、Q、M同时出发,设运动时间为t秒,当t<7时,探究QP、QA、QM三条线段之间的数量关系,并说明理由.15.某工人计划加工一批产品,如果每小时加工产品10个,就可以在预定时间完成任务,如果每小时多加工2个,就可以提前1小时完成任务.(1)该产品的预定加工时间为几小时?(2)若该产品销售时的标价为100元/个,按标价的八折销售时,每个仍可以盈利25元,该批产品总成本为多少元?参考答案1.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.2.解:(1)∵∠AOB是直角,射线OC从OA出发,以每秒8度的速度顺时针方向转动;射线OD从OB出发,以每秒2度的速度逆时针方向转动,∴设x秒时,OC与OD重合,则8x+2x=90,解得:x=9,故答案为:9;。
用一元一次方程解决问题(提升训练)(原卷版) (3)
![用一元一次方程解决问题(提升训练)(原卷版) (3)](https://img.taocdn.com/s3/m/caa47493a26925c52dc5bf0f.png)
4.3 用一元一次方程解决问题【基础训练】一、单选题1.列方程表示“我校七年级学生人数为n ,其中女生占55%,男生有90人”正确的是( ) A .55%90n = B .()145%90n -= C .45%90n n += D .55%90n n += 2.小康中学七年级(1)班学生进行拔河比赛分组,若每组 7 人,则有 2 人分不到组里;若每组 8 人,则最后一组差 4 人,若设计划分 x 组,则可列方程为( )A .7 x + 2 = 8x - 4B .7 x - 2 = 8x + 4C .7 x + 2 = 8x + 4D .7 x - 2 = 8x - 43.丽宏幼儿园王阿姨给小朋友分苹果,如果每人分3个.则剩余1个;如果每人分4个,则还缺2个.问有多少个苹果?设幼儿园有x 个小朋友,则可列方程为( )A .3x ﹣1=4x +2B .3x +1=4x ﹣2C .1234x x +-=D .1234x x -+= 4.小宝今年5岁,妈妈35岁,( )年后,妈妈的年龄是小宝的2倍.A .30B .20C .10D .以上都不对5.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何.大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中人家户数是多少.根据题意,设城中人家户数为x 户,可列方程为( )A .11003x +=B .1003x x +=C .11003x +=D .11003x += 6.因燃油涨价,从甲城市到乙城市的货运价格上调 20%,三个月后又因燃油价格的回落而下调 20%,则下调后的货运价格与上涨前相比是( )A .贵了B .便宜了C .没有变化D .由于开始价格不知道,因此无法确定7.为了季末清仓,丹尼斯超市某品牌服装按原价第一次降价20%,第二次降价100元,此时该服装的利润率是10%.已知这种服装的进价为600元,那么这种服装的原价是多少?设这种服装的原价为x 元,可列方程为( ) A .80%(100)10%600x -= B .80%(100)60010%600x --= C .20%10060010%600x --= D .80%10060010%600x --=8.星期天小亮与妈妈一起上街买衣服,在一服装店以8折的优惠价为小亮买了一套服装,比标价省了15元,则小亮买这套衣服用了( )A .35元B .60元C .75元D .85元9.校门口一文具店把一个足球按进价提高80%为标价,然后再按7折出售,这样每卖出一个足球可盈利6.5元,求一个足球的进价是多少元?设一个足球进价为x 元,根据题意所列方程正确的是( )A .(180%)70% 6.5x x +-=B .(180%)70% 6.5x x +•-=C .80%70% 6.5x x •-=D .(180%)(170%) 6.5x x +--=10.某商场销售一批电风扇,每台售价560元,可获利25%,求每台电风扇的成本价.设每台电风扇的成本价为x 元,则得到方程( )A .560﹣x =25%xB .560﹣x =25%C .x =560×20%D .25%x =56011.如图是某超市电子表的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮助算一算,该电子表的原价是( )A .21元B .22元C .23元D .24元12.有一列数,按一定规律排成23452,2,2,2,2---……其中相邻的三个数的和为a ,则这三个数中最大的数与最小的数的差为( )A .aB .aC .2aD .2a13.若三个连续偶数的和为18,则它们的积为( )A .216B .49C .192D .48014.设有x 个人共种a 棵树苗,如果每人种6棵,则剩下4棵树苗未种;如果每人种8棵,则缺2棵树苗.根据题意,列方程正确的是( )A .6x ﹣4=8x +2B .6x +4=8x ﹣2C .46a +=48a -D .46a -=28a + 15.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为( )A .1800米B .2000米C .2800米D .3200米16.如图,长方形ABCD 中有6个形状、大小相同的小长方形,且6,24EF CD ==,则图中阴影部分的面积为( )A .216B .144C .192D .9617.某商品的进价是1528元,按商品标价的八折出售时,利润是12%,如果设商品的标价为x 元,那么可列出正确的方程是( )A .81528(112%)x =⨯+B .0.8152812%x =⨯C .()0.81528112%x =⨯+D .0.815280.8(112%)x =⨯+18.某商品在进价的基础上提价20%后以96元的价格出售,则该商品的进价为( )A .60元B .70元C .80元D .86元19.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .10031003x x -+= B .10031003x x --= C .3(100)1003x x +-= D .3(100)1003x x --= 20.如图是一个运算程序:若4x =-,输出结果m 的值与输入y 的值相同,则y 的值为( )A .2-或1B .2-C .1D .2或1-21.某微信平台将一件商品按进价提高40%后标价,又以八折优惠卖出,结果每件仍获利78元,这件商品的进价是多少元?若设这种商品每件的进价是x 元,那么所列方程为( )A .80%(140%)78x x +-=B .40%(180%)78x +=C .80%(140%)78x x -+=D .80%(140%)78x x --=22.小明同学在日历上圈出了三个相邻的数a ,b ,c ,并求出了它们的和为81,则这三个数在日历中的排列位置可能的是( )A .B .C .D .23.幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”(图1所示),把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方(图2所示)观察图1、图2,请你探究出洛书三阶幻方中的奇数和偶数的位置、数和数之间的数量关系所呈现的规律,并用这个规律,求出图3幻方中b a 的值为( )A .0B .1-C .2-D .3-24.根据图中给出的信息,下面所列方程正确的是( )A .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯+ ⎪ ⎪⎝⎭⎝⎭B .()2286522x x ππ⎛⎫⎛⎫⨯=⨯⨯- ⎪ ⎪⎝⎭⎝⎭C .()22865x x ππ⨯=⨯⨯-D .22865x ππ⨯=⨯⨯25.如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧称盘中也有一袋玻璃球,还有2个各20克的砝码,现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为( )A .10gB .20gC .15gD .25g26.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x .则列出方程正确的是( )A .3252x x ⨯+=-B .3205102x x ⨯+=⨯C .320520x x ⨯++=D .3(20)5102x x ⨯++=+27.整理一批数据,由一个人做要40小时完成.现在计划由x 人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,则得( )A .()82414040x x ++= B .()82414040x x -+= C .()42814040x x -+= D .()()428214040x x -++= 28.李女士在城西银泰购买某件正价商品,使用“喵街365卡”打完九折后再通过“满就减”活动优惠了a 元,最终支付了b 元,那么该商品原价为( )A .0.9a b +B .0.9()a b +C .0.9b a -D .0.9()b a -29.某班有学生40人,参加篮球社的人数是参加足球社人数的2倍,既参加篮球社又参加足球社的有5人,既不参加篮球社也不参加足球社的有9人,则只参加足球社的人数是( )A .12B .24C .19D .730.完成某项工程,甲单独做10天完成,乙单独做7天完成,现在由甲先做了3天,乙再参加合作,求完成这项工程总共用去的时间,若设完成此项工程总共用x天,则下列方程中正确的是()A.31107x xB.331107x xC.1107x xD.31107x x二、填空题31.《九章算术》是中国古代非常重要的一部数学典籍,被视为“算经之首”,大约成书于公元前200年~公元前50年,其中有这样一个问题:今有共买金,人出四百,盈三千四百;人出三百,盈一百.问人数,金价各几何?其大意是:假设合伙买金,每人出400钱,则多出3400钱;每人出300钱,则多出100钱.问人数、金价各是多少?如果设有x个人,那么可以列方程为_________.32.一列火车匀速行驶,经过一条长300米的隧道,从车头开始进入隧道到车尾离开隧道一共需要20秒的时间;隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是8秒,设该火车的长度为x米,根据题意可列一元一次方程____________.33.为坚决打赢疫情防控阻击战,某小区决定组织工作人员对本小区进行排查,现对工作人员进行分组,若每组安排8人;则余下3人;若每组安排9人,则还缺5人,则该小区工作人员共有______人.34.如图是一个由两个相同的大正方形(甲),一个小正方形(乙)和两个相同的直角三角形(丙)无缝拼接而成的六边形,已知这个六边形的面积为272cm,则图中阴影部分面积为________2cm.35.中国古代数学著作《算法统宗》中有这样一题:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关,”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,请你求出此人第三天的路程为__________.三、解答题36.完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?37.小明和小亮练习一百米赛跑,小明的速度是6米/秒,小亮的速度是7.5米/秒.(1)列方程求解:若小明先跑3秒,小亮经过多长时间追上小明?(2)若小明先跑4秒,小亮能否追上小明?(直接写出结果,不必说明理由)38.甲工程队原有55人,乙工程队有35人,现因工作需要,需从甲工程队调出一些人到乙工程队,使乙工程队的人数是甲工程队人数的2倍.(1)列方程解应用题:求应从甲工程队调出多少人到乙工程队?(2)此时,甲工程队还剩 人.39.数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x .(1)AB = ,BC = .(2)当点P 在线段AC 上时,①用含x 的代数式表示:PA= ,PC= .①若7.4PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒.①试说明2AP PQ =①当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.40.下表中记录了一次试验中时间和温度的数据.(1)如果温度的变化是均匀的,21min 时的温度是多少?(用一元一次方程求解)(2)什么时间的温度是34C ︒.41.一艘船从A 码头顺流航行到B 码头,用了3小时;从B 码头逆流航行返回A 码头,用了3.5小时.已知水流的速度是2/,km h 求AB 、两码头之间的航程.42.列方程解应用题:在洱海保护治理工作中,洱海生态廊道建设是洱海保护体系的最后一道污染物拦截防线,也是洱海最重要的一道生态安全屏障.大理市政府于2019年启动了129公里洱海生态廊道建设.截止2020年10月止,已经完成主体建设68公里,其余61公里正在全线推进.记者了解到:其中有一段长2400米的河道需要工程队进行整治.甲工程队每天可完成35米,乙工程队每天可完成45米.(1)若该任务由甲、乙两个工程队合作完成,请问整治这段河道任务用了多少天?(2)若在前期,由于乙工程队需要机械维修,则先由甲工程队单独整治一段时间,剩下的工程由甲、乙两队来合作完成.整治完了全部河道共用时48天,求甲、乙工程队分别整治了多少米的河道?43.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表记录了5个参赛者的得分情况.(1)参赛者答对一道题得多少分,答错一道题扣多少分?(2)参赛者F得76分,他答对了几道题?44.列方程解应用题:为提高学生的运算能力,我县某学校七年级在元旦之前组织了一次数学速算比赛.速算规则如下:速算试题形式为计算题,共20道题,答对一题得5分,不答或错一题倒扣1分.梓萌同学代表班级参加了这次比赛,请解决下列问题:(1)如果梓萌同学最后得分为76分,那么她计算对了多少道题?(2)梓萌同学的最后得分可能为85分吗?请说明理由.45.某班在一次数学兴趣活动中要分为四个组,已知第二组人数比第一组人数32少5人,第三组人数比第一组与第二组人数的和少15人,第四组人数与第一组人数的2倍的和是34,若设第一组有x人.(1)用含x的式子表示第二、三、四组的人数,把答案填在下表相应的位置.(2)该班的总人数是否可以为47人?若可以,请写出每组的具体人数;若不可以,请说明理由.46.足球比赛的计分规则是胜一场得3分,平一场得1分,负一场得0分”,一支足球队在某个赛季中共比赛16场,现已比赛了10场,负3场,共得17分,问:(1)前10场比赛中这支足球队共胜多少场?(2)这支足球队打满16场比赛,最高能得多少分47.某商场以每部500元的价格购进某品牌手机共100部,加价50%后标价销售.在国庆期间,商场计划降价销售.如果商场按降价后的价格售完这批手机,仍可盈利20%,求应按几折销售.48.红旗中学美术课外小组女同学占全组人数的14,加入6个女同学后,女同学就占全组人数的12,求美术课外小组原来的人数.49.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价40元,乒乓球每盒定价8元,经洽谈后,甲店全部按定价的9折优惠,乙店买一副球拍赠一盒乒乓球.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?50.现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等.方案一:如果每隔5m栽1棵,则树苗缺100棵;方案二:如果每隔6m栽1棵,则树苗正好用完.根据以上方案,请算出原有树苗的棵数和这段路的长度.51.M校七年级社会实践小组去商场调查商品销售情况,了解该商场以每件100元的价格购进了某品牌运动服400件,并以每件140元的价格销售了300件.