2015工程随机数学(A)试卷及答案

合集下载

大学工程数学考试题及答案

大学工程数学考试题及答案

大学工程数学考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是微积分的基本定理?A. 积分中值定理B. 洛必达法则C. 牛顿-莱布尼茨公式D. 泰勒级数展开答案:C2. 在概率论中,随机变量X服从二项分布B(n, p),其中n=10,p=0.3,那么E(X)等于多少?A. 2B. 3C. 4D. 5答案:A3. 线性代数中,一个矩阵A可逆的充分必要条件是什么?A. 行列式非零B. 秩等于A的阶数C. A的所有特征值非零D. 所有选项都是答案:D4. 在复数域中,下列哪个表达式表示复数的共轭?A. z + z*B. z - z*C. |z|^2D. z * z*答案:B5. 傅里叶级数在工程数学中的应用之一是?A. 信号处理B. 量子力学C. 统计物理D. 所有选项都是答案:A二、填空题(每题3分,共15分)6. 函数f(x) = sin(x)的一阶导数是_________。

答案:cos(x)7. 矩阵的特征值是_________。

答案:λ8. 拉普拉斯变换的逆变换通常使用_________。

答案:拉普拉斯逆变换9. 随机变量X和Y相互独立,且P(X=x) = 2x,P(Y=y) = 3y,则P(X+Y=4)等于_________。

答案:1/410. 曲线y = x^2在点(1,1)处的切线斜率是_________。

答案:2三、解答题(共75分)11. (15分)证明函数f(x) = e^x在实数域上是单调递增的。

答案:由于f'(x) = e^x > 0对于所有实数x,因此f(x)在实数域上是单调递增的。

12. (20分)解线性方程组:\[\begin{align*}x + 2y &= 5 \\3x - y &= 4\end{align*}\]答案:使用高斯消元法或克拉默法则,解得 \( x = 2, y = 1.5 \)。

13. (20分)计算下列定积分:\[\int_{0}^{1} x^2 dx\]答案:使用基本积分公式,得到 \( \frac{1}{3}x^3 \) 在0到1的积分为 \( \frac{1}{3} \)。

2015工程随机数学(A)试卷及答案

2015工程随机数学(A)试卷及答案

武汉大学2015 —2016学年度第 一 学期《工程随机数学》试卷(A )电子信息 学院 专业 班 学号 姓名 分数 1. (本题10分)将a ,b ,c 三个字母之一输入信道,输出为原字母的概率为p ,而输出为其他一字母的概率都是(1-p)/2,今将字母串aaaa,bbbb,cccc 之一输入信道,三者输入的概率分别为p1, p2, p3 (p1+p2+p3=1),已知输出为abcb ,问输入的是aaaa 的概率是多少?(设信道传输各个字母的工作是相互独立的。

)解: 以A ,B ,C 分别表示事件“输入aaaa ”,“输入bbbb ”,“输入cccc ”,以D 表示事件“输出abcb ”。

由全概率公式和贝叶斯公式有1123()(|)(|)()(|)(|)(|)P AD P D A p P A D P D P D A p P D B p P D C p ==++ 这里 31(|)()2p P D A p -=,221(|)()2p P D B p -=,31(|)()2p P D C p -= 带入上式 31322312311221321()2(|)111()()()222(1)2131p p p P A D p p p p p p p p p p p p p p p pp p p p p-=---++-==--+++- 2. (本题10分)设随机变量~(0,1)X U 。

(1) 求 221Y X =+的概率密度。

(2)求(),()D x D y解:(1)由于2211Y X =+≥,故当1y <时,()0Y f y =. 当1y ≥ 时,2()()(21)(Y X F y P Y y P X y P X F =≤=+≤=≤= 两边关于y 求导得1()0,Y Xyf y felse≥==⎩3.(本题15分)二维随机变量(X,Y)的联合密度函数为2,01(,)0,.cx y x yf x yelse⎧≤≤≤=⎨⎩(1)确定常数c;(2)分析并判断X和Y是否相互独立?(3)求Z X Y=+的概率密度。

工程数学试题及参考答案

工程数学试题及参考答案

工程数学试题B一、单项选择题(每小题3分,本题共21分) 1.设B A ,为n 阶矩阵,则下列等式成立的是( ). (A) BA AB = (B) T T T )(B A AB = (C) T T T )(B A B A +=+ (D) AB AB =T )(2.设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4321432143214321A ,则=)(A r ( ). (A) 0 (B) 1 (C) 3 (D) 43.设B A ,为n 阶矩阵,λ既是A 又是B 的特征值,x 既是A 又是B 的特征向量,则结论( )成立.(A) λ是B A +的特征值 (B) λ是B A -的特征值 (C) x 是B A +的特征向量 (D) λ是AB 的特征值 4.设A B ,为随机事件,下列等式成立的是( ).(A) )()()(B P A P B A P -=- (B) )()()(B P A P B A P +=+ (C) )()()(B P A P B A P +=+ (D) )()()(AB P A P B A P -=- 5.随机事件A B ,相互独立的充分必要条件是( ). (A) )()()(B P A P AB P = (B) )()(A P B A P =(C) 0)(=AB P (D) )()()()(AB P B P A P B A P -+=+ 6.设)(x f 和)(x F 分别是随机变量X 的分布密度函数和分布函数,则对任意b a <,有=≤<)(b X a P ( ). (A)⎰b ax x F d )( (B) ⎰bax x f d )((C) )()(a f b f - (D) )()(b F a F -7. 对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,∑==3131i i X X ,则下列各式中( )不是统计量.(A) X (B)∑=31i iX(C) ∑=-312)(31i i X μ (D) ∑=-312)(31i i X X二、填空题(每小题3分,共15分)1.设B A ,均为3阶矩阵,2=A ,3=B ,则=--1T 3B A .2.线性无关的向量组的部分组一定 .3.已知5.0)(,3.0)(=-=A B P A P ,则=+)(B A P .4.设连续型随机变量X 的密度函数是)(x f ,则=)(X E .5.若参数θ的估计量θˆ满足θθ=)ˆ(E ,则称θˆ为θ的 估计. 三、计算题(每小题10分,共60分)1.设矩阵⎥⎦⎤⎢⎣⎡=3021A ,求A 的特征值与特征向量. 2.线性方程组的增广矩阵为 求此线性方程组的全部解.3.用配方法将二次型322322213216537),,(x x x x x x x x f +++=化为标准型,并求出所作的满秩变换.4.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。

2015年普通高等学校招生全国统一考试数学理试题(陕西卷,含解析)

2015年普通高等学校招生全国统一考试数学理试题(陕西卷,含解析)