元旦之即,该商场准备采取促销措施,将剩下的运动服降价销售.请你帮商场计算一下,每件运动服降价多少元时,销售完这批运动服正好达到盈利35%的预期目标?52.某工人原计划每天生产45个零件,到预定期限还有220个零件不能完成.若提高工效20%,则到期将超额完成140个.此工人原计划生产零件多少个?预定期限是多少天?53.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答:一个水瓶与一个水杯分别是多少元?(请列方程解应用题)54.列方程解应用题:某电视台组织知识竞赛,共设20道选择题,每题必答,下表记录了3个参赛者的得分情况.(1)参赛者小婷得76分,她答对了几道题?(2)参赛者小明说他得了80分,他说的对吗?请说明理由.55.某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖,这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车530元/辆,小车420元/辆,运往B地的运费为:大车700元/辆,小车500元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前A往地,其中调往A地的大车有a辆,那么调往A地的小车有辆,其余的货车前往B地,则其中调往B地的大车有辆,小车有辆.若设总运费为w元,则w与a的关系式(用含a有的代数式表示w)是.56.小丽每天要在7:50之前赶到距家1500m的学校上学.一天,小丽以1.2m/s的速度出发,5min后,小丽m s的速度去追小丽,并且在途中追上了她.的爸爸发现她忘了带数学书.于是,爸爸立即以1.8/(1)爸爸追上小丽用了多长时间?(2)追上小丽时,距离学校还有多远?57.有一旅客携带了25千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李托运票,现该旅客购买的飞机票和行李托运票共645元.(1)该旅客需要购买千克的行李托运票;(2)该旅客购买的飞机票是多少元?58.课本中数学活动问题:一种笔记本售价为23元/本,如果买100本以上(不含100本),售价为22元/本.请回答下面的问题:(1)列式表示买n本笔记本所需钱数.(2)按照这种售价规定,会不会出现多买比少买反而付钱少的情况?通过列式计算加以说明.(3)如果需要100本笔记本,怎样购买能最省钱?59.某商场第一季度销售甲、乙两种冰箱若干台,其中乙种冰箱的数量比甲种冰箱多销售40台,第二季度甲种冰箱的销量比第一季度增加10%,乙种冰箱的销量比第一季度增加20%,且第二季度两种冰箱的总销量达到554台.求:(1)该商场第一季度销售甲种冰箱多少台?(2)若每台甲种冰箱的利润为250元,每台乙种冰箱的利润为300元,则该商场第二季度销售冰箱的总利润是多少元?60.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小敏乘坐滴滴快车,行车里程5公里,行车时间20分钟,则小敏下车时应付多少车费?(2)小红乘坐滴滴快车,行车里程10公里,下车时所付车费29.4元,则这辆滴滴快车的行车时间为多少分钟?。
人教版数学七年级上册第3章一元一次方程专项提升训练试卷(一)含答案
![人教版数学七年级上册第3章一元一次方程专项提升训练试卷(一)含答案](https://img.taocdn.com/s3/m/caef28b4dc88d0d233d4b14e852458fb770b3875.png)
人教版数学七年级上册第3章一元一次方程专项提升训练试卷(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3x =是关于x 的方程2203x a -=的解,则a 的值是( ) A .1 B .1- C .0 D .22.已知x =y ,下列变形错误的是( )A .x +a =y+aB .x -a =y -aC .2x =2yD .x y a a = 3.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个 4.已知关于x 的方程38132ax x x --=-有负整数解,则所有满足条件的整数a 的值之和为( )A .11-B .26-C .28-D .30- 5.下列变形中:①由方程125x --=2去分母,得x ﹣12=10;①由方程6x ﹣4=x +4移项、合并得5x =0;①由方程25362x x -+-=两边同乘以6,得12﹣x +5=3x +3;①由方程2992x =两边同除以29,得x =1;其中错误变形的有( )个. A .0 B .1 C .2 D .36.关于x 的方程k 2x 2+(2k -1)x +1=0有实数根,则下列结论正确的是( ) A .当k =12时,方程的两根互为相反数 B .当k =0时,方程的根是x =-1C .若方程有实数根,则k ≠0且k ≤14D .若方程有实数根,则k ≤147.在风凰山教育共同体数学学科节中,为展现数学的魅力,M 老师组织了一个数学沉浸式互动游戏:随机请A ,B ,C ,D ,E 五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A ,B ,C ,D ,E 五位同学报出来的数恰好分别是1,2,3,4,5,则D 同学心里想的那个数是( )A .3-B .4-C .5D .98.下列各式运用等式的性质变形,正确的是( )A .由a b =,得44a b =- B .由33x y -=-,得x y =- C .由14x =,得14x = D .若()()2211m a m b +=+,则a b = 9.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =﹣1时,y =4,则a 、b 的值分别为( )A .a =1,b =2B .a =1,b =﹣2C .a =﹣1,b =2D .a =﹣1,b =﹣210.已知关于x 的方程ax =5﹣3x 的解是x =2,则a 的值为( )A .1B .12-C .112D .﹣2二、填空题11.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___. 12.若关于x 的方程360x +=与关于y 的方程5218y m +=的解互为相反数,则m =____. 13.某车间有75名工人生产A 、B 两种零件,一名工人每天可生产A 种零件15个或B 种 零件20个,已知1个B 种零件需要配3个A 种零件,该车间应如何分配工人,才能保证每天生产的两种零件恰好配套?设应安排x 名工人生产A 种零件,根据题意,列出的方程是___________________.14.如果关于x 的方程23x x =-和4232x m x -=+的解相同,那么m =________.三、解答题15.解关于x 的方程:(3)4-=b x16.利用函数图象求下列方程的解,并笔算检验.(1)5x ﹣1=2x+5(2)﹣12x+4=32x+2. 17.学校要购入两种记录本,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本,总花费为460元.(1)求购买B 种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱18.计算: (1)111()6||235-⨯÷- (2)201831(1)(10)2[2(3)]2-+-÷⨯--- 19.(1)张阿姨到商场以940元购买了一件羽绒服和一条裙子,已知羽绒服打8折,裙子打6折,结果比标价购买时共节省了360元.那么该羽绒服及裙子的标价分别是多少元?(2)某校为防疫需要,实行错时错峰测温并开通专用通道上学,该校七、八年级人数如下表所示:①八年级学生进校时同时开通了A ,B 两通道,经过6分钟,八年级全部学生进校,已知A 通道每分钟通过的人数是B 通道每分钟通过人数的2倍.求A ,B 通道每分钟通过的人数各是多少人?①考虑到七年级人数更多的原因,为节约学生进校时间,学校决定在A 通道旁边增开C 通道,在B 通道旁边增开D 通道,已知C 通道每分钟通过的人数比A 通道每分钟通过的人数多20%,D 通道每分钟通过的人数比B 通道每分钟通过的人数少20%.求七年级全部学生进校所需时间是多少分钟?20.如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm )参考答案:1.A【分析】把x =3代入方程即可得到一个关于a 的方程,解方程求得a 的值.【详解】解:把x =3代入方程得2-2a =0,解得:a =1.故选A .【点睛】本题考查了方程的解的定义、解一元一次方程,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.2.D【分析】根据等式的性质逐项分析判断即可【详解】解:A.x y =,∴ x +a =y+a ,故该选项正确,不符合题意;B.x y = ,∴x -a =y -a ,故该选项正确,不符合题意;C.x y =,∴ 2x =2y ,故该选项正确,不符合题意;D. x y =,当0a ≠时,x y a a=,故该选项不正确,符合题意; 故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.3.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.4.D【分析】先解方程可得x 7032a =+(a 32≠-),根据方程的解是负整数可得7032a+是负整数,进而可求解满足条件的所有非负整数a 的值,即可求解.【详解】解:解关于x 的方程38132ax x x --=- 得x 7032a=+(a 32≠-), ①关于x 的方程38132ax x x --=-的解是负整数, ①7032a+是负整数, ①231a +=- 或235a +=-或237a +=-或2335a +=-即满足条件的所有整数a 为-2、-4、-5、-19,①满足条件的所有整数a 的值的和为-2+(-4)+(-5)+(-19)=-30,故答案为:D .【点睛】本题主要考查一元一次方程的解,正确求解一元一次方程是解题的关键. 5.D【分析】根据等式的基本性质对每一个选项的变形进行核查,即可得到正确解答.【详解】解:①、由方程 125x -= 2去分母,得x ﹣12=10,正确; ①、由方程6x ﹣4=x +4移项、合并得5x =8,错误;①、由方程53262x x -+-=两边同乘以6,得12﹣x +5=3x +9,错误; ①、由方程2992x =两边同除以 29,得x =814,错误; 故选D .【点睛】本题考查等式的应用,熟练掌握等式的基本性质是解题关键.6.D【分析】由于二次项前面的系数为字母系数且方程有实数根,所以应分两种情况去求k 的取值范围,再结合选项作出正确的判断即可.【详解】当k =0时,则此方程为-x +1=0,解得x =1,故选项B 错误;当k ≠0时,则方程为一元二次方程,因为方程有实数根,①2224(21)4410b ac k k k ∆=-=--=-+≥ ①14k ≤且k ≠0综上可得k 的取值范围是14k ≤. 故选项A 错误,选项C 错误.故选:D .【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,需分类讨论. 7.D【分析】设报D 的人心里想的数是x ,则再分别表示报A ,C ,E ,B 的人心里想的数,最后通过平均数列出方程,解方程即可.【详解】解:设D 同学心里想的那个数是x ,报A 的人心里想的数是10-x ,报C 的人心里想的数是x -6,报E 的人心里想的数是14-x ,报B 的人心里想的数是x -12,所以有x -12+x =2×3,解得:x =9.故选:D .【点睛】本题考查的知识点有平均数的相关计算及方程思想的运用,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.8.D【分析】根据等式的性质逐项判定即可.【详解】解:A .由a b =,得44a b =--,原式错误,故此选项不符合题意; B .由33x y -=-,得x y =,原式错误,故此选项不符合题意;C .由14x =,得4x =,原式错误,故此选项不符合题意; D .若()()2211m a m b +=+,则a b =,正确,故此选项符合题意;故选:D .【点睛】本题考查等式的性质,熟练掌握等式的性质是解题的关键.9.B【分析】把两组对应值分别代入y =ax 2+bx +1得到关于a 、b 的方程组,然后解方程组即可得到a 和b 的值.【详解】解:根据题意得1014a b a b ++=⎧⎨-+=⎩, 解得a =1,b =﹣2.故选:B .【点睛】本题考查了待定系数法求二次函数的解析式,根据已知条件列出二元一次方程组是解题的关键.10.B【分析】把x =2代入方程ax =5-3x 得出2a =5-6,再求出方程的解即可.【详解】解:把x =2代入方程ax =5-3x 得:2a =5-6,解得:a =12-, 故选:B .【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键.11.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.12.4【分析】先解出x 的值,再根据相反数的定义得到y 的值,最后代入方程求出m 的值.【详解】解:解方程360x +=,解得2x =-,①这两个方程的解互为相反数,①2y =是方程5218y m +=的解,将2y =代入原方程,得到10218m +=,解得4m =.故答案是:4.【点睛】本题考查一元一次方程的解和相反数的定义,掌握方程的解和解一元一次方程是解答本题的关键.13.15x=3⨯20(75-x)【分析】设应安排x 名工人生产A 种零件,则生产B 种零件的工人为()75x -人,根据1个B 种零件需要配3个A 种零件即可列出方程.【详解】解:设应安排x 名工人生产A 种零件,则生产B 种零件的工人为()75x -人, 由1个B 种零件需要配3个A 种零件,即A 种零件的个数是B 种零件的三倍. 可列出方程15x=3⨯20(75-x),故答案:15x=3⨯20(75-x).【点睛】本题考查了一元一次方程的应用问题, 根据题意列方程即可.14.12##0.5 【分析】先解方程23x x =-,求出x =3,再将x =3代入方程4232x m x -=+求解即可.【详解】解:解方程23x x =-,得x =3,①关于x 的方程23x x =-和4232x m x -=+的解相同,①将x =3代入方程4232x m x -=+,得12-2m =11,解得m =12, 故答案为:12.【点睛】此题考查解一元一次方程,正确掌握解一元一次方程的步骤及同解方程的定义是解题的关键.15.34b x b+= 【分析】方程两边都除以b ,再移项即可得出答案.【详解】解:去括号,得bx -3b =4,移项,得bx =3b +4,由题意知b ≠0,①方程两边同除以b 得,34b x b +=, 方程的解为34b x b+=. 【点睛】本题考查了解一元一次方程,把b 看作已知数是解题的关键.16.(1)x =2,见解析;(2)x =1,见解析.【分析】(1)将方程变形为3x ﹣6=0,作出函数y=3x ﹣6的图象,方程的解即为直线与x 轴交点的横坐标,再笔算检验即可;(2)将方程变形为﹣2x+2=0,作出函数y=﹣2x+2的图象,方程的解即为直线与x 轴交点的横坐标,再笔算检验即可.【详解】解:(1)由5x﹣1=2x+5得到3x﹣6=0.如图:直线y=3x﹣6与x轴交点的横坐标是2,则方程5x﹣1=2x+5的解为x=2,检验:把x=2代入方程5x﹣1=2x+5,左边=10﹣1=9,右边=4+5=9,左边=右边,故方程5x﹣1=2x+5的解为x=2;(2)由﹣12x+4=32x+2得到﹣2x+2=0.