故 ABC 的面积为 1 bcsinA = 3 3 .
2
2
考点:1、平行向量的坐标运算;2、正弦定理;3、余弦定理;4、三角形的面积公式.
18.(本小题满分 12 分)如图1 ,在直角梯形 CD 中, D// C, D , 2
C 1, D 2 , 是 D 的中点, 是 C 与 的交点.将 沿 折起到 1 的
因为 A1B=A1E=BC=ED=1, BC ED
所以 B( 2 ,0,0), E(2
2 2
,
0,
0),
A1
(0,
0,
2 ),C(0, 2
2 ,0), 2
得 BC(-
2 , 2 ,0), 22
A1C(0,
2 ,2
2 ) , CD = BE = (2
2,0,0) .
设平面 A1BC 的法向量 n1 = (x1, y1, z1) ,平面 A1CD 的法向量 n2 = (x2, y2, z2 ) ,平面 A1BC 与
又 sin 0 ,从而 tan A = 3 , 由于 0 A ,所以 A
3 (II)解法一:由余弦定理,得 a2 = b2 +c2 - 2bc cos A 而 a = 7 b = 2,
3 得 7 = 4 +c2 - 2c ,即 c2 - 2c - 3 = 0 因为 c > 0 ,所以 c = 3 .
13.中位数 1010 的一组数构成等差数列,其末项为 2015,则该数列的首项为

【答案】 5
【解析】
试题分析:设数列的首项为 a1 ,则 a1 2015 2 1010 2020 ,所以 a1 5 ,故该数列的 首项为 5 ,所以答案应填: 5 .
考点:等差中项.

随机数学作业(答案)全部

随机数学作业(答案)全部

作业1(随机过程的基本概念)1、对于给定的随机过程{(),}X t t T ∈及实数x ,定义随机过程1,()()0,()X t xY t X t x≤⎧=⎨>⎩,t T ∈ 请将{(),}Y t t T ∈的均值函数和相关函数用{(),}X t t T ∈的一维和二维分布函数表示。

解:12,12(())(())()(,)(()())(()()1)((),())(,)t Y s t E Y t P X t x F x R s t E Y s Y t P Y s Y t P X s x X t x F x x =≤=====≤≤=2、设(),Z t X Yt t R =+∀∈,其中随机变量X ,Y 相互独立且都服从2(0,)N σ,证明{(),}Z t t R ∀∈是正态过程,并求其相关函数。

提示:注意到11()1()1n n Z t t X Y Z t t ⎛⎫⎛⎫⎛⎫⎪⎪= ⎪ ⎪⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭即可证得{(),}Z t t R ∀∈是正态过程。

按照相关函数的定义可得2(,)(1)Z R s t st σ=+3、设{(),0}W t t ≥是参数为2σ的Wiener 过程,求下列过程的协方差函数: (1){(),0}W t At t +≥,其中A 为常数; (2){(),0}W t Xt t +≥,其中(0,1)X N ,且与{(),0}W t t ≥相互独立;(3)2{(),0}taW t a ≥,其中a 为正常数; (4)1{(),0}tW t t≥提示:Wiener 过程就是指Brown 运动。

(1)令()(),0Z t W t At t =+≥,由定义求得2(())(,)cov((),())()=min s t Z E Z t AtC s t Z s Z t σ===代入Z(t)的形式{,}具体在求的时候,可以先假设s t ≤,然后再求(下同)。

(2)令()(),0Z t W t Xt t =+≥,由定义求得2(())0(,)cov((),())()=min s t Z E Z t C s t Z s Z t σ===代入Z(t)的形式{,}+st(3)2()(),0tZ t aW t a =≥ 2(())0(,)cov((),())()=min s t Z E Z t C s t Z s Z t σ===代入Z(t)的形式{,}(4)1()(),0Z t tW t t=≥2(())0(,)cov((),())()=min s t Z E Z t C s t Z s Z t σ===代入Z(t)的形式{,}4、设随机过程{(),}X t t T ∈,其中()cos(),X t X t t R ω=∈,且w 为常数,X 服从正态分布,0,1EX DX ==,求过程的一维分布密度和协方差函数。

工程数学练习习题

工程数学练习习题

综合练习一、单项选择题1.设为阶矩阵,则下列等式成立的是().A.B.C.D.正确答案:A2.方程组相容的充分必要条件是(),其中,.A.B.C.D.正确答案:B3.下列命题中不正确的是().A.A与有相同的特征多项式B.若是A的特征值,则的非零解向量必是A对应于的特征向量C.若=0是A的一个特征值,则必有非零解D.A的特征向量的线性组合仍为A的特征向量正确答案:D4.若事件与互斥,则下列等式中正确的是().A.B.C.D.正确答案:A5.设是来自正态总体的样本,则检验假设采用统计量U =().A.B.C.D.正确答案:C6.若是对称矩阵,则等式()成立.A.B。

C.D。

正确答案:B7.( ).A。

B。

C。

D。

正确答案:D8.若()成立,则元线性方程组有唯一解.A。

B。

C。

D。

的行向量线性相关正确答案:A9. 若条件()成立,则随机事件,互为对立事件.A.或B。

或C。

且D。

且正确答案:C10.对来自正态总体(未知)的一个样本,记,则下列各式中()不是统计量.A。

B。

C.D.正确答案: C二、填空题1.设,则的根是.应该填写:1,—1,2,—22.设4元线性方程组AX=B有解且r(A)=1,那么AX=B的相应齐次方程组的基础解系含有个解向量.应该填写:33.设互不相容,且,则.应该填写:04.设随机变量X ~ B(n,p),则E(X)= .应该填写:np5.若样本来自总体,且,则.应该填写:6.设均为3阶方阵,,则.应该填写:87.设为n阶方阵,若存在数λ和非零n维向量,使得,则称为相应于特征值λ的特征向量.应该填写:8.若,则.应该填写:0.39.如果随机变量的期望,,那么.应该填写:2010.不含未知参数的样本函数称为.应该填写:统计量三、计算题1.设矩阵,求.解:由矩阵乘法和转置运算得利用初等行变换得即2.求下列线性方程组的通解.解利用初等行变换,将方程组的增广矩阵化成行简化阶梯形矩阵,即→→→方程组的一般解为:,其中,是自由未知量.令,得方程组的一个特解.方程组的导出组的一般解为:,其中,是自由未知量.令,,得导出组的解向量;令,,得导出组的解向量.所以方程组的通解为:,其中,是任意实数.3.设随机变量X ~ N(3,4).求:(1)P(1< X〈7);(2)使P(X〈a)=0。

工程数学考试试卷B

工程数学考试试卷B

广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程(2015-2016 √ 考试 A 卷 √ 闭卷一、单项选择题(每题2分,共20分)1、假设事件A 与事件B 相互对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C)发生的概率为1 (D)是必然事件 2、掷一枚质地均匀的骰子,则在出现奇数点的条件下出现1点的概率为( )。

(A)1/3 (B)1/2 (C)1/6 (D)2/3 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )。