如图,直线y=﹣2x+2与x轴交点的横坐标是1,则方程﹣12x+4=32x+2的解为x=1,检验:把x=1代入方程﹣12x+4=32x+2,左边=﹣12+4=312,右边=32+2=312, 左边=右边, 故方程﹣12x+4=32x+2的解为x =1. 【点睛】本题考查画一次函数的图象、一次函数与一元一次方程的关系、等式的性质,熟知任何一元一次方程都可以化为ax+b=0(a 、b 为常数,a≠0)的形式,掌握该方程的解就是直线y=ax+b 与x 轴交点的横坐标是解答的关键.17.(1)购买B 种记录本的数量为50本;(2)学校此次可以节省82元.【分析】(1)设B 种记录本的数量为x ,根据“购买A 种记录本的数量比B 种记录本的2倍还多20本”得出A 的数量,再根据总花费建立等式方程,求解即可得;(2)根据题(1)可知A 、B 两种记录本的数量,按促销活动计算出总花费,再与460元比较即可得出答案.【详解】(1)设B 种记录本的数量为x ,则A 种记录本的数量为(220)x +本由题意可列方程为:3(220)2460x x ++=解得:50x =(本)答:购买B 种记录本的数量为50本;(2)由题(1)的结论可得:购买A 种记录本的数量为25020120⨯+=(本)因此,按促销活动购买这些记录本需花费为:120380%50290%378⨯⨯+⨯⨯=(元) 则学校此次可节省的钱为:46037882-=(元)答:学校此次可以节省82元.【点睛】本题考查了一元一次方程的实际应用,理解题意正确建立方程是解题关键. 18.(1)5(2)﹣68【分析】(1)根据有理数的加减乘除混合运算法则计算即可.(2)根据有理数的加减乘除乘法混合运算法则计算即可.(1) 解:111()6||235-⨯÷- 11()6523=-⨯⨯11()3023=-⨯ 11303023=⨯-⨯ 15105=-=(2)201831(1)(10)2[2(3)]2-+-÷⨯--- ()1(10)22227=+-⨯⨯-+1402968=--=-【点睛】本题考查有理数的混合运算,关键在于熟练掌握基础运算法则.19.(1)该羽绒服的标价为800元,裙子的标价为500元;(2)①B 通道每分钟通过的人数是25人,A 通道每分钟通过的人数是50人;①七年级全部学生进校所需时间是4分钟.【分析】(1)设该羽绒服的标价为a 元,则裙子的标价为(940+360-a )元,根据张阿姨购买了一件羽绒服和一条裙子共花费940元,即可得出关于a 的一元一次方程,解之即可得出结论;(2)①设B 通道每分钟通过的人数是x 人,A 通道每分钟通过的人数是2x 人,由“八年级学生进校时同时开通了A 、B 两通道,经过6分钟”,列出方程可求解;①设七年级全部学生进校所需时间是y 分钟,由七年级的人数为620人,列出方程可求解.【详解】解:(1)设该羽绒服的标价为a 元,则裙子的标价为(940+360-a )元, 依题意得:0.8a +0.6(940+360-a )=940,解得:a =800,①940+360-800=500.答:该羽绒服的标价为800元,裙子的标价为500元;(2)①设B 通道每分钟通过的人数是x 人,A 通道每分钟通过的人数是2x 人,由题意可得:6×(2x +x )=450,解得:x =25,①2x =50,答:B 通道每分钟通过的人数是25人,A 通道每分钟通过的人数是50人;①设七年级全部学生进校所需时间是y 分钟,由题意可得:(1.2×50+25+50+0.8×25)×y =620,解得:y =4,答:七年级全部学生进校所需时间是4分钟.【点睛】本题考查了一元一次方程的应用,找到正确的数量关系,列出方程是解题的关键.20.水不会溢出,理由见解析【分析】根据两个圆柱体的体积进行计算即可解答本题.【详解】解:水不会溢出.设甲容器中的水全部倒入乙容器后,乙容器中的水深xcm ,由题意,得22102020x ππ⨯⨯=⨯⨯,解得5x =,所以甲容器中的水全部倒入乙容器后,乙容器中的水深5cm ,因为510cm cm <,所以水不会溢出.【点睛】本题考查圆柱体的体积,有理数的运算,关键是分别求出两个圆柱体的体积进行比较,然后再根据体积相等进行计算.。
第3章 一元一次方程 人教版数学七年级上册能力提升训练及答案(2份)
![第3章 一元一次方程 人教版数学七年级上册能力提升训练及答案(2份)](https://img.taocdn.com/s3/m/d0b0fd7a2cc58bd63086bd9c.png)
七年级上册第3章能力提升训练(一)一.选择题(共10小题)1.一元一次方程x+3x=8的解是()A.x=﹣1B.x=0C.x=1D.x=22.若x=2是关于x的方程﹣a=x+2的解,则a2﹣1的值是()A.10B.﹣10C.8D.﹣83.甲、乙两地相距180km,一列慢车以40km/h的速度从甲地匀速驶往乙地,慢车出发30分钟后,一列快车以60km/h的速度也从甲地匀速驶往乙地,两车相继到达终点乙地,在此过程中,两车恰好相距10km的次数是()A.1B.2C.3D.44.定义运算“*”为A*B=AB+2A,若(3*x)+(x*3)=14,则x=()A.﹣1B.1C.3D.﹣35.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+66.下列运用等式的性质对等式进行的变形中,错误的是()A.若a=b,则B.若a=b,则ac=bcC.若a(x2+1)=b(x2+1),则a=bD.若x=y,则x﹣3=y﹣37.小组活动中,同学们采用接力的方式求一元一次方程的解,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后求出方程的解.过程如下:接力中,自己负责的一步出现错误的是()A.甲B.乙C.丙D.丁8.设x、y都是有理数,且满足方程(+)x+(+)y﹣4﹣π=0,则x﹣y的值为()A.18B.19C.20D.219.如图所示,甲、乙两动点分别从正方形ABCD的顶点A,C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边()上A.AB B.BC C.CD D.DA10.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.6二.填空题(共5小题)11.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.12.七年级(2)班数学兴趣小组的同学一起租车去某地参加社会实践活动,预计租车费人均摊16元,后来又有3名同学加入进来.租车费不变,结果每人可少摊3元,设原来有学生x人.可列方程为.13.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.14.已知整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,关于y的方程(3n ﹣3m)y=﹣my﹣5的解为.15.已知方程(m﹣2)x|m|﹣1+16=0是关于x的一元一次方程,则m的值为.三.解答题(共5小题)16.解方程:(1);(2)17.定义:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”,例如:2x=﹣4的解为x=﹣2,且﹣2=﹣4+2,则该方程2x=﹣4是和解方程.(1)判断﹣3x=是否是和解方程,说明理由;(2)若关于x的一元一次方程5x=m﹣2是和解方程,求m的值.18.鹿山广场元旦期间搞促销活动,如图.(1)小哲在促销活动时两次购物分别用了135元和481元.①若小哲购物时没有促销活动,则他共需付多少钱?②若你需购这些同样的物品,请问还有更便宜的购物方案吗?若有,请说出购物方案,并算出共需付多少钱;若没有,则说明理由.(2)若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.①你列举一对a,b的值;②求符合条件的整数a,b共有几对?(直接答案即可).19.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y=(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.20.阅读下列材料,并回答问题:我们知道|a|的几何意义是指数轴上表示数a的点与原点的距离,那么|a﹣b|的几何意义又是什么呢?我们不妨考虑一下a,b取特殊值时的情况,比如考虑|9﹣(﹣3)|的几何意义,在数轴上分别标出表示﹣3和9的点A,B(如图所示),A,B两点间的距离是12,而|9﹣(﹣3)|=12,因此不难看出|9﹣(﹣3)|就是数轴上表示﹣3和9两点间的距离.(1)根据|a﹣b|的几何意义可知|a﹣b||b﹣a|(填“>”“<”“=”);(2)说出|x﹣2|的几何意义,并求出当|x﹣2|=2时x的值.(3)点P、点Q为数轴上的两个动点,点P从A点以3个单位长度每秒的速度向右运动,点Q同时从B点以2个单位长度每秒的速度向左运动,设运动时间为t秒,若AP+BQ =2PQ,求时间t的值.参考答案一.选择题(共10小题)1.解:方程合并同类项得:4x=8,解得:x=2,故选:D.2.解:依题意得:﹣a=2+2解得a=﹣3,则a2﹣1=(﹣3)2﹣1=9﹣1=8.故选:C.3.解:∵10÷40=(h),∴快车未出发,慢车出发小时时,两车相距10km;设快车出发x小时时,两车相距10km.快车未超过慢车时,40(x+)﹣10=60x,解得:x=;快车超过慢车10km时,40(x+)+10=60x,解得:x=;快车到达乙地后,40(x+)=180﹣10,解得:x=.∴两车恰好相距10km的次数是4.故选:D.4.解:根据题中的新定义得:3x+6+3x+2x=14,移项合并得:8x=8,解得:x=1,故选:B.5.解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.6.解:∵若a=b,只有c≠0时,成立,∴选项A符合题意;∵若a=b,则ac=bc,∴选项B不符合题意;∵若a(x2+1)=b(x2+1),则a=b,∴选项C不符合题意;∵若x=y,则x﹣3=y﹣3,∴选项D不符合题意.故选:A.7.解:乙步骤错误,原因是去括号没有变号,故选:B.8.解:∵x和y满足(+)x+(+)y﹣4﹣π=0,可变形为:,∵x和y都是有理数,则可得:,整理得:,①﹣②得:x﹣y=18,故选:A.9.解:设甲的速度为x,正方形的边长为a,他们需要t秒第2020次相遇,则乙的速度为4x,依题意,得:(2020﹣1)×4a+2a=xt+4xt,解得:t=,∴xt=a=1615.6a,又∵1615.6a=404×4a﹣0.4a,∴它们第2020次相遇在边AB上.故选:A.10.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.二.填空题(共5小题)11.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.12.解:依题意,得16x=(16﹣3)(x+3).故答案为:16x=(16﹣3)(x+3).13.解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.14.解:∵整式(m﹣n﹣1)x3﹣7x2+(m+3)x﹣2是关于x的二次二项式,∴,解得:,关于y的方程(3n﹣3m)y=﹣my﹣5可以整理为:(﹣12+9)y=3y﹣5,则﹣6y=﹣5,解得:y=.故答案为:y=.15.解:∵方程(m﹣2)x|m|﹣1+16=0是关于x的一元一次方程,∴|m|﹣1=1且m﹣2≠0,解得m=﹣2.故答案是:﹣2.三.解答题(共5小题)16.解:(1)去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项合并得:13x=130,解得:x=10;(2)去分母得:4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣20x﹣2=6x+3﹣12,移项合并得:﹣18x=﹣3,解得:x=.17.解:(1)∵﹣3x=,∴x=﹣,∵﹣3=﹣,∴﹣3x=是和解方程;(2)∵关于x的一元一次方程5x=m﹣2是和解方程,∴m﹣2+5=,解得:m=﹣.故m的值为﹣.18.解:(1)①小哲在促销活动时购物用了135元,则原价为135÷(1﹣10%)=150元;小哲在促销活动时购物用了481元,设原价为x元,由题意得:500×(1﹣15%)+(1﹣20%)(x﹣500)=481解得:x=570若小哲购物时没有促销活动,则150+570=720(元)答:若小哲购物时没有促销活动,则他共需付720元;②若我需购买这些同样的物品,则还有更便宜的购物方案,购物方案是两次购物合并成为一次,共需付钱:500×(1﹣15%)+(1﹣20%)×(720﹣500)=425+176=601(元).(2)①若小明购了原价为a元的物品,小红购了原价为b元的物品,且a<b,但最后小明所付的钱反而比小红多.列举一对a、b的值为a=190,b=201,当a=190时,实际付款190×(1﹣10%)=171(元),而b=201时,实际付款201×(1﹣15%)=170.85(元).②由题意得:(1﹣15%)b<200×(1﹣10%)而(1﹣10%)a>200×(1﹣15%),且a≤200<b∴200<b≤,<a≤200∴符合条件的整数a有189~200,整数b有201~211若a=189,则0.85b<189×0.9,b<,没有满足条件的整数b;若a=190,则0.85b<190×0.9,b<,满足条件的整数b为b=201;若a=191,则0.85b<191×0.9,b<,满足条件的整数b有:201,202;若a=192,则0.85b<192×0.9,b<,满足条件的整数b有:201,202,203;若a=193,则0.85b<193×0.9,b<,满足条件的整数b有:201,202,203,204;若a=194,则0.85b<194×0.9,b<,满足条件的整数b有:201,202,203,204,205;…若a=200,则0.85b<200×0.9,b<,满足条件的整数b有:201,202,203,204,205,206,207,208,209,210,211;∴符合条件的整数a、b共有:1+2+3+4+5+6+7+8+9+10+11=66(对).19.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m=.20.解:(1)根据|a﹣b|的几何意义可知|a﹣b|=|b﹣a|.故答案为:=;(2)|x﹣2|的几何意义是在数轴上表示x的点与表示2的点之间的距离;|x﹣2|=2,x﹣2=2或x﹣2=﹣2,解得:x=4或0;(3)∵点P从A点以每秒3个单位的速度向右运动,点Q同时从B点出发以每秒2个单位的速度向左运动,∴AP=3t,BQ=2t.设运动时间为t秒,则t秒时P点表示的数为﹣3+3t,Q点表示的数为9﹣2t.分两种情况:①P、Q相遇之前,此时PQ=9﹣2t﹣(﹣3+3t)=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=2(12﹣5t),解得t=;②P、Q相遇之后,此时PQ=(﹣3+3t)﹣(9﹣2t)=5t﹣12,∵AP+BQ=2PQ,∴3t+2t=2(5t﹣12),解得t=.故时间t的值为或.七年级上册第3章能力提升训练(二)一.选择题(共10小题)1.下列等式是一元一次方程的是()A.s=a+b B.2﹣5=﹣3C.+1=﹣x﹣2D.3x+2y=52.方程13﹣x=17的解是()A.x=﹣4B.x=﹣2C.x=2D.x=43.某市出租车收费标准是:起步价8元(即行驶距离不超过3km,付8元车费),超过3km,每增加1km收1.6元(不足1km按1km计),小梅从家到图书馆的路程为xkm,出租车车费为24元,那么x的值可能是()A.10B.13C.16D.184.设x、y都是有理数,且满足方程(+)x+(+)y﹣4﹣π=0,则x﹣y的值为()A.18B.19C.20D.215.下列变形中正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程t=,未知数系数化为1,得t=1D.方程=x化为=x6.