(A) P (A)=1- P(B)(B) P(AB)=P(A)P(B)(C)P(B A )=1(D)P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)=( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、⎰=z (A)2πi (D)以上都不对 6、复数i e -3对应的点在( ) (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 7、设)2()(2222y xy bx i y axy x z f +++-+=在复平面内处处解析,(其中a,b 为常数)则( ) (A) a=2,b=1 (B) a=1,b=2 (C) a=2,b=-1 (D)a=-1,b=28、单位脉冲函数δ(t)的Fourier 变换为( )(A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)班级: 姓名:学号:试题共密封GDOU-B-11-302Cx 2y,9、设f(t)=u(t)cost ,则f(t)的Lapalace 变换为( )(A)1/(s 2+1) (B) 1/[s(s 2+1)] (C) s/(s 2+1)(D)1/s10、若f(t)的Fourier 变换为F(ω),则f(t+2)的Fourier 变换为( )(A)e 2j ωF(ω) (B)e -2j ωF(ω) (C)F(ω+2)(D)F(ω-2)二、填空题(每空2分,共20分)3、已知随机变量X 的概率密度函数为⎩⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。

2015年四川高考数学试卷试卷及参考答案(理科)word版

2015年四川高考数学试卷试卷及参考答案(理科)word版

绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数 学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共10小题一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则AB ( )A.{x|-1<x<3}B.{x|-1<x<1}C.{x|1<x<2}D.{x|2<x<3} 2.设i 是虚数单位,则复数32i i- =( ) A.3.执行如图所示的程序框图,输出S 的值是( ) A.32 B.3212D.124.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A. cos(2)2y x π=+B. sin(2)2y x π=+C. sin 2cos 2y x x =+ D sin cos y x x =+5.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(A) (B ) (C )6 (D )6.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( ) (A )144个 (B )120个 (C )96个 (D )72个7.设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则.AM NM =( )(A )20 (B )15 (C )9 (D )6 8.设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 9.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )81210.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2015年普通高等学校招生全国统一考试数学试题及答案(全word可编辑版,全解全析)

2015年普通高等学校招生全国统一考试数学试题及答案(全word可编辑版,全解全析)

2015年普通高等学校招生全国统一考试课标全国Ⅰ理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,理1)设复数z满足1+z=i,则|z|=()A.1B.2C.3D.2答案:A解析:∵1+z=i,∴z=i−1=(i−1)(−i+1)=i,∴|z|=1.2.(2015课标全国Ⅰ,理2)sin 20°cos 10°-cos 160°sin 10°=()A.-32B.32C.-12D.12答案:D解析:sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(10°+20°)=sin30°=12.3.(2015课标全国Ⅰ,理3)设命题p:∃n∈N,n2>2n,则p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案:C解析:∵p:∃n∈N,n2>2n,∴p:∀n∈N,n2≤2n.故选C.4.(2015课标全国Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案:A解析:由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C320.62(1-0.6)+C330.63=0.648.5.(2015课标全国Ⅰ,理5)已知M(x0,y0)是双曲线C:x 22-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是()A. −3,3B. −3,3C. −22,22D. −23,23答案:A解析:由条件知F1(-3,0),F2(3,0),∴MF1=(-3-x0,-y0),MF2=(3-x0,-y0),∴MF1·MF2=x02+y02-3<0.①又∵x022−y02=1,∴x02=2y02+2.代入①得y02<13,∴-3<y0<3. 6.(2015课标全国Ⅰ,理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 答案:B解析:设底面圆半径为R ,米堆高为h.∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π.∴体积V=1×1·πR 2h=1×π× 16 2×5.∵π≈3,∴V ≈3209(尺3). ∴堆放的米约为3209×1.62≈22(斛).7.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,BC =3CD ,则( )A .AD =-1AB +4AC B .AD =1AB −4AC C .AD =43AB +13AC D .AD=43AB −13AC 答案:A解析:如图:∵AD =AB +BD,BC =3CD , ∴AD =AB +43BC =AB +43(AC −AB )=-13AB +43AC. 8.(2015课标全国Ⅰ,理8)函数f (x )=cos(ωx+φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A . kπ−1,kπ+3 ,k ∈Z B . 2kπ−1,2kπ+3 ,k ∈Z C . k −14,k +34 ,k ∈Z D . 2k −1,2k +3 ,k ∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2× 54−14=2,所以2πω=2,解得ω=π. 所以f (x )=cos(πx+φ).由图像可知,当x=12 14+54=34时,f (x )取得最小值,即f 3 =cos3π+φ =-1,解得3π4+φ=2k π+π(k ∈Z ),解得φ=2k π+π4(k ∈Z ).令k=0,得φ=π,所以f (x )=cos πx +π.令2k π≤πx+π≤2k π+π(k ∈Z ),解得2k-14≤x ≤2k+34(k ∈Z ).所以函数f (x )=cos πx +π4的单调递减区间为 2k−14,2k +34(k ∈Z ).结合选项知应选D .9.(2015课标全国Ⅰ,理9)执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .8答案:C解析:∵S=1,n=0,m=1,t=0.01,∴S=S-m=12,m=m 2=14,n=n+1=1,S>0.01,∴S=14,m=18,n=2,S>0.01,∴S=1,m=1,n=3,S>0.01,∴S=1,m=1,n=4,S>0.01,∴S=132,m=164,n=5,S>0.01,∴S=1,m=1,n=6,S>0.01,∴S=1,m=1,n=7,S<0.01,∴n=7.10.(2015课标全国Ⅰ,理10)(x 2+x+y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案:C解析:由于(x 2+x+y )5=[(x 2+x )+y ]5,其展开式的通项为T r+1=C 5r (x 2+x )5-r y r (r=0,1,2,…,5),因此只有当r=2,即T 3=C 52(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i+1=C 3i (x 2)3-i ·x i =C 3i x 6-i(i=0,1,2,3),令6-i=5,得i=1,则(x 2+x )3的展开式中x 5项的系数是C 31=3,故(x 2+x+y )5的展开式中,x 5y 2的系数是C 52·3=10×3=30. 11.(2015课标全国Ⅰ,理11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件知,该几何体是由一个圆柱被过圆柱底面圆直径的平面所截剩下的半个圆柱及一个半球拼接而成,其表面积是一个矩形面积、两个半圆面积、圆柱侧面积的一半、球表面积的一半相加所得,所以表面积为S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,理12)设函数f (x )=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A. −32e ,1B. −32e,34C.32e ,34D.32e,1答案:D解析:设g(x)=e x(2x-1),h(x)=a(x-1),则不等式f(x)<0即为g(x)<h(x).因为g'(x)=e x(2x-1)+2e x=e x(2x+1),当x<-12时,g'(x)<0,函数g(x)单调递减;当x>-12时,g'(x)>0,函数g(x)单调递增.所以g(x)的最小值为g −1.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=e x(2x-1)与h(x)=a(x-1)的大致图像.显然,当a≤0时,满足不等式g(x)<h(x)的整数有无数多个.函数g(x)=e x(2x-1)的图像与y轴的交点为A(0,-1),与x轴的交点为D1,0.取点C −1,−3e.由图可知,不等式g(x)<h(x)只有一个整数解时,须满足k PC≤a<k PA.而k PC=0−−3e=3,k PA=0−(−1)=1,所以32e ≤a<1.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,理13)若函数f(x)=x ln(x+ a+x2)为偶函数,则a=.答案:1解析:∵f(x)是偶函数,∴f(-1)=f(1).又f(-1)=-ln(-1+a+1)=ln a+1+1a,f(1)=ln(1+a+1),因此ln(a+1+1)-ln a=ln(a+1+1),于是ln a=0,∴a=1.14.(2015课标全国Ⅰ,理14)一个圆经过椭圆x 2+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案: x−32+y2=25解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以(a−0)2+(0−2)2=4-a,解得a=32,故圆心为32,0,此时半径r=4-32=52,因此该圆的标准方程是 x−322+y2=254.15.(2015课标全国Ⅰ,理15)若x,y满足约束条件x−1≥0,x−y≤0,x+y−4≤0,则yx的最大值为.答案:3解析:画出约束条件对应的平面区域(如图),点A为(1,3),要使y最大,则y−0最大,即过点(x,y),(0,0)两点的直线斜率最大,由图形知当该直线过点A时,yx max =3−01−0=3.16.(2015课标全国Ⅰ,理16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 答案:( 6− 2, 6+ 2) 解析:如图.作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°. 在△CBE 中,由正弦定理得,EB= − 延长CD 交BA 的延长线于F ,则∠F=30°. 在△BCF 中,由正弦定理得,BF= 6+ 2, 所以AB 的取值范围为( 6− 2, 6+ 2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,理17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a n 2+2a n =4S n +3,可知a n +12+2a n+1=4S n+1+3.可得a n +12−a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n +12−a n 2=(a n+1+a n )(a n+1-a n ). 由于a n >0,可得a n+1-a n =2.又a 12+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1. 6分(2)由a n =2n+1可知b n =1n n +1=1=11−1.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12 13−15 + 15−17 +⋯+12n +1−12n +3=n . 12分18.(本小题满分12分)(2015课标全国Ⅰ,理18)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. 解:(1)连结BD ,设BD ∩AC=G ,连结EG ,FG ,EF.在菱形ABCD 中,不妨设GB=1. 由∠ABC=120°,可得AG=GC=由BE ⊥平面ABCD ,AB=BC ,可知AE=EC. 又AE ⊥EC ,所以EG= 3,且EG ⊥AC. 在Rt △EBG 中,可得BE= 2,故DF= 2. 在Rt △FDG 中,可得FG= 62.在直角梯形BDFE 中,由BD=2,BE= 2,DF= 22,可得EF=3 22. 从而EG 2+FG 2=EF 2,所以EG ⊥FG. 又AC ∩FG=G ,可得EG ⊥平面AFC.因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC. 6分(2)如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴、y 轴正方向,|GB |为单位长,建立空间直角坐标系G-xyz.由(1)可得A (0,- E (1,0, F −1,0,2,C (0, 3,0),所以AE =(1, 3, 2),CF= −1,− 3, 2 . 10分故cos <AE ,CF >=AE ·CF|AE ||CF|=- 33. 所以直线AE 与直线CF 所成角的余弦值为 3.12分19.(本小题满分12分)(2015课标全国Ⅰ,理19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i = x i ,w =18∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i −u )(v i −v )∑i =1n(u i −u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i −w )(y i −y )∑i =18(w i −w )2=108.81.6=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.12分20.(本小题满分12分)(2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线C :y=x 24与直线l :y=kx+a (a>0)交于M ,N两点.(1)当k=0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 解:(1)由题设可得M (2 a ,a ),N (-2 a ,a ),或M (-2 a ,a ),N (2 a ,a ).又y'=x 2,故y=x 24在x=2 a 处的导数值为 a ,C 在点(2 a ,a )处的切线方程为y-a= a (x-2 a ),即 a x-y-a=0. y=x 2在x=-2 a 处的导数值为- a ,C 在点(-2 a ,a )处的切线方程为y-a=- a (x+2 a ),即 a x+y+a=0. 故所求切线方程为 a x-y-a=0和 a x+y+a=0. 5分(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y=kx+a 代入C 的方程得x 2-4kx-4a=0. 故x 1+x 2=4k ,x 1x 2=-4a.从而k 1+k 2=y 1−b x 1+y 2−bx 2=2kx 1x 2+(a−b )(x 1+x 2)x 1x 2=k (a +b )a.当b=-a 时,有k 1+k 2=0,则直线PM 的倾角与直线PN 的倾角互补,故∠OPM=∠OPN ,所以点P (0,-a )符合题意. 12分21.(本小题满分12分)(2015课标全国Ⅰ,理21)已知函数f (x )=x 3+ax+1,g (x )=-ln x.(1)当a 为何值时,x 轴为曲线y=f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x>0),讨论h (x )零点的个数. 解:(1)设曲线y=f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f'(x 0)=0,即 x 03+ax 0+1=0,3x 02+a =0.解得x 0=1,a=-3.因此,当a=-34时,x 轴为曲线y=f (x )的切线. 5分(2)当x ∈(1,+∞)时,g (x )=-ln x<0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)无零点. 当x=1时,若a ≥-54,则f (1)=a+54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x=1是h (x )的零点;若a<-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x=1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x>0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f'(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a+54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a<0,则f (x )在 0, −3单调递减,在 −3,1 单调递增,故在(0,1)中,当x= −3时,f (x )取得最小值,最小值为f −a =2a −a +1. ①若f −a >0,即-3<a<0,f (x )在(0,1)无零点; ②若f −a =0,即a=-3,则f (x )在(0,1)有唯一零点;③若f −3 <0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.10分综上,当a>-3或a<-5时,h (x )有一个零点;当a=-3或a=-5时,h (x )有两个零点;当-5<a<-3时,h (x )有三个零点. 12分请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)(2015课标全国Ⅰ,理22)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(1)若D为AC的中点,证明:DE是☉O的切线;(2)若OA=3CE,求∠ACB的大小.解:(1)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.5分(2)设CE=1,AE=x,由已知得AB=2,BE=2.由射影定理可得,AE2=CE·BE,所以x2=12−x2,即x4+x2-12=0.可得x=3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,理23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.5分(2)将θ=π4代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN|= 2.由于C2的半径为1,所以△C2MN的面积为1.10分24.(本小题满分10分)(2015课标全国Ⅰ,理24)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.解:(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为 x2<x<2.5分(2)由题设可得,f(x)=x−1−2a,x<−1,3x+1−2a,−1≤x≤a,−x+1+2a,x>a.所以函数f(x)的图像与x轴围成的三角形的三个顶点分别为A2a−13,0,B(2a+1,0),C(a,a+1),△ABC的面积为2(a+1)2.由题设得23(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).10分。