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.67.已知关于x方程x﹣=﹣1的解是非正整数,则符合条件的所有整数a的和是()A.﹣4B.﹣3C.2D.38.若关于x的方程3(x+4)=2a+5的解不小于方程x﹣3a=4x+2的解,则a的取值范围是()A.a>1B.a<1C.a≥1D.a≤19.解方程﹣=的步骤如下,错误的是()①2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x﹣6=16﹣4x;③3x+4x=16+10;④x=.A.①B.②C.③D.④10.在梯形面积公式中,已知S=50,a=6,b=a,则h的值是()A.B.C.10D.25二.填空题(共5小题)11.已知方程2x﹣a=8的解是x=2,则a=.12.若(m+1)x m+3=0是关于x的一元一次方程,则m=.13.当t=时,整式5t+与4(t﹣)的值相等.14.为支持武汉抗击疫情,全国各地加班加点为前线医护人员提供防护面罩和防护服.某车间有30名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是.15.若数轴上点A表示4,点B表示﹣2,有一个动点P从点A出发,沿若数轴以每秒2个单位/秒的速度向左运动,有一个动点Q从点B出发,沿着数轴以每秒3个单位/秒的速度向右运动,若运动的时间为t,当点P与点Q的距离为10时,则t=.三.解答题(共5小题)16.解方程:(1)7﹣2x=3﹣4x;(2)x﹣=2﹣.17.甲、乙、丙三人共同出资做生意,甲投资了24万元,乙投资了20万元,丙投资了28万元,年终时,共赚得利润27万元,甲、乙、丙三人按比例进行分配,各可以分得多少利润?18.下面表格是某次篮球联赛部分球队不完整的积分表:队名比赛场数胜场负场积分前进1410424光明149523远大14m n22卫星14410a钢铁1401414请根据表格提供的信息:(1)求出a的值;(2)请直接写出m=,n=.19.如图,数轴上有两点A,B,点A表示的数为2,点B在点A的左侧,且AB=6.动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动时间为t秒(t >0).(1)填空:数轴上点B表示的数为,点P表示的数为(用含t的式子表示);(2)经过多长时间,P、B两点之间相距8个单位长度?(3)动点R从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动.若点P,R 同时出发,经过多长时间,P,R之间的距离为2个单位长度?20.已知多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,且4b、﹣10c3、﹣(a+b)2bc的值分别是点A、B、C在数轴上对应的数,点P从原点O出发,沿OC方向以1单位/s的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点P,Q其中有一点停止运动,另一点同时停止运动),两点同时出发.(1)分别求4b、﹣10c3、﹣(a+b)2bc的值;(2)若点Q运动速度为3单位/s,经过多长时间P、Q两点相距70;(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,试问的值是否变化,若变化,求出其范围:若不变,求出其值.参考答案一.选择题(共10小题)1.解:A、s=a+b,是三元一次方程,故本选项不符合题意;B、2﹣5=﹣3中不含有未知数,不是方程,故本选项不符合题意;C、+1=﹣x﹣2,是一元一次方程,故本选项符合题意;D、3x+2y=5中含有2个未知数,不是一元一次方程,故本选项不符合题意.故选:C.2.解:方程13﹣x=17,移项得:﹣x=17﹣13,合并得:﹣x=4,解得:x=﹣4.故选:A.3.解:由题意得,8+(x﹣3)×1.6=24,1.6x﹣4.8+8=24,1.6x=24+4.8﹣8,1.6x=20.8,解得x=13,故选:B.4.解:∵x和y满足(+)x+(+)y﹣4﹣π=0,可变形为:,∵x和y都是有理数,则可得:,整理得:,①﹣②得:x﹣y=18,故选:A.5.解:方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故选项A变形错误;方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故选项B变形错误;方程t=,未知数系数化为1,得t=,故选项C变形错误;方程=x化为=x,利用了分数的基本性质,故选项D正确.故选:D.6.解:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当四条直线同交于一点时,只有一个交点,(6)当四条直线两两相交,且不过同一点时,有6个交点,(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,故四条直线在平面内交点的个数是0或1或3或4或5或6;解方程ax+3=﹣9﹣x得x=﹣,∵x是负整数,a是整数,∴a+1=1或2或3或4或6或12,解得a=0或1或2或3或5或11.综上所述,a=0或1或3或5,满足条件的所有a的个数为4.故选:B.7.解:x﹣=﹣1,6x﹣(4﹣ax)=2(x+a)﹣66x﹣4+ax=2x+2a﹣66x+ax﹣2x=2a﹣6+4(a+4)x=2a﹣2x=,∵方程的解是非正整数,∴≤0,解得:﹣4<a≤1,当a=﹣3时,x=﹣8;当a=﹣2时,x=﹣3;当a=﹣1时,x=﹣(舍去);当a=0时,x=﹣(舍去);当a=1时,x=0;则符合条件的所有整数a的和是﹣3﹣2+1=﹣4.故选:A.8.解:方程3(x+4)=2a+5,去括号得:3x+12=2a+5,解得:x=,方程x﹣3a=4x+2,移项合并得:﹣3x=3a+2,解得:x=﹣,根据题意得:≥﹣,去分母得:2a﹣7≥﹣3a﹣2,移项合并得:5a≥5,解得:a≥1.故选:C.9.解:①去分母,得:2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x+6=16﹣4x,③6x﹣3x+4x=16+4﹣6,④x=2,错误的步骤是第②步,故选:B.10.解:把S=50,a=6,b=a代入梯形面积公式中,50=(6+×6)h,解得h=.则h的值为.故选:B.二.填空题(共5小题)11.解:把x=2代入方程得:4﹣a=8,解得:a=﹣4.故答案为:﹣4.12.解:由题意得:m=1,且m+1≠0,解得:m=1,故答案为:1.13.解:根据题意得:5t+=4(t﹣),去括号得:5t+=4t﹣1,解得:t=﹣,故答案为:﹣.14.解:设分配x名工人生产防护服,则分配(30﹣x)人生产防护面罩,根据题意,得160x=240(30﹣x).故答案是:160x=240(30﹣x).15.解:当运动时间为t秒时,点P表示的数为﹣2t+4,点Q表示的数为3t﹣2,依题意,得:|(﹣2t+4)﹣(3t﹣2)|=10,即6﹣5t=10或5t﹣6=10,解得:t=﹣(不合题意,舍去)或t=.故答案为:.三.解答题(共5小题)16.解:(1)移项,可得:﹣2x+4x=3﹣7,合并同类项,可得:2x=﹣4,系数化为1,可得:x=﹣2.(2)去分母,可得:6x﹣3(x﹣1)=12﹣2(x+2),去括号,可得:6x﹣3x+3=12﹣2x﹣4,移项,合并同类项,可得:5x=5,系数化为1,可得:x=1.17.解:24:20:28=6:5:7,设甲可以获得6x万元,乙可以获得5x万元,丙可以获得7x万元,6x+5x+7x=27,解得,x=1.5,∴6x=9,5x=7.5,7x=10.5,答:甲可以分得9万元,乙可以分得7.5万元,丙可以分得10.5万元.18.解:(1)由钢铁队可知,负一场积14÷14=1(分),由前进队可知,胜一场积(24﹣4×1)÷10=2(分),则a=4×2+10×1=18,即a的值是18;(2)2m+n=22,则n=22﹣2m,又∵m+n=14,∴n=14﹣m,∴22﹣2m=14﹣m,解得,m=8,∴n=6,故答案为:8,6.19.解:(1)数轴上点B表示的数为2﹣6=﹣4,点P表示的数为2+t(用含t的式子表示);(2)依题意有2+t﹣(﹣4)=8,解得t=2.故经过2秒长时间,P、B两点之间相距8个单位长度;(3)①当点R追上P前,依题意有2+t﹣(﹣4+2t)=2,解得t=4;②当点R追上P后,依题意有﹣4+2t﹣(2+t)=2,解得t=8.故经过4秒或8秒长时间,P,R之间的距离为2个单位长度.故答案为:﹣4,2+t.20.解:(1)∵多项式3m3n2﹣2mn3﹣2中,四次项的系数为a,多项式的次数为b,常数项为c,∴a=﹣2,b=5,c=﹣2,∴4b=4×5=20;﹣10c3=﹣10×(﹣2)3=80;﹣(a+b)2bc=﹣(﹣2+5)2×5×(﹣2)=90;(2)设运动时间为t秒,则OP=t,CQ=3t,当P、Q两点相遇前:90﹣t﹣3t=70,解得:t=5;当P、Q两点相遇后:t+3t﹣70=90,解得:t=40>30(所以此情况舍去),∴经过5秒的时间P、Q两点相距70;(3)由题意可知:当点P运动到线段AB上时,OB=80,AP=t﹣20,又∵分别取OP和AB的中点E、F,∴点F表示的数是,点E表示的数是,∴EF=,∴,∴的值不变,=2.。
一元一次方程式每日多套题库和答案可直接打印
![一元一次方程式每日多套题库和答案可直接打印](https://img.taocdn.com/s3/m/e90ccea55ff7ba0d4a7302768e9951e79b8969b8.png)
班级姓名成绩一、单边未知数(1)27+8x = 147 (2)19x-2 = 283 (3)7x-29 = 13 (4)12x-25 = 335 (5)55 = 30+5x (6)93 = 24x-27 (7)101 = 12x-19 (8)143 = 8+5x(9)367 = 27x-11 (10)15 = 2x-27 (11)18x-30 = 294 (12)113 = 29+7x (13)3+22x = 465 (14)29+30x = 749 (15)180 = 8x-28 (16)7x-23 = 138 (17)5 = 25-2x (18)25x-20 = 605 (19)30-10x = 10 (20)4 = 25x-21(21)114 = 13x-3 (22)17+29x = 858 (23)23+23x = 391 (24)61 = 3x-5二、双边未知数(1)19x-28 = 92+4x (2)14x-21 = 133+7x (3)5x-6 = 7x-60 (4)20x-1 = 499-5x (5)9+29x = 321+5x (6)20-24x = 5x-850 (7)9+22x = 63+4x (8)1-3x = 7x-269 (9)29x-4 = 428+2x (10)28-20x = 9x-639 (11)17x-9 = 61+10x (12)1+30x = 67-3x (13)14x-14 = 309-5x (14)30x-11 = 37+6x (15)14+28x = 797-x (16)19-5x = 2x-135 (17)25x-21 = 7x-3 (18)14x-3 = 107+9x (19)29x-12 = 924-7x (20)21+25x = 550+2x (21)16x-2 = 523-9x (22)19-4x = 6x-201 (23)19x-23 = 133+7x (24)13x-26 = 227+2x班级姓名成绩一、单边未知数(1)22+15x = 322 (2)7x-5 = 16 (3)333 = 19x-9 (4)12+x = 21(5)22+19x = 516 (6)1+13x = 209 (7)15x-11 = 169 (8)852 = 30x-18 (9)386 = 22x-10 (10)86 = 27x-22 (11)30x-28 = 272 (12)269 = 8+9x (13)26 = 8x-22 (14)24+10x = 244 (15)24+29x = 807 (16)30+24x = 630 (17)27x-3 = 294 (18)16x-6 = 42 (19)83 = 21x-1 (20)53 = 23+30x(21)93 = 5x-22 (22)23x-19 = 648 (23)24 = x-5 (24)17+25x = 292二、双边未知数(1)10x-25 = 164+x (2)10+22x = 424+4x (3)14+18x = 371+x (4)23x-7 = 587-4x (5)4x-16 = 6x-56 (6)4x-11 = 101-4x (7)14x-19 = 257+2x (8)16x-9 = 277+3x (9)2+5x = 366-9x (10)3+21x = 193+2x (11)9x-12 = 156-5x (12)23+11x = 422-8x (13)12x-29 = 115+6x (14)7+18x = 399+4x (15)21x-22 = 316+8x (16)26x-5 = 199-8x (17)25x-30 = 706-7x (18)16x-24 = 130+5x (19)9x-13 = 299-4x (20)28x-17 = 143-4x (21)23x-6 = 144-7x (22)23+24x = 398-x (23)7-19x = 1x-253 (24)15x-2 = 46-9x班级姓名成绩一、单边未知数(1)685 = 25+30x (2)23x-26 = 388 (3)5 = 2x-1 (4)263 = 24x-1 (5)9x-30 = 78 (6)9x-29 = 70 (7)21x-10 = 578 (8)23x-10 = 496 (9)169 = 4+15x (10)19x-12 = 159 (11)25+3x = 37 (12)54 = 8x-18 (13)123 = 10x-17 (14)2+30x = 812 (15)51 = 14x-19 (16)214 = 16+9x (17)10+2x = 18 (18)2 = 5x-8 (19)390 = 30x-30 (20)14x-14 = 196(21)718 = 29x-7 (22)9+3x = 66 (23)11 = 16x-5 (24)25x-22 = 103二、双边未知数(1)17+26x = 500+5x (2)15x-8 = 102+10x (3)22+13x = 130+4x (4)18x-20 = 260-10x (5)3x-20 = 175-10x (6)24x-13 = 106+7x (7)23+18x = 254-3x (8)18+26x = 478+6x (9)18+6x = 10x-30 (10)30+19x = 558-3x (11)9-21x = 10x-146 (12)14x-11 = 511-4x (13)27x-26 = 415+6x (14)23x-10 = 578+2x (15)6+8x = 246-2x (16)1-23x = 7x-869 (17)21x-2 = 598-3x (18)29+15x = 539-2x (19)16x-12 = 149-7x (20)23+11x = 473-7x (21)22+5x = 106-9x (22)10-15x = 9x-542 (23)27x-9 = 321+5x (24)30x-5 = 75-10x班级姓名成绩一、单边未知数(1)138 = 14x-2 (2)144 = 7x-3 (3)44 = 24+x (4)27x-10 = 746 (5)289 = 17x-17 (6)33 = 9+12x (7)383 = 23x-8 (8)98 = 11x-23 (9)10x-20 = 90 (10)114 = 29+17x (11)226 = 8x-14 (12)2+27x = 29 (13)431 = 19x-6 (14)570 = 24+26x (15)11x-21 = 254 (16)329 = 26x-9 (17)186 = 18+6x (18)126 = 28+7x (19)25+23x = 554 (20)20x-11 = 109(21)244 = 17x-28 (22)10+25x = 185 (23)12x-9 = 99 (24)17x-8 = 451二、双边未知数(1)16x-9 = 207+7x (2)24-15x = 1x-408 (3)5x-9 = 6x-33 (4)19x-6 = 319+6x (5)29+9x = 57+7x (6)23+3x = 6x-58 (7)12x-10 = 30+4x (8)25+21x = 217-3x (9)30x-20 = 204+2x (10)9+19x = 99+9x (11)2x-24 = 246-7x (12)12x-20 = 125+7x (13)22x-13 = 83+10x (14)5x-28 = 105-2x (15)18x-9 = 295+2x (16)15x-23 = 417-7x (17)25x-10 = 176-6x (18)7x-16 = 1+6x (19)12x-5 = 471-5x (20)17x-22 = 28+7x (21)25-23x = 1x-143 (22)13x-6 = 138+7x (23)25+9x = 41+x (24)5x-14 = 10x-159班级姓名成绩一、单边未知数(1)20+12x = 320 (2)25x-9 = 66 (3)6+27x = 384 (4)36 = 20+2x(5)11x-29 = 224 (6)2 = 29-3x (7)30x-30 = 450 (8)346 = 1+15x (9)20+22x = 438 (10)30x-17 = 223 (11)3+12x = 231 (12)226 = 10x-14 (13)83 = 8x-5 (14)20x-2 = 198 (15)302 = 2+30x (16)570 = 19+29x (17)8+6x = 80 (18)29+4x = 65 (19)13x-3 = 322 (20)478 = 16x-2(21)16+13x = 159 (22)424 = 29x-11 (23)134 = 26+6x (24)29x-4 = 402二、双边未知数(1)25x-7 = 169+9x (2)12x-26 = 19+7x (3)16x-14 = 262-7x (4)23+19x = 87+3x (5)22-4x = 10x-398 (6)18x-17 = 247-4x (7)17x-24 = 242-2x (8)19x-12 = 116+3x (9)2+16x = 138-x (10)30+25x = 340-6x (11)16x-19 = 152+7x (12)29-29x = 3x-867 (13)10+24x = 934-9x (14)22x-29 = 571-3x (15)16-26x = 4x-44 (16)13x-30 = 6x-23 (17)2x-17 = 1-x (18)20x-5 = 76-7x (19)13x-21 = 416-6x (20)7+11x = 40+8x (21)15-8x = 5x-180 (22)24+30x = 486+9x (23)10x-16 = 44-2x (24)1-19x = 5x-479小学数学一元一次方程每日训练(1)答案一、单边未知数(1)20+12x = 320 (2)25x-9 = 66解析:将20移到方程式右边,变成-20 解析:将-9移到方程式右边,变成9 12x = 320-20 25x = 66+912x = 300 25x = 75x = 25 x = 3(3)6+27x = 384 (4)36 = 20+2x解析:将6移到方程式右边,变成-6 解析:将20移到方程式左边,变成-20 27x = 384-6 36-20 = 2x27x = 378 16 = 2xx = 14 两边交换得2x = 16x = 8(5)11x-29 = 224 (6)2 = 29-3x解析:将-29移到方程式右边,变成29 解析:将-3x移到方程式左边,变成3x 11x = 224+29 将2移到方程式右边,变成-211x = 253 +3x = 29-2x = 23 3x = 27x = 9(7)30x-30 = 450 (8)346 = 1+15x解析:将-30移到方程式右边,变成30 解析:将1移到方程式左边,变成-1 30x = 450+30 346-1 = 15x30x = 480 345 = 15xx = 16 两边交换得15x = 345x = 23(9)20+22x = 438 (10)30x-17 = 223解析:将20移到方程式右边,变成-20 解析:将-17移到方程式右边,变成17 22x = 438-20 30x = 223+1722x = 418 30x = 240x = 19 x = 8(11)3+12x = 231 (12)226 = 10x-14解析:将3移到方程式右边,变成-3 解析:将-14移到方程式左边,变成14 12x = 231-3 226+14 = 10x12x = 228 240 = 10xx = 19 两边交换得10x = 240x = 24(13)83 = 8x-5 (14)20x-2 = 198解析:将-5移到方程式左边,变成5 解析:将-2移到方程式右边,变成2 83+5 = 8x 20x = 198+288 = 8x 20x = 200两边交换得8x = 88 x = 10x = 11(15)302 = 2+30x (16)570 = 19+29x解析:将2移到方程式左边,变成-2 解析:将19移到方程式左边,变成-19 302-2 = 30x 570-19 = 29x300 = 30x 551 = 29x两边交换得30x = 300 两边交换得29x = 551x = 10 x = 19(17)8+6x = 80 (18)29+4x = 65解析:将8移到方程式右边,变成-8 解析:将29移到方程式右边,变成-29 6x = 80-8 4x = 65-296x = 72 4x = 36x = 12 x = 9(19)13x-3 = 322 (20)478 = 16x-2解析:将-3移到方程式右边,变成3 解析:将-2移到方程式左边,变成2 13x = 322+3 478+2 = 16x13x = 325 480 = 16xx = 25 两边交换得16x = 480x = 30(21)16+13x = 159 (22)424 = 29x-11解析:将16移到方程式右边,变成-16 解析:将-11移到方程式左边,变成11 13x = 159-16 424+11 = 29x13x = 143 435 = 29xx = 11 两边交换得29x = 435x = 15(23)134 = 26+6x (24)29x-4 = 402解析:将26移到方程式左边,变成-26 解析:将-4移到方程式右边,变成4 134-26 = 6x 29x = 402+4108 = 6x 29x = 406两边交换得6x = 108 x = 14x = 18二、双边未知数(1)25x-7 = 169+9x (2)12x-26 = 19+7x解析:将9x移到方程式左边,变成-9x 解析:将7x移到方程式左边,变成-7x 将-7移到方程式右边,变成7 将-26移到方程式右边,变成2625x-9x = 169+7 12x-7x = 19+2616x = 176 5x = 45x = 11 x = 9(3)16x-14 = 262-7x (4)23+19x = 87+3x解析:将-7x移到方程式左边,变成7x 解析:将3x移到方程式左边,变成-3x 将-14移到方程式右边,变成14 将23移到方程式右边,变成-237x+16x = 262+14 19x-3x = 87-2323x = 276 16x = 64x = 12 x = 4(5)22-4x = 10x-398 (6)18x-17 = 247-4x解析:将-4x移到方程式右边,变成4x 解析:将-4x移到方程式左边,变成4x 将-398移到方程式左边,变成398 将-17移到方程式右边,变成17398+22 = 10x+4x 4x+18x = 247+17420 = 14x 22x = 264两边交换得x = 30 x = 12(7)17x-24 = 242-2x (8)19x-12 = 116+3x解析:将-2x移到方程式左边,变成2x 解析:将3x移到方程式左边,变成-3x 将-24移到方程式右边,变成24 将-12移到方程式右边,变成122x+17x = 242+24 19x-3x = 116+1219x = 266 16x = 128x = 14 x = 8(9)2+16x = 138-x (10)30+25x = 340-6x解析:将-x移到方程式左边,变成1x 解析:将-6x移到方程式左边,变成6x 将2移到方程式右边,变成-2 将30移到方程式右边,变成-301x+16x = 138-2 6x+25x = 340-3017x = 136 31x = 310x = 8 x = 10(11)16x-19 = 152+7x (12)29-29x = 3x-867解析:将7x移到方程式左边,变成-7x 解析:将-29x移到方程式右边,变成29x 将-19移到方程式右边,变成19 将-867移到方程式左边,变成86716x-7x = 152+19 867+29 = 3x+29x9x = 171 896 = 32xx = 19 两边交换得x = 28(13)10+24x = 934-9x (14)22x-29 = 571-3x解析:将-9x移到方程式左边,变成9x 解析:将-3x移到方程式左边,变成3x将10移到方程式右边,变成-10 将-29移到方程式右边,变成299x+24x = 934-10 3x+22x = 571+2933x = 924 25x = 600x = 28 x = 24(15)16-26x = 4x-44 (16)13x-30 = 6x-23解析:将-26x移到方程式右边,变成26x 解析:将6x移到方程式左边,变成-6x 将-44移到方程式左边,变成44 将-30移到方程式右边,变成3044+16 = 4x+26x 13x-6x = -23+3060 = 30x 7x = 7两边交换得x = 2 x = 1(17)2x-17 = 1-x (18)20x-5 = 76-7x解析:将-x移到方程式左边,变成1x 解析:将-7x移到方程式左边,变成7x 将-17移到方程式右边,变成17 将-5移到方程式右边,变成51x+2x = 1+17 7x+20x = 76+53x = 18 27x = 81x = 6 x = 3(19)13x-21 = 416-6x (20)7+11x = 40+8x解析:将-6x移到方程式左边,变成6x 解析:将8x移到方程式左边,变成-8x 将-21移到方程式右边,变成21 将7移到方程式右边,变成-76x+13x = 416+21 11x-8x = 40-719x = 437 3x = 33x = 23 x = 11(21)15-8x = 5x-180 (22)24+30x = 486+9x解析:将-8x移到方程式右边,变成8x 解析:将9x移到方程式左边,变成-9x 将-180移到方程式左边,变成180 将24移到方程式右边,变成-24180+15 = 5x+8x 30x-9x = 486-24195 = 13x 21x = 462两边交换得x = 15 x = 22(23)10x-16 = 44-2x (24)1-19x = 5x-479解析:将-2x移到方程式左边,变成2x 解析:将-19x移到方程式右边,变成19x 将-16移到方程式右边,变成16 将-479移到方程式左边,变成4792x+10x = 44+16 479+1 = 5x+19x12x = 60 480 = 24xx = 5 两边交换得x = 20小学数学一元一次方程每日训练(2)答案一、单边未知数(1)20+12x = 320 (2)25x-9 = 66解析:将20移到方程式右边,变成-20 解析:将-9移到方程式右边,变成9 12x = 320-20 25x = 66+912x = 300 25x = 75x = 25 x = 3(3)6+27x = 384 (4)36 = 20+2x解析:将6移到方程式右边,变成-6 解析:将20移到方程式左边,变成-20 27x = 384-6 36-20 = 2x27x = 378 16 = 2xx = 14 两边交换得2x = 16x = 8(5)11x-29 = 224 (6)2 = 29-3x解析:将-29移到方程式右边,变成29 解析:将-3x移到方程式左边,变成3x 11x = 224+29 将2移到方程式右边,变成-211x = 253 +3x = 29-2x = 23 3x = 27x = 9(7)30x-30 = 450 (8)346 = 1+15x解析:将-30移到方程式右边,变成30 解析:将1移到方程式左边,变成-1 30x = 450+30 346-1 = 15x30x = 480 345 = 15xx = 16 两边交换得15x = 345x = 23(9)20+22x = 438 (10)30x-17 = 223解析:将20移到方程式右边,变成-20 解析:将-17移到方程式右边,变成17 22x = 438-20 30x = 223+1722x = 418 30x = 240x = 19 x = 8(11)3+12x = 231 (12)226 = 10x-14解析:将3移到方程式右边,变成-3 解析:将-14移到方程式左边,变成14 12x = 231-3 226+14 = 10x12x = 228 240 = 10xx = 19 两边交换得10x = 240x = 24(13)83 = 8x-5 (14)20x-2 = 198解析:将-5移到方程式左边,变成5 解析:将-2移到方程式右边,变成283+5 = 8x 20x = 198+288 = 8x 20x = 200两边交换得8x = 88 x = 10x = 11(15)302 = 2+30x (16)570 = 19+29x解析:将2移到方程式左边,变成-2 解析:将19移到方程式左边,变成-19 302-2 = 30x 570-19 = 29x300 = 30x 551 = 29x两边交换得30x = 300 两边交换得29x = 551x = 10 x = 19(17)8+6x = 80 (18)29+4x = 65解析:将8移到方程式右边,变成-8 解析:将29移到方程式右边,变成-29 6x = 80-8 4x = 65-296x = 72 4x = 36x = 12 x = 9(19)13x-3 = 322 (20)478 = 16x-2解析:将-3移到方程式右边,变成3 解析:将-2移到方程式左边,变成2 13x = 322+3 478+2 = 16x13x = 325 480 = 16xx = 25 两边交换得16x = 480x = 30(21)16+13x = 159 (22)424 = 29x-11解析:将16移到方程式右边,变成-16 解析:将-11移到方程式左边,变成11 13x = 159-16 424+11 = 29x13x = 143 435 = 29xx = 11 两边交换得29x = 435x = 15(23)134 = 26+6x (24)29x-4 = 402解析:将26移到方程式左边,变成-26 解析:将-4移到方程式右边,变成4 134-26 = 6x 29x = 402+4108 = 6x 29x = 406两边交换得6x = 108 x = 14x = 18二、双边未知数(1)25x-7 = 169+9x (2)12x-26 = 19+7x解析:将9x移到方程式左边,变成-9x 解析:将7x移到方程式左边,变成-7x 将-7移到方程式右边,变成7 将-26移到方程式右边,变成2625x-9x = 169+7 12x-7x = 19+2616x = 176 5x = 45x = 11 x = 9(3)16x-14 = 262-7x (4)23+19x = 87+3x解析:将-7x移到方程式左边,变成7x 