工程数学练习题(附答案版)

工程数学练习题(附答案版)

(一)一、单项选择题(每小题2分,共12分)1. 设四阶行列式bccad c d b b c a ddc b aD =,则=+++41312111A A A A ( ).A.abcdB.0C.2)(abcd D.4)(abcd2. 设(),0ij m n A a Ax ⨯==仅有零解,则 ( )(A) A 的行向量组线性无关; (B) A 的行向量组线性相关; (C) A 的列向量组线性无关; (D) A 的列向量组线性相关;3. 设8.0)(=A P ,8.0)|(=B A P ,7.0)(=B P ,则下列结论正确的是( ).A.事件A 与B 互不相容;B.B A ⊂;C.事件A 与B 互相独立;D.)()()(B P A P B A P +=4. 从一副52张的扑克牌中任意抽5张,其中没有K 字牌的概率为( ).A.552548C CB.5248 C.554855C D.5555485. 复数)5sin 5(cos5ππi z --=的三角表示式为( )A .)54sin 54(cos 5ππi +-B .)54sin 54(cos 5ππi -C .)54sin 54(cos 5ππi +D .)54sin 54(cos 5ππi --6. 设C 为正向圆周|z+1|=2,n 为正整数,则积分⎰+-c n i z dz1)(等于( )A .1;B .2πi ;C .0;D .iπ21 二、填空题(每空3分,共18分) 1. 设A 、B 均为n 阶方阵,且3||,2||==B A ,则=-|2|1BA .2. 设向量组()()()1231,1,1,1,2,1,2,3,TTTt α=α=α=则当t = 时,123,,ααα线性相关.3. 甲、乙向同一目标射击,甲、乙分别击中目标概率为0.8, 0.4,则目标被击中的概率为4. 已知()1,()3E X D X =-=,则23(2)E X ⎡⎤-=⎣⎦______.5. 设)(t f 是定义在实数域上的有界函数,且在0=t 处连续,则=⎰+∞∞-dt t f t )()(δ .6. 函数)2)(1(15)(-+-=s s s s F 的Laplace 逆变换为()f t = .三、计算题(每小题10分,共70分)1. 设423110123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 而B 满足关系式2AB A B =+,试求矩阵B .2.当λ为何值时,⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x 无解,有解,并在有解时求出其解.3、设在15只同类型的零件中有两只是次品,在其中取3次,每次任取一只,作不放回抽样,以 X 表示取出次品的只数,求X 的分布律。

工程数学考试试卷A

工程数学考试试卷A

广东海洋大学2015—2016学年第一学期 《工程数学》课程考试试题 课程号: (2015-2016-1)-16621001x2 -163006-1√ 考试 √ A 卷 √ 闭卷 □ 考查 B 卷 □ 开卷(每题2分,共20分)1、事件表达式B A ⋂的意思是( ) (A)事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C)事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 2、投掷两个均匀的骰子,已知点数之和是偶数,则点数之和为6的概率为( ) (A)5/18 (B)13 (C)12 (D)以上都不对 3、设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则( ) 。

(A) P (A)=1- P(B) (B) P(AB)=P(A)P(B) (C)P(B A )=1 (D) P(AB )=1 4、设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= ( ) (A)1/6 (B) 1/2 (C) 1 (D)2 5、=⎰=-12z ( ) (A)2πi (B)0 (C)4πi (D)以上都不对 6、下列说法正确的是( ) (A)如果)(0z f '存在,则f (z)在z 0处解析 (B)如果u (x,y)和v(x,y)在区域D 内可微,则),(),()(y x iv y x u z f +=在区域D 内解析 (C)如果f (z)在区域D 内解析,则)(z f 在区域D 内一定不解析 (D)如果f (z)在区域D 内处处可导,则f (z)在区域D 内解析 7、解析函数f(z)的实部为u=e x siny ,根据柯西-黎曼方程求出其虚部为( )。

(A) e x cosy+C (B) -e x cosy+C (C) e -x cosy+C (D)e x siny+C 8、单位脉冲函数δ(t)的Fourier 变换为( ) (A) π[δ(ω+ω0)+ δ(ω-ω0)] (B)1(C) πj[δ(ω+ω0)+ δ(ω-ω0)] (D)1/(j ω)+ πδ(ω)9、设f(t)=cosat(其中a 为常数),则f(t)的Lapalace 变换为( )(A)1/(s 2+a) (B) 1/(s 2+a 2) (C) s/(s 2+a 2) (D)1/(s+a)10、若f(t)的Fourier 变换为F(ω),则f (t+1)的Fourier 变换为( ) 班级:姓名: 学号: 试题共 2页加白纸1张密封线GDOU-B-11-302(A)e j ωF(ω) (B)e -j ωF(ω) (C)F(ω+1) (D)F(ω-1)3、已知随机变量X 的概率密度函数为⎩⎨⎧≤≤+=其它,020,1)(x kx x f ,则k= 。

2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=i,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.2【考点】A8:复数的模.【专题】11:计算题;5N:数系的扩充和复数.【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【考点】GP:两角和与差的三角函数.【专题】56:三角函数的求值.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【考点】2J:命题的否定.【专题】5L:简易逻辑.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.【考点】96:平行向量(共线).【专题】5A:平面向量及应用.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【考点】HA:余弦函数的单调性.【专题】57:三角函数的图像与性质.【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8【考点】L!:由三视图求面积、体积.【专题】5Q:立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】2:创新题型;53:导数的综合应用.【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g (0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=1.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解.【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴ln(+x)(﹣x)=0,∴lna=0,∴a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)若x,y满足约束条件.则的最大值为3.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【考点】HT:三角形中的几何计算.【专题】15:综合题;2:创新题型;58:解三角形.【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【考点】8E:数列的求和;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【考点】LM:异面直线及其所成的角;LY:平面与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF==,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD=•=•=1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i ﹣)(w i ﹣)(y i ﹣)46.6563 6.8289.8 1.61469108.8表中w i =i ,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【考点】BK:线性回归方程.【专题】5I:概率与统计.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【考点】KH:直线与圆锥曲线的综合.【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】2:创新题型;53:导数的综合应用.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:a<时,函数h(x)有一个零点.当时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【考点】N9:圆的切线的判定定理的证明.【专题】5B:直线与圆.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2015概率论与数理统计(A)参考答案

2015概率论与数理统计(A)参考答案

2014上学期概率论与数理统计(A)参考答案一、填空题(每小题3 分,共15分) 1. 0.18 2.8273. 54. 17(0.68)255. 0.106 二、单项选择题(每小题3 分,共15分)1. A2. B3. C4. D5. D 三、(12分)解:(1) 设{}{}2A B ==从甲盒中取得一个白球,从乙盒中取得个黑球,41(),(),55P A P A == 1分22322266417()()()()()0.093.5575C C P B P A P B A P A P B A C C =+=⨯+⨯==3分 5分 6分(2) 222644()()5475()()77575C P A P B A C P A B P B ⨯====,9分 11分 12分四、(12分) 解:(1) ()()xF x f x dx -∞=⎰ 1分当1x <时, ()0,F x = 2分 当2x >时, ()1,F x = 3分 当02x ≤≤时, 2112()2(1)24,xF x dx x x x=-=+-⎰ 4分 综上所述, 0,1,2()24,12,1, 2.x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩(2) (法一) 3221.51.512(1.53)()2(1).3P X f x dx dx x <<==-=⎰⎰ 5分 7分 8分或 ( 法二) 22(1.53)(3)(1.5)1(2 1.54).1.53P X F F <<=-=-⨯+-= 6分 7分 8分(3) 2211()()2(1)32l n 2,E X x f x d xx d x x+∞-∞==-=-⎰⎰ 9分22222118()()2(1),3E X x f x dx x dx x +∞-∞==-=⎰⎰ 10分 2222819()()[()](32ln 2)12ln 24(ln 2).33D X E X E X =-=--=-- 12分五、(12分) 解:(1)2分4分(2) 因为1155(0,0)(0)(0)33618P X YP X P Y ===≠=⋅==⨯= 6分所以 ,X Y 不独立. 8分 (3)10分 12分六、(10分) 解: (法一) 设随机变量Z 的分布函数为()Z F z ,000,0,()()(,)6,01,1, 1.zz x Z x y zz F z P X Y z f x y dxdy dx xdy z z -+≤<⎧⎪⎪=+≤==≤≤⎨⎪>⎪⎩⎰⎰⎰⎰3分 7分30,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩8分 故 23,01,()0,.Z z z f z ⎧≤≤=⎨⎩其他 10分 或(法二) ()(,)Z f z f x z x dx +∞-∞=-⎰, 4分当0z < 或 1z > 时,()0,Z f z = 6分 当 01z ≤≤ 时,20()63.zZ f z xdx z ==⎰ 10分七、(12分)解: (1) 因为 (),E X λ= 2分 由 ()X E X λ== 5分得参数λ的矩估计为 ˆ;X λ= 6分 (2) 似然函数为 11=1e ()niii x x nnni i ii e L x x λλλλλ=--=∑==!!∏∏ 8+1分取对数 11ln ()()ln ln n ni i i i L x n x λλλ===--!∑∑ 10分两边对λ求导, 并令其为零1l n ()0nii x d L n d λλλ==-=∑ 11分 解得参数λ的极大似然估计为 ˆ.X λ= 12分 八、(12分)解: (1) 总体均值μ的置信区间为:22((1),(1))x n x n αα-- 3分20.226(1)14.95 2.3114.776,3x n α-=-⨯= 4分20.226(1)14.95 2.3115.124,3x n α-=+⨯= 5分总体均值μ在置信概率为0.95时的置信区间为: (14.776,15.124). 6分 (2) 提出假设 01:0.2,:0.2.H H σσ≤> 8分取检验统计量 2220(1)n S χσ-=, 9分拒绝域为 {}{}22220.05(1)(8)V n αχχχχ=>-=> 10分220.05280.05110.2(8)15.50.2χχ⨯==<= 11分 故接受原假设0H . 12分。