解析:将3x移到方程式左边,变成-3x 将-14移到方程式右边,变成14 将23移到方程式右边,变成-237x+16x = 262+14 19x-3x = 87-2323x = 276 16x = 64x = 12 x = 4(5)22-4x = 10x-398 (6)18x-17 = 247-4x解析:将-4x移到方程式右边,变成4x 解析:将-4x移到方程式左边,变成4x 将-398移到方程式左边,变成398 将-17移到方程式右边,变成17398+22 = 10x+4x 4x+18x = 247+17420 = 14x 22x = 264两边交换得x = 30 x = 12(7)17x-24 = 242-2x (8)19x-12 = 116+3x解析:将-2x移到方程式左边,变成2x 解析:将3x移到方程式左边,变成-3x 将-24移到方程式右边,变成24 将-12移到方程式右边,变成122x+17x = 242+24 19x-3x = 116+1219x = 266 16x = 128x = 14 x = 8(9)2+16x = 138-x (10)30+25x = 340-6x解析:将-x移到方程式左边,变成1x 解析:将-6x移到方程式左边,变成6x 将2移到方程式右边,变成-2 将30移到方程式右边,变成-301x+16x = 138-2 6x+25x = 340-3017x = 136 31x = 310x = 8 x = 10(11)16x-19 = 152+7x (12)29-29x = 3x-867解析:将7x移到方程式左边,变成-7x 解析:将-29x移到方程式右边,变成29x 将-19移到方程式右边,变成19 将-867移到方程式左边,变成86716x-7x = 152+19 867+29 = 3x+29x9x = 171 896 = 32xx = 19 两边交换得x = 28(13)10+24x = 934-9x (14)22x-29 = 571-3x解析:将-9x移到方程式左边,变成9x 解析:将-3x移到方程式左边,变成3x 将10移到方程式右边,变成-10 将-29移到方程式右边,变成299x+24x = 934-10 3x+22x = 571+2933x = 924 25x = 600x = 28 x = 24(15)16-26x = 4x-44 (16)13x-30 = 6x-23解析:将-26x移到方程式右边,变成26x 解析:将6x移到方程式左边,变成-6x 将-44移到方程式左边,变成44 将-30移到方程式右边,变成3044+16 = 4x+26x 13x-6x = -23+3060 = 30x 7x = 7两边交换得x = 2 x = 1(17)2x-17 = 1-x (18)20x-5 = 76-7x解析:将-x移到方程式左边,变成1x 解析:将-7x移到方程式左边,变成7x 将-17移到方程式右边,变成17 将-5移到方程式右边,变成51x+2x = 1+17 7x+20x = 76+53x = 18 27x = 81x = 6 x = 3(19)13x-21 = 416-6x (20)7+11x = 40+8x解析:将-6x移到方程式左边,变成6x 解析:将8x移到方程式左边,变成-8x 将-21移到方程式右边,变成21 将7移到方程式右边,变成-76x+13x = 416+21 11x-8x = 40-719x = 437 3x = 33x = 23 x = 11(21)15-8x = 5x-180 (22)24+30x = 486+9x解析:将-8x移到方程式右边,变成8x 解析:将9x移到方程式左边,变成-9x 将-180移到方程式左边,变成180 将24移到方程式右边,变成-24180+15 = 5x+8x 30x-9x = 486-24195 = 13x 21x = 462两边交换得x = 15 x = 22(23)10x-16 = 44-2x (24)1-19x = 5x-479解析:将-2x移到方程式左边,变成2x 解析:将-19x移到方程式右边,变成19x 将-16移到方程式右边,变成16 将-479移到方程式左边,变成4792x+10x = 44+16 479+1 = 5x+19x12x = 60 480 = 24xx = 5 两边交换得x = 20小学数学一元一次方程每日训练(3)答案一、单边未知数(1)20+12x = 320 (2)25x-9 = 66解析:将20移到方程式右边,变成-20 解析:将-9移到方程式右边,变成9 12x = 320-20 25x = 66+912x = 300 25x = 75x = 25 x = 3(3)6+27x = 384 (4)36 = 20+2x解析:将6移到方程式右边,变成-6 解析:将20移到方程式左边,变成-20 27x = 384-6 36-20 = 2x27x = 378 16 = 2xx = 14 两边交换得2x = 16x = 8(5)11x-29 = 224 (6)2 = 29-3x解析:将-29移到方程式右边,变成29 解析:将-3x移到方程式左边,变成3x 11x = 224+29 将2移到方程式右边,变成-211x = 253 +3x = 29-2x = 23 3x = 27x = 9(7)30x-30 = 450 (8)346 = 1+15x解析:将-30移到方程式右边,变成30 解析:将1移到方程式左边,变成-1 30x = 450+30 346-1 = 15x30x = 480 345 = 15xx = 16 两边交换得15x = 345x = 23(9)20+22x = 438 (10)30x-17 = 223解析:将20移到方程式右边,变成-20 解析:将-17移到方程式右边,变成17 22x = 438-20 30x = 223+1722x = 418 30x = 240x = 19 x = 8(11)3+12x = 231 (12)226 = 10x-14解析:将3移到方程式右边,变成-3 解析:将-14移到方程式左边,变成14 12x = 231-3 226+14 = 10x12x = 228 240 = 10xx = 19 两边交换得10x = 240x = 24(13)83 = 8x-5 (14)20x-2 = 198解析:将-5移到方程式左边,变成5 解析:将-2移到方程式右边,变成2 83+5 = 8x 20x = 198+288 = 8x 20x = 200两边交换得8x = 88 x = 10x = 11(15)302 = 2+30x (16)570 = 19+29x解析:将2移到方程式左边,变成-2 解析:将19移到方程式左边,变成-19 302-2 = 30x 570-19 = 29x300 = 30x 551 = 29x两边交换得30x = 300 两边交换得29x = 551x = 10 x = 19(17)8+6x = 80 (18)29+4x = 65解析:将8移到方程式右边,变成-8 解析:将29移到方程式右边,变成-29 6x = 80-8 4x = 65-296x = 72 4x = 36x = 12 x = 9(19)13x-3 = 322 (20)478 = 16x-2解析:将-3移到方程式右边,变成3 解析:将-2移到方程式左边,变成2 13x = 322+3 478+2 = 16x13x = 325 480 = 16xx = 25 两边交换得16x = 480x = 30(21)16+13x = 159 (22)424 = 29x-11解析:将16移到方程式右边,变成-16 解析:将-11移到方程式左边,变成11 13x = 159-16 424+11 = 29x13x = 143 435 = 29xx = 11 两边交换得29x = 435x = 15(23)134 = 26+6x (24)29x-4 = 402解析:将26移到方程式左边,变成-26 解析:将-4移到方程式右边,变成4 134-26 = 6x 29x = 402+4108 = 6x 29x = 406两边交换得6x = 108 x = 14x = 18二、双边未知数(1)25x-7 = 169+9x (2)12x-26 = 19+7x解析:将9x移到方程式左边,变成-9x 解析:将7x移到方程式左边,变成-7x 将-7移到方程式右边,变成7 将-26移到方程式右边,变成2625x-9x = 169+7 12x-7x = 19+2616x = 176 5x = 45x = 11 x = 9(3)16x-14 = 262-7x (4)23+19x = 87+3x解析:将-7x移到方程式左边,变成7x 解析:将3x移到方程式左边,变成-3x 将-14移到方程式右边,变成14 将23移到方程式右边,变成-237x+16x = 262+14 19x-3x = 87-2323x = 276 16x = 64x = 12 x = 4(5)22-4x = 10x-398 (6)18x-17 = 247-4x解析:将-4x移到方程式右边,变成4x 解析:将-4x移到方程式左边,变成4x 将-398移到方程式左边,变成398 将-17移到方程式右边,变成17398+22 = 10x+4x 4x+18x = 247+17420 = 14x 22x = 264两边交换得x = 30 x = 12(7)17x-24 = 242-2x (8)19x-12 = 116+3x解析:将-2x移到方程式左边,变成2x 解析:将3x移到方程式左边,变成-3x 将-24移到方程式右边,变成24 将-12移到方程式右边,变成122x+17x = 242+24 19x-3x = 116+1219x = 266 16x = 128x = 14 x = 8(9)2+16x = 138-x (10)30+25x = 340-6x解析:将-x移到方程式左边,变成1x 解析:将-6x移到方程式左边,变成6x 将2移到方程式右边,变成-2 将30移到方程式右边,变成-301x+16x = 138-2 6x+25x = 340-3017x = 136 31x = 310x = 8 x = 10(11)16x-19 = 152+7x (12)29-29x = 3x-867解析:将7x移到方程式左边,变成-7x 解析:将-29x移到方程式右边,变成29x 将-19移到方程式右边,变成19 将-867移到方程式左边,变成86716x-7x = 152+19 867+29 = 3x+29x9x = 171 896 = 32xx = 19 两边交换得x = 28(13)10+24x = 934-9x (14)22x-29 = 571-3x解析:将-9x移到方程式左边,变成9x 解析:将-3x移到方程式左边,变成3x 将10移到方程式右边,变成-10 将-29移到方程式右边,变成299x+24x = 934-10 3x+22x = 571+2933x = 924 25x = 600x = 28 x = 24(15)16-26x = 4x-44 (16)13x-30 = 6x-23解析:将-26x移到方程式右边,变成26x 解析:将6x移到方程式左边,变成-6x 将-44移到方程式左边,变成44 将-30移到方程式右边,变成3044+16 = 4x+26x 13x-6x = -23+3060 = 30x 7x = 7两边交换得x = 2 x = 1(17)2x-17 = 1-x (18)20x-5 = 76-7x解析:将-x移到方程式左边,变成1x 解析:将-7x移到方程式左边,变成7x 将-17移到方程式右边,变成17 将-5移到方程式右边,变成51x+2x = 1+17 7x+20x = 76+53x = 18 27x = 81x = 6 x = 3(19)13x-21 = 416-6x (20)7+11x = 40+8x解析:将-6x移到方程式左边,变成6x 解析:将8x移到方程式左边,变成-8x 将-21移到方程式右边,变成21 将7移到方程式右边,变成-76x+13x = 416+21 11x-8x = 40-719x = 437 3x = 33x = 23 x = 11(21)15-8x = 5x-180 (22)24+30x = 486+9x解析:将-8x移到方程式右边,变成8x 解析:将9x移到方程式左边,变成-9x 将-180移到方程式左边,变成180 将24移到方程式右边,变成-24180+15 = 5x+8x 30x-9x = 486-24195 = 13x 21x = 462两边交换得x = 15 x = 22(23)10x-16 = 44-2x (24)1-19x = 5x-479解析:将-2x移到方程式左边,变成2x 解析:将-19x移到方程式右边,变成19x 将-16移到方程式右边,变成16 将-479移到方程式左边,变成4792x+10x = 44+16 479+1 = 5x+19x12x = 60 480 = 24xx = 5 两边交换得x = 20小学数学一元一次方程每日训练(4)答案一、单边未知数(1)20+12x = 320 (2)25x-9 = 66解析:将20移到方程式右边,变成-20 解析:将-9移到方程式右边,变成912x = 320-20 25x = 66+912x = 300 25x = 75x = 25 x = 3(3)6+27x = 384 (4)36 = 20+2x解析:将6移到方程式右边,变成-6 解析:将20移到方程式左边,变成-20 27x = 384-6 36-20 = 2x27x = 378 16 = 2xx = 14 两边交换得2x = 16x = 8(5)11x-29 = 224 (6)2 = 29-3x解析:将-29移到方程式右边,变成29 解析:将-3x移到方程式左边,变成3x 11x = 224+29 将2移到方程式右边,变成-211x = 253 +3x = 29-2x = 23 3x = 27x = 9(7)30x-30 = 450 (8)346 = 1+15x解析:将-30移到方程式右边,变成30 解析:将1移到方程式左边,变成-1 30x = 450+30 346-1 = 15x30x = 480 345 = 15xx = 16 两边交换得15x = 345x = 23(9)20+22x = 438 (10)30x-17 = 223解析:将20移到方程式右边,变成-20 解析:将-17移到方程式右边,变成17 22x = 438-20 30x = 223+1722x = 418 30x = 240x = 19 x = 8(11)3+12x = 231 (12)226 = 10x-14解析:将3移到方程式右边,变成-3 解析:将-14移到方程式左边,变成14 12x = 231-3 226+14 = 10x12x = 228 240 = 10xx = 19 两边交换得10x = 240x = 24(13)83 = 8x-5 (14)20x-2 = 198解析:将-5移到方程式左边,变成5 解析:将-2移到方程式右边,变成2 83+5 = 8x 20x = 198+288 = 8x 20x = 200两边交换得8x = 88 x = 10x = 11(15)302 = 2+30x (16)570 = 19+29x解析:将2移到方程式左边,变成-2 解析:将19移到方程式左边,变成-19 302-2 = 30x 570-19 = 29x300 = 30x 551 = 29x两边交换得30x = 300 两边交换得29x = 551x = 10 x = 19(17)8+6x = 80 (18)29+4x = 65解析:将8移到方程式右边,变成-8 解析:将29移到方程式右边,变成-29 6x = 80-8 4x = 65-296x = 72 4x = 36x = 12 x = 9(19)13x-3 = 322 (20)478 = 16x-2解析:将-3移到方程式右边,变成3 解析:将-2移到方程式左边,变成2 13x = 322+3 478+2 = 16x13x = 325 480 = 16xx = 25 两边交换得16x = 480x = 30(21)16+13x = 159 (22)424 = 29x-11解析:将16移到方程式右边,变成-16 解析:将-11移到方程式左边,变成11 13x = 159-16 