重庆市2015年初中学业水平A测试数学含答案

重庆市2015年初中学业水平A测试数学含答案

重庆市2015年初中毕业暨高中招生考试·数学(A卷) 本卷难度:适中创新题:24易错题:21较难题:25、26(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a),对称轴为x=-b2a.一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在对应的括号内.1. 在-4,0,-1,3这四个数中,最大的数是()A. -4B. 0C. -1D. 32. 下列图形是轴对称图形的是(A)3. 化简12的结果是()A. 4 3B. 2 3C. 3 2D. 2 64. 计算(a2b)3的结果是()A. a6b3B. a2b3C. a5b3D. a6b5. 下列调查中,最适合用普查方式的是()A. 调查一批电视机的使用寿命情况B. 调查某中学九年级一班学生的视力情况C. 调查重庆市初中学生每天锻炼所用的时间情况D. 调查重庆市初中学生利用网络媒体自主学习的情况6. 如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为()A. 65°B. 55°C. 45°D. 35°第6题图第9题图7. 在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为()A. 220B. 218C. 216D. 2098. 一元二次方程x2-2x=0的根是()A. x1=0,x2=-2B. x1=1,x2=2C. x1=1,x2=-2D. x1=0,x2=29. 如图,AB是⊙O直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为()A. 40°B. 50°C. 60°D. 20°第10题图10. 今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,下列说法错误..的是(C)A. 小明中途休息用了20分钟B. 小明休息前爬山的平均速度为每分钟70米C. 小明在上述过程中所走的路程为6600米D. 小明休息前爬山的平均速度大于休息后爬山的平均速度11. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为(B)第11题图A. 21B. 24C. 27D. 30第12题图12. 如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=3x的图象经过A,B两点,则菱形ABCD的面积为()A. 2B. 4C. 2 2D. 4 2二、填空题(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在对应的横线上.13. 我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为.14. 计算:20150-|2|=.15. 已知△ABC∽△DEF,△ABC与△DEF的相似比为4∶1,则△ABC与△DEF对应边上的高之比为.16. 如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4 2.以A为圆心,AC长为半径作弧,交AB 于点D,则图中阴影部分的面积是.(结果保留π)第16题图 第18题图17. 从-3,-2,-1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组⎩⎪⎨⎪⎧2x +3<43x -1>-11的解,又在函数y =12x 2+2x的自变量取值范围内的概率是 .18. 如图,在矩形ABCD 中,AB =46,AD =10.连接BD ,∠DBC 的角平分线BE 交DC 于点E .现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC ′E ′.当射线BE ′和射线BC ′都与线段AD 相交时,设交点分别为F ,G .若△BFD 为等腰三角形,则线段DG 长为 .三、解答题(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤.19. 解方程组⎩⎪⎨⎪⎧y =2x -4 ①3x +y =1 ②.20. 如图,在△ABD 和△FEC 中,点B ,C ,D ,E 在同一直线上,且AB =FE ,BC =DE ,∠B =∠E . 求证:∠ADB =∠FCE .第20题图四、解答题(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21. 计算:(1)y (2x -y )+(x +y )2;(2)(y -1-8y +1)÷y 2-6y +9y 2+y .22. 为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是25,扇形统计图中B类所对应扇形圆心角的度数为72度,请补全条形统计图;(2)为进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.第22题图23. 如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.24. 某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH的坡度i=1∶1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)第24题图五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25. 如图①,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点.过点E作AE 的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点.DH⊥AC,垂足为H,连接EF,HF.(1)如图①,若点H是AC的中点,AC=23,求AB,BD的长;(2)如图①,求证:HF=EF;(3)如图②,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.第25题图26. 如图①,在平面直角坐标系中,抛物线y =-34x 2+3x +33交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点W ,顶点为C ,抛物线的对称轴与x 轴的交点为D .(1)求直线BC 的解析式;(2)点E (m ,0),F (m +2,0)为x 轴上两点,其中2<m <4.EE ′,FF ′分别垂直于x 轴,交抛物线于点E ′,F ′,交BC 于点M ,N .当ME ′+NF ′的值最大时,在y 轴上找一点R ,使|RF ′-RE ′|的值最大.请求出R 点的坐标及|RF ′-RE ′|的最大值;(3)如图②,已知x 轴上一点P (92,0),现以P 为顶点,23为边长在x 轴上方作等边三角形QPG ,使GP ⊥x 轴.现将△QPG 沿P A 方向以每秒1个单位长度的速度平移,当点P 到达点A 时停止.记平移后的△QPG 为△Q ′P ′G ′,设△Q ′P ′G ′与△ADC 的重叠部分面积为S .当点Q ′到x 轴的距离与点Q ′到直线AW 的距离相等时,求S 的值.第26题图重庆市2015年初中毕业暨高中招生考试(A卷)1. D【解析】本题考查实数的大小比较.根据正数大于0和一切负数可得上述四个数中3最大.备考指导:一组数里有正数、0、负数,求最大(小)的数,最大的数直接在正数中选;最小的数直接在负数中选,然后再比较正数或负数的大小.2. A【解析】根据在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,则这个图形叫轴对称图形,可得3. B 【解析】本题考查二次根式的性质.原式=4×3=4×3=2 3.备考指导:掌握二次根式的性质:1.(a)2=a(a≥0);2.a 2=|a|=⎩⎪⎨⎪⎧a (a≥0)-a (a <0);3.ab =a·b (a≥0,b≥0);4.a b =ab(a≥0,b >0). 4. A 【解析】本题考查积的乘方.根据运算法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘,得原式=a 2×3·b 3=a 6b 3.5. B 【解析】本题考查调查方式的选取.× ×备考指导:选择普查还是抽样调查要根据所要考察的对象的特征灵活选用.一般来说,对于具有破坏性的调查,无法进行普查或普查的意义不大时,应选择抽样调查;对于精确度要求高或解决生产生活中有关安全隐患的问题时往往选用普查.6. C 【解析】∵AB ∥CD ,∠1=135°,∴∠2=180°-∠1=180°-135°=45°.备考指导:对于利用平行线性质求角度:先观察要求角与已知角的位置关系,再选择合适的角度进行等量代换.另外在解题时注意平角、直角及三角形内角和、内外角关系等知识的运用.第6题解图7. C【解析】∵将这组数据按从小到大的顺序排列为198,209,216,220,230,处于最中间位置的数据是216,∴中位数是216.备考指导:中位数反映的是一组数据的“中等水平”,将数据按从大到小或从小到大排好顺序以后,若为偶数个数,中位数就是最中间的两个数的平均数;若为奇数个数,则最中间的数是这组数据的中位数.8. D【解析】∵将原方程左边因式分解,得x(x-2)=0,即x=0或x-2=0,∴x1=0,x2=2.备考指导:一元二次方程的常见解法及适用情形:9. B【解析】∵∠AOC=80°,∴∠B=12∠AOC=40°.∵AB是⊙O的直径,AE为⊙O的切线,∴AB⊥AD,∴∠ADB=90°-40°=50°.