424+11 = 29x13x = 143 435 = 29xx = 11 两边交换得29x = 435x = 15(23)134 = 26+6x (24)29x-4 = 402解析:将26移到方程式左边,变成-26 解析:将-4移到方程式右边,变成4 134-26 = 6x 29x = 402+4108 = 6x 29x = 406两边交换得6x = 108 x = 14x = 18二、双边未知数(1)25x-7 = 169+9x (2)12x-26 = 19+7x解析:将9x移到方程式左边,变成-9x 解析:将7x移到方程式左边,变成-7x 将-7移到方程式右边,变成7 将-26移到方程式右边,变成2625x-9x = 169+7 12x-7x = 19+2616x = 176 5x = 45x = 11 x = 9(3)16x-14 = 262-7x (4)23+19x = 87+3x解析:将-7x移到方程式左边,变成7x 解析:将3x移到方程式左边,变成-3x 将-14移到方程式右边,变成14 将23移到方程式右边,变成-237x+16x = 262+14 19x-3x = 87-2323x = 276 16x = 64x = 12 x = 4(5)22-4x = 10x-398 (6)18x-17 = 247-4x解析:将-4x移到方程式右边,变成4x 解析:将-4x移到方程式左边,变成4x 将-398移到方程式左边,变成398 将-17移到方程式右边,变成17398+22 = 10x+4x 4x+18x = 247+17420 = 14x 22x = 264两边交换得x = 30 x = 12(7)17x-24 = 242-2x (8)19x-12 = 116+3x解析:将-2x移到方程式左边,变成2x 解析:将3x移到方程式左边,变成-3x 将-24移到方程式右边,变成24 将-12移到方程式右边,变成122x+17x = 242+24 19x-3x = 116+1219x = 266 16x = 128x = 14 x = 8(9)2+16x = 138-x (10)30+25x = 340-6x解析:将-x移到方程式左边,变成1x 解析:将-6x移到方程式左边,变成6x 将2移到方程式右边,变成-2 将30移到方程式右边,变成-301x+16x = 138-2 6x+25x = 340-3017x = 136 31x = 310x = 8 x = 10(11)16x-19 = 152+7x (12)29-29x = 3x-867解析:将7x移到方程式左边,变成-7x 解析:将-29x移到方程式右边,变成29x 将-19移到方程式右边,变成19 将-867移到方程式左边,变成86716x-7x = 152+19 867+29 = 3x+29x9x = 171 896 = 32xx = 19 两边交换得x = 28(13)10+24x = 934-9x (14)22x-29 = 571-3x解析:将-9x移到方程式左边,变成9x 解析:将-3x移到方程式左边,变成3x 将10移到方程式右边,变成-10 将-29移到方程式右边,变成299x+24x = 934-10 3x+22x = 571+2933x = 924 25x = 600x = 28 x = 24(15)16-26x = 4x-44 (16)13x-30 = 6x-23解析:将-26x移到方程式右边,变成26x 解析:将6x移到方程式左边,变成-6x 将-44移到方程式左边,变成44 将-30移到方程式右边,变成3044+16 = 4x+26x 13x-6x = -23+3060 = 30x 7x = 7两边交换得x = 2 x = 1(17)2x-17 = 1-x (18)20x-5 = 76-7x解析:将-x移到方程式左边,变成1x 解析:将-7x移到方程式左边,变成7x 将-17移到方程式右边,变成17 将-5移到方程式右边,变成51x+2x = 1+17 7x+20x = 76+53x = 18 27x = 81x = 6 x = 3(19)13x-21 = 416-6x (20)7+11x = 40+8x解析:将-6x移到方程式左边,变成6x 解析:将8x移到方程式左边,变成-8x 将-21移到方程式右边,变成21 将7移到方程式右边,变成-76x+13x = 416+21 11x-8x = 40-719x = 437 3x = 33x = 23 x = 11(21)15-8x = 5x-180 (22)24+30x = 486+9x解析:将-8x移到方程式右边,变成8x 解析:将9x移到方程式左边,变成-9x 将-180移到方程式左边,变成180 将24移到方程式右边,变成-24180+15 = 5x+8x 30x-9x = 486-24195 = 13x 21x = 462两边交换得x = 15 x = 22(23)10x-16 = 44-2x (24)1-19x = 5x-479解析:将-2x移到方程式左边,变成2x 解析:将-19x移到方程式右边,变成19x 将-16移到方程式右边,变成16 将-479移到方程式左边,变成4792x+10x = 44+16 479+1 = 5x+19x12x = 60 480 = 24xx = 5 两边交换得x = 20小学数学一元一次方程每日训练(5)答案一、单边未知数(1)20+12x = 320 (2)25x-9 = 66解析:将20移到方程式右边,变成-20 解析:将-9移到方程式右边,变成912x = 320-20 25x = 66+912x = 300 25x = 75x = 25 x = 3(3)6+27x = 384 (4)36 = 20+2x解析:将6移到方程式右边,变成-6 解析:将20移到方程式左边,变成-20 27x = 384-6 36-20 = 2x27x = 378 16 = 2xx = 14 两边交换得2x = 16x = 8(5)11x-29 = 224 (6)2 = 29-3x解析:将-29移到方程式右边,变成29 解析:将-3x移到方程式左边,变成3x 11x = 224+29 将2移到方程式右边,变成-211x = 253 +3x = 29-2x = 23 3x = 27x = 9(7)30x-30 = 450 (8)346 = 1+15x解析:将-30移到方程式右边,变成30 解析:将1移到方程式左边,变成-1 30x = 450+30 346-1 = 15x30x = 480 345 = 15xx = 16 两边交换得15x = 345x = 23(9)20+22x = 438 (10)30x-17 = 223解析:将20移到方程式右边,变成-20 解析:将-17移到方程式右边,变成17 22x = 438-20 30x = 223+1722x = 418 30x = 240x = 19 x = 8(11)3+12x = 231 (12)226 = 10x-14解析:将3移到方程式右边,变成-3 解析:将-14移到方程式左边,变成14 12x = 231-3 226+14 = 10x12x = 228 240 = 10xx = 19 两边交换得10x = 240x = 24(13)83 = 8x-5 (14)20x-2 = 198解析:将-5移到方程式左边,变成5 解析:将-2移到方程式右边,变成2 83+5 = 8x 20x = 198+288 = 8x 20x = 200两边交换得8x = 88 x = 10x = 11(15)302 = 2+30x (16)570 = 19+29x解析:将2移到方程式左边,变成-2 解析:将19移到方程式左边,变成-19 302-2 = 30x 570-19 = 29x两边交换得30x = 300 两边交换得29x = 551x = 10 x = 19(17)8+6x = 80 (18)29+4x = 65解析:将8移到方程式右边,变成-8 解析:将29移到方程式右边,变成-29 6x = 80-8 4x = 65-296x = 72 4x = 36x = 12 x = 9(19)13x-3 = 322 (20)478 = 16x-2解析:将-3移到方程式右边,变成3 解析:将-2移到方程式左边,变成2 13x = 322+3 478+2 = 16x13x = 325 480 = 16xx = 25 两边交换得16x = 480x = 30(21)16+13x = 159 (22)424 = 29x-11解析:将16移到方程式右边,变成-16 解析:将-11移到方程式左边,变成11 13x = 159-16 424+11 = 29x13x = 143 435 = 29xx = 11 两边交换得29x = 435x = 15(23)134 = 26+6x (24)29x-4 = 402解析:将26移到方程式左边,变成-26 解析:将-4移到方程式右边,变成4 134-26 = 6x 29x = 402+4108 = 6x 29x = 406两边交换得6x = 108 x = 14x = 18二、双边未知数(1)25x-7 = 169+9x (2)12x-26 = 19+7x解析:将9x移到方程式左边,变成-9x 解析:将7x移到方程式左边,变成-7x 将-7移到方程式右边,变成7 将-26移到方程式右边,变成2625x-9x = 169+7 12x-7x = 19+2616x = 176 5x = 45x = 11 x = 9(3)16x-14 = 262-7x (4)23+19x = 87+3x解析:将-7x移到方程式左边,变成7x 解析:将3x移到方程式左边,变成-3x 将-14移到方程式右边,变成14 将23移到方程式右边,变成-237x+16x = 262+14 19x-3x = 87-23x = 12 x = 4(5)22-4x = 10x-398 (6)18x-17 = 247-4x解析:将-4x移到方程式右边,变成4x 解析:将-4x移到方程式左边,变成4x 将-398移到方程式左边,变成398 将-17移到方程式右边,变成17398+22 = 10x+4x 4x+18x = 247+17420 = 14x 22x = 264两边交换得x = 30 x = 12(7)17x-24 = 242-2x (8)19x-12 = 116+3x解析:将-2x移到方程式左边,变成2x 解析:将3x移到方程式左边,变成-3x 将-24移到方程式右边,变成24 将-12移到方程式右边,变成122x+17x = 242+24 19x-3x = 116+1219x = 266 16x = 128x = 14 x = 8(9)2+16x = 138-x (10)30+25x = 340-6x解析:将-x移到方程式左边,变成1x 解析:将-6x移到方程式左边,变成6x 将2移到方程式右边,变成-2 将30移到方程式右边,变成-301x+16x = 138-2 6x+25x = 340-3017x = 136 31x = 310x = 8 x = 10(11)16x-19 = 152+7x (12)29-29x = 3x-867解析:将7x移到方程式左边,变成-7x 解析:将-29x移到方程式右边,变成29x 将-19移到方程式右边,变成19 将-867移到方程式左边,变成86716x-7x = 152+19 867+29 = 3x+29x9x = 171 896 = 32xx = 19 两边交换得x = 28(13)10+24x = 934-9x (14)22x-29 = 571-3x解析:将-9x移到方程式左边,变成9x 解析:将-3x移到方程式左边,变成3x 将10移到方程式右边,变成-10 将-29移到方程式右边,变成299x+24x = 934-10 3x+22x = 571+2933x = 924 25x = 600x = 28 x = 24(15)16-26x = 4x-44 (16)13x-30 = 6x-23解析:将-26x移到方程式右边,变成26x 解析:将6x移到方程式左边,变成-6x 将-44移到方程式左边,变成44 将-30移到方程式右边,变成3044+16 = 4x+26x 13x-6x = -23+3060 = 30x 7x = 7两边交换得x = 2 x = 1(17)2x-17 = 1-x (18)20x-5 = 76-7x解析:将-x移到方程式左边,变成1x 解析:将-7x移到方程式左边,变成7x 将-17移到方程式右边,变成17 将-5移到方程式右边,变成51x+2x = 1+17 7x+20x = 76+53x = 18 27x = 81x = 6 x = 3(19)13x-21 = 416-6x (20)7+11x = 40+8x解析:将-6x移到方程式左边,变成6x 解析:将8x移到方程式左边,变成-8x 将-21移到方程式右边,变成21 将7移到方程式右边,变成-76x+13x = 416+21 11x-8x = 40-719x = 437 3x = 33x = 23 x = 11(21)15-8x = 5x-180 (22)24+30x = 486+9x解析:将-8x移到方程式右边,变成8x 解析:将9x移到方程式左边,变成-9x 将-180移到方程式左边,变成180 将24移到方程式右边,变成-24180+15 = 5x+8x 30x-9x = 486-24195 = 13x 21x = 462两边交换得x = 15 x = 22(23)10x-16 = 44-2x (24)1-19x = 5x-479解析:将-2x移到方程式左边,变成2x 解析:将-19x移到方程式右边,变成19x 将-16移到方程式右边,变成16 将-479移到方程式左边,变成4792x+10x = 44+16 479+1 = 5x+19x12x = 60 480 = 24xx = 5 两边交换得x = 20。
一元一次方程专项训练
![一元一次方程专项训练](https://img.taocdn.com/s3/m/0a21ea5bfbd6195f312b3169a45177232e60e44e.png)
一元一次方程专项训练
1. 理解方程的概念:方程是含有未知数的等式。
学会识别方程中的未知数和已知数,并理解它们之间的关系。
2. 解方程的步骤:掌握解方程的一般步骤,包括移项、合并同类项、化简等。
通过练习不同类型的方程,熟练掌握这些步骤。
3. 应用题:将一元一次方程应用到实际问题中,如计算速度、时间、距离等。
通过解决实际问题,加深对一元一次方程的理解。
4. 等式性质:熟悉等式的基本性质,如等式两边加上或减去同一个数,等式仍然成立;等式两边乘以或除以同一个非零数,等式仍然成立。
利用这些性质解方程。
5. 方程的变形:学会将复杂的方程进行变形,以便更容易求解。
例如,将分式方程转化为整式方程,将含有括号的方程去括号等。
6. 练习错题:收集自己做错的题目,仔细分析错误原因,并进行有针对性的练习。
通过反复练习错题,加深对知识点的理解。
7. 限时训练:设置时间限制,进行一元一次方程的解题训练。
这样可以提高解题速度和应试能力。
通过以上的专项训练,你将更好地掌握一元一次方程的概念和解题方法。
不断练习和巩固,提高自己的数学能力。
第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上
![第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上](https://img.taocdn.com/s3/m/ef503163590216fc700abb68a98271fe900eaf7a.png)
第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。
人教版数学七年级上册【一元一次方程】专项提升训练
![人教版数学七年级上册【一元一次方程】专项提升训练](https://img.taocdn.com/s3/m/81df900176eeaeaad1f330f1.png)
(1)当 t=4 秒时,P、Q 友好距离
个单位长度,当 t=14 秒时 P、Q 友好距离
个
4
单位长度. (2)当 P、Q 两点友好距离是 2 个单位长度时,t= (3)P、Q 两点相遇时,求运动的时间 t 的值.
秒.
5
参考答案
一.选择题 1.解:∵关于 x 的方程(m﹣3)x|m|﹣2﹣m+3=0 是一元一次方程,
∴
=6,
∴
×100%=90%,
答:第二次乙商品是按原价打 9 折销售. 18.解:(1)根据题中的新定义得:
原式=3×1+4×(﹣1)﹣5 =3﹣4﹣5 =﹣6;
(2)显然 m﹣2<m+3, 利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2, 去括号得:4m﹣8+3m+9﹣5=2,
C、由 y=0,得 y=0,原变形错误,故此选项不符合题意; D、由 x+3=﹣2,得 x=﹣2﹣3,原变形正确,故此选项符合题意. 故选:D. 8.解:A、x=y 的两边都减去 k,该等式一定成立,故本选项不符合题意; B、x=y 的两边都加上 2k,该等式一定成立,故本选项不符合题意; C、x=y 的两边都除以 k,若 k =0 无意义,所以不一定成立,故本选项符合题意; D、x=y 的两边都乘以 k,等式一定成立,故本选项不符合题意. 故选:C.
11
移项合并得:7m=6,
解得:m= .
19.解:(1)∵关于 x 的方程(m+3)xm﹣1+5=0 是一元一次方程, ∴m﹣1=1, 解得:m=2; (2)把 m=2 代入原方程,得:5x+5=0, 解得:x=﹣1,
把 x=﹣1 代入方程
5.2解一元一次方程能力提升训练人教版2024—2025学年七年级上册
![5.2解一元一次方程能力提升训练人教版2024—2025学年七年级上册](https://img.taocdn.com/s3/m/5abb997a2379168884868762caaedd3383c4b597.png)
5.2解一元一次方程能力提升训练人教版2024—2025学年七年级上册 例1:解方程:﹣=1.变式1:解方程:+=4. 解方程:x ﹣=1+.变式2:解方程:,则x = .例2:已知关于x 的一元一次方程的解为x =﹣3,那么关于y 的一元一次方程(y +1)+3=2(y +1)+b 的解为( ) A .y =1B .y =﹣1C .y =﹣3D .y =﹣4变式3:已知关于y 的一元一次方程的解为y =2,那么关于x 的一元一次方程的解为 .例3:正整数x 、y 满足()()255252=--y x ,则2x-3y 等于多少?变式4:已知x,y 是非负整数,且x,y 满足()1212=-+-y x ,则x 和y 的平方和为多少?例4:关于x 的方程 有一个正整数解,求最小正整数a.变式5:已知关于x 的方程x ﹣=﹣1的解是非正整数,则符合条件的所有整数a 的和是( ) A .﹣4B .﹣3C .2D .3变式6:若关于x 的方程的解是正整数,且关于y 的多项式(a ﹣2)y 2+ay ﹣1是二次三项式,那么所有满足条件的整数a 的值之和是( ) A .1B .3C .5D .7变式7:已知:关于x 的方程 仅有正整数解,并且和关于x 的方程 是同解方程,若 ,求这个方程的解。
例5:适合81272=-++a a 的整数a 的值的个数有( ).A .5B .4C . 3D .2变式8:方程055=-+-x x 的解的个数为( ).A .不确定B .无数个C . 2个D .3个 例6:设a ,b ,c ,d 为实数,现规定一种新的运算bc ad dc b a -=,则满足等式112312=+x x的x 的值为: . 14285225+=-x a x ()183-=-b x b a ()183-=-a x a b 0,022≠+≥b a a变式9:设m ,n 是任意的自然数,A 是常数,定义运算4)(÷-⨯=⊗n m A n m , 并且75.032=⊗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程提高训练
一.选择题
1.已知关于x 的方程2x —a —5=0的解是x=—2,则a 的值为( )
2.小亮在解方程
时,由于粗心,错把—x 看成了
+x ,结果解得x=—2,求a 的值为( )
D
3.墨墨在解方程+=时,不小心用橡皮把其中的
一项擦掉了,他只记得那一项是不含x 的,看答案知道这个方程的解是x=5,那么“”处的数应该是(
)
4.关于x 的方程5x —a=0的解比关于y 的方程3y+a=0的解小2,则a 的值是( )
B ﹣
D ﹣
. 6.一元一次方程
的解是( )
7.下列方程变形中,正确的是( ) ,未知数系数化为
( )
9.墨墨在解方程
+
=
时,不小心用橡皮把其中的
一项擦掉了,他只记得那一项是不含x 的,看答案知道这个方程的解是x=5,那么“
”处的数应该是( )
10.如图所示,天平右盘里放了一块砖,左盘里放了半块砖和2kg 的砝码,天平两端正好平衡,那么一块砖的重量是( )
,则
12.下列方程,变形错误的是( ) ﹣).由方程由方程由方程由方程
﹣
9.下列说法中:①若ax=ay,则x=y(其中a是有理数);②若
,则
,则
与﹣a
,则
.在公式
二.解答题(共24小题)
1、解方程
(1)()()
641521668
x x x
+-=--
(2)()()()
32181
y y y
---=-
(3)()()()
22152412
x x x
--+=-+-(4)()()() 32321241
y y y
---=+(5)()()()
72134153210 x x x
-+--++=
(6)5
3
210232213+-
-=-+x x x (7)3
2116110412x
x x --=+++ (8)2
2
33534--+=+-+y y y y
(9)2x-13 - 10x+16 = 2x+1
4 -1
(10)
(11)
(12)
(13)12 (x -3)- 1
3 (2x+1)=1
(14)15 (x+15)=12 - 1
3 (x -7)
(15)()()()3413231121
+-=-+++x x x
(16)5.06
.0x
31x 5.1=--
(17)12
.02
.01.03.01.02.0++=-x x
(18)x 0.7 -0.17-0.2x
0.03 =1
(19)12
.02
.01.03.01.02.0++=-x x
(20)0.40.90.030.025
0.50.032
x x x ++--=
(21)}17
]532141[6181=++⎪⎭
⎫
⎝⎛+-⎩⎨⎧x x
(22)x -12 [x -12 (x -1)]=2(x-1)
3
(22)x 3 +12 (2x
3 -4)=2
(23))
12(43
)]1(31[21+=--x x x
2.阅读以下材料:
在做解方程练习时,学习卷中有一个方程“2y ﹣
■”中的■
没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=3时代数式5(x ﹣1)﹣2(x ﹣2)﹣4的值相同.”
聪明的小聪很快补上了这个常数.同学们,请你们也来补一补这个常数.
3、小明的练习册上有一道方程题,其中一个数字被墨汁污染了,此时为
,他翻看了书后的答案,知道了这个
方程的解是
x=,于是他把被污染的数字求了出来.请你把小明的计算过程写出来.
4.在有理数集合里定义运算“*”,其规则为
a*b=,试求方程
2*(x*3)=1的解.
5当m等于什么数时,代数式m
﹣与代数式7﹣的值相等.
6.(1)当k 取何当值时,代数式的值比的值小1?(2)当k 取何值时,代数式与的值互为相反数?
7.已知方程4x﹣3=5的解与方程4(x﹣a)+9=x的解相同,
多项式﹣a2+b的值比多项式2(b﹣a)的值小6,求多项式a﹣b2的值?8.已知方程与+1有相同的解,求m的值.
9.已知关于x的方程4x+2m=3x+1和3x+2m=6x+1的解相同.求:
(1)m的值;
(2)代数式(m+2)2012•(2m ﹣)2013的值.
10.若x取一切有理数时,(2m+3n)x﹣(3m﹣n)=25x+1均成立,求m、n的值.
11.已知关于x的方程4m(x﹣n)=3(x+2m)有无数多个解,求m,n的值.
12.小华同学在解方程
= ﹣1去分母时,方程右
边的﹣1没有乘3,因而求得方程的解为x=﹣2,请帮小华正确求出方程的解.
13.已知关于x的方程a(2x﹣1)=3x﹣2无解,试求a的值.
14.阅读下题和解题过程:化简|x﹣2|+1﹣2(x﹣2),使结果不含绝对值.
解:当x﹣2≥0时,即x≥2时:
原式=x﹣2+1﹣2x+4=﹣x+3;
当x﹣2<0,即x<2时:
原式=﹣(x﹣2)+1﹣2x+4=﹣3x+7.
这种解题的方法叫“分类讨论法”.
请你用“分类讨论法”解一元一次方程:2(|x+1|﹣3)=x+2.
15.解方程:
(1)|4x﹣1|=7;(2)2|x﹣3|+5=13.(3)|4x﹣2|=3
16
.阅读下列材料并解决有关问题:我们知道:
,现在我们可以用这一结论来解
含有绝对值的方程.例如,解方程|x+1|+|2x﹣3|=8时,可令
x+1=0和2x﹣3=0,分别求得x=﹣1和,(称﹣1和分
别为|x+1|和|2x﹣3|的零点值),在实数范围内,零点值x=﹣1和可将全体实数分成不重复且不遗漏的如下3种情况:
①x<﹣1 ②③,从而解方程|x+1|+|2x﹣
3|=8可分以下三种情况:
①当x<﹣1时,原方程可化为﹣(x+1)﹣(2x﹣3)=8,解得x=﹣2.
②当时,原方程可化为(x+1)﹣(2x﹣3)=8,解得x=﹣4,但不符合,故舍去.
③当时,原方程可化为(x+1)+(2x﹣3)=8,解得.综上所述,方程|x+1|+|2x﹣3|=8的解为,x=﹣2和.
通过以上阅读,请你解决以下问题:
(1)分别求出|x+2|和|3x﹣1|的零点值.
(2)解方程|x+2|+|3x﹣1|=9.
17、我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为:|x﹣y|表示在数轴上数x、y 对应点之间的距离;在解题中,我们常常运用绝对值的几何意义.①解方程|x|=2,容易看出,在数轴上与原点距离为2的点对应的数为±2,即该方程的解为x=±2.
②在方程|x﹣1|=2中,x的值就是数轴上到1的距离为2的点对应的数,显然x=3或x=﹣1.
③在方程|x﹣1|+|x+2|=5中,显然该方程表示数轴上与1和﹣2的距离之和为5 的点对应的x值,在数轴上1和﹣2的距离为3,满足方程的x的对应点在1的右边或﹣2的左边.若x的对应点在1的右边,由图示可知,x=2;同理,若x的对应点在﹣2的左边,可得x=﹣3,所以原方程的解是x=2或x=﹣3.根据上面的阅读材料,解答下列问题:
(1)方程|x|=5的解是_________.
(2)方程|x﹣2|=3的解是_________.
(3)画出图示,解方程|x﹣3|+|x+2|=9.
18.解方程:
(1)…=2 005;
19.解下列方程:
(1)|x+3|﹣|x﹣1|=x+1
(2)|x﹣1|+|x﹣5|=4.
20、右图的数阵是由一些奇数排成的.
(1)右图框中的四个数有什么关系?(设框中第一行第一个数为x)
(2)若这样框出的四个数的和是200,求这四个数.
(3)是否存在这样的四个数,它们的和为420,为什么?
1 3 5 7 9
11 13 15 17 19
………………
91 93 95 97 99
21.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.
(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?。