第9题解图备考指导:利用圆周角定理解决求角度的问题时,一般找同弧(或等弧)所对的圆周角实现等角之间的转换,或寻找直径所对的圆周角,构造直角三角形,运用直角三角形的性质求解;遇到切线时也是类似的思路,即连接圆心与切点,构造直角三角形和等腰三角形来帮助解题.10. C 【解析】本题考查函数图象的分析与判断.图象由三段组成,0~40分钟时,表示小明爬山休息之前的过程,这40分钟内小明爬山走的路程为2800米,所以速度为280040=70米/分钟;40~60分钟时,表示小明爬山中途休息了20分钟;60~100分钟时,表示小明休息后爬到山顶的过程,这里40分钟内小明爬山走的路程为3800-2800=1000米,所以速度为100040=25米/分钟,70米/分钟>25米/分钟,所以,选项A 、B 、D 都是正确的.小明在整个爬山过程中,所走的总路程为3800米,不是6600米,所以C 选项错误.备考指导:分析函数图象判断结论正误的方法:分清图象的横纵坐标代表的量及函数中自变量的取值范围,同时也要注意:①分段函数要分段讨论;②转折点:判断函数图象的倾斜方向或增减性发生变化的关键点;③平行线:函数值随自变量的变化保持不变,再结合题干推导出实际问题的运动过程,从而判断结论的正误.11. B 【解析】第①个图形有6个小圆圈;第②个图形有6+3=9个小圆圈;第③个图形有6+3×2=12个小圆圈;…,按照这个规律,第⑦个图形一共有6+3×6=24个小圆圈.第11题解图备考指导:解图形规律探索题的方法:第一步:写序号:记每组图形的序数为“1,2,3,…,n”;第二步:数图形个数:在图形数量变化时,要记下每组图形的表示个数;第三步:寻找图形数量与序数n的关系——图示法:针对寻找第n个图形表示的数量时,先将后一个图形的表示个数与前一个图形的个数进行比对,通常作差(商)来观察是否有恒定量的变化,然后按照定量变化推导出具体某个图形的个数;如本题第1个数字为6,第2个数字为9,第3个数字为12,可进行图示法:可以看出前后两个数字之间的差值为3;然后再根据其每组数字本身特征逆推其规律,从而寻找出第n 个图形的表示个数.12. D 【解析】∵当y =3时,即3=3x ,解得x =1,∴A(1,3).∵当y =1时,即1=3x ,解得x =3,∴B(3,1).过点A 作AE ∥y 轴交CB 的延长线于E 点,则AE =3-1=2,BE =3-1=2,∴AB =22+22=22,∴在菱形ABCD 中,BC =AB =22,∴S 菱形ABCD =BC×AE =22×2=4 2.第12题解图难点突破:要求菱形面积,关键是要求出菱形的边长及高,可先作出高,利用反比例函数解析式求出A 、B 点坐标,进而计算出菱形的高和边长.13. 3.7×104 【解析】将一个大数表示成a×10n 的形式,其中1≤a <10,故a =3.7,n 等于原数的整数位数减1,因为原数是一个五位数,所以n =5-1=4,故数字37000用科学记数法表示为3.7×104.备考指导:用科学记数法表示一个正数时,需要从以下两个方面入手: (1)关键是确定a 和n 的值:①确定a :a 是只有一位整数的数,即1≤a <10;②确定n :当原数≥10时,n 等于原数的整数位数减去1,或等于原数变为a 时,小数点移动的位数;当0<原数<1时,n 是负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数的零);或n 的绝对值等于原数变为a 时,小数点移动的位数;(2)对于含有计数单位并需转换单位的科学记数法,可以利用1亿=1×108,1万=1×104,1千=1×103等来表示,能提高解题的效率.14. -1 【解析】原式=1-2=-1.备考指导:对于实数运算需要掌握以下步骤:①将整个算式中所涉及的每一部分的值先计算出来,如零次幂,去绝对值符号等;②将运算出的每部分的值代入算式中;③最后按照运算法则计算.15. 4∶1 【解析】本题考查三角形相似的性质,根据相似三角形的对应线段之比等于相似比得,△ABC 与△DEF 的对应边上的高之比等于相似比4∶1.备考指导:相似三角形的三个性质: 1.相似三角形的对应角相等;2.相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比; 3.相似三角形的周长比等于相似比,面积比等于相似比的平方.16. 8-2π 【解析】在等腰Rt △ABC 中,AB =42,∴∠A =45°,BC =AC =AB·sin 45°=42×22=4,∴S 阴影=S △ABC -S 扇形ACD =4×42-45·π·42360=8-2π.第16题解图备考指导:阴影部分面积的求法:(1)公式法:针对规则的扇形,可直接利用公式S =n πr 2360=12rl 进行计算;(2)割补法:针对不规则的图形,可将不规则图形经过平移或分割转化为几个规则图形,进行面积的和或差计算;(3)等积变换法:针对不规则的图形,将不规则的图形拼凑成等积的规则图形求解.17. 25 【解析】解不等式2x +3<4,得x <12,解不等式3x -1>-11,得x >-103,∴不等式组的解集为-103<x <12,∴x =-3,-2,-1,0.在函数y =12x 2+2x 中,自变量的取值范围满足2x 2+2x≠0,∴2x(x+1)≠0,即x≠0且x +1≠0,∴x≠0且x≠-1,∴x =-3,-2,∴-3,-2,-1,0,4这5个数中随机抽取一个数是-3或-2的概率为25,即满足条件要求的概率为25.备考指导:与代数结合求概率的方法:找出满足事件发生的情况数m ,如方程的所有解,不等式组的解集,函数自变量取值范围等,然后确定总数n ,利用概率公式P(A)=mn求解.18.9817【解析】矩形ABCD 中,AB =46,AD =10,∴BD =(46)2+102=14.∵△DFB 为等腰三角形,∴∠FDB =∠FBD ,∴FD =FB.设FD =x ,则AF =10-x ,BF =x ,在Rt △ABF 中,(46)2+(10-x)2=x 2,解得x =9.8,∴DF =BF =9.8.∵AD ∥BC ,∴∠FDB =∠DBC ,∵∠FBD =∠FDB ,∴∠FBD =∠DBC.由题意知BE 平分∠DBC ,∠FBG =∠EBC ,∴∠FBG =∠DBG.过点D 作DH ∥BF 交BG 的延长线于H 点,则∠H =∠FBG ,∴BD =DH =14.∵BF ∥DH ,∴FG DG =BF DH ,∴FG +DG DG =BF +DH DH ,即FD DG =9.8+1414,∴9.8DG =9.8+1414,∴DG =9817.第18题解图难点突破:本题的难点在于:①在证明∠FBG =∠DBG 后,合理添加辅助线,即过点D 作DH ∥BF 交BG 的延长线于H 点,然后求出BD =DH =14,②将FG DG =BFDH 转化为FG +DG DG =BF +DH DH =FD DG,求出DG 的长度.19.解:把①代入②,得3x +(2x -4)=1, (2分) 解得x =1.(4分)把x =1代入①,得y =-2.(6分)∴方程组的解是⎩⎪⎨⎪⎧x =1y =-2.(7分)20.证明:∵BC =DE , ∴BC +CD =DE +CD , 即BD =CE .(3分)又∵∠B =∠E ,AB =FE , ∴△ABD ≌△FEC (SAS),(5分) ∴∠ADB =∠FCE .(7分) 21.(1)y (2x -y )+(x +y )2;解:原式=2xy -y 2+x 2+2xy +y 2(3分) =x 2+4xy .(5分) (2)(y -1-8y +1)÷y 2-6y +9y 2+y.解:原式=(y -1)(y +1)-8y +1÷(y -3)2y (y +1)(7分)=y 2-1-8y +1×y (y +1)(y -3)2=(y +3)(y -3)y +1×y (y +1)(y -3)2(9分)=y (y +3)y -3=y 2+3y y -3.(10分)22.(1)解:25;72.(3分) 补全条形统计图如解图所示:第22题解图(6分)(2)解:记4名代表中,来自高新区的两人为A 1、A 2,来自开发区的两人为B 1、B 2,列表如下:(8分)由上表可知,共有12种组合情况,其中两个代表都来自高新区的组合有2种, ∴P (所抽取的两个代表都来自高新区)=212=16.(10分)23.(1)解:1331,2442,1001.(2分)猜想:任意一个四位的“和谐数”能被11整除.理由:设一个四位的“和谐数”记为xyyx ,用十进制表示为 1000x +100y +10y +x =1001x +110y =11(91x +10y ), ∵x 、y 是0~9之间的整数, ∴11(91x +10y )能被11整除.(5分)(2)解:这个三位的“和谐数”用十进制表示为:100x +10y +x =101x +10y , ∵它是11的倍数, ∴101x +10y11为整数,(7分) ∵101x +10y 11=99x +11y +2x -y11=9x +y +2x -y 11,x 、y 是0~9之间的整数, ∴2x -y11是整数.(8分) ∵1≤x ≤4,0≤y ≤9, ∴2≤2x ≤8,∴2x -y 只能是0,不能是±11,(9分) ∴y =2x ,∴y 与x 之间的函数关系式是y =2x (1≤x ≤4,x 为自然数).(10分) 24.(1)解:∵在Rt △PME 中,tan31°=PE ME, ∴ME =PE tan31°≈300.6=50(米).(2分)∵在Rt △PNE 中,tan45°=PENE, ∴NE =PE tan45°=301=30(米),(4分)∴MN=ME-NE≈50-30=20(米),答:两渔船M,N之间距离约为20米.(5分)(2)解:如解图,作DG⊥AB于点G,由题意知DG=24(米).∵AD的坡度i=1∶0.25,∴DGAG=10.25,∴AG=0.25×24=6(米).∵DH的坡度i=1∶1.75,∴DGGH=11.75,∴GH=1.75×24=42(米),∴AH=GH-AG=42-6=36(米),(6分)∴S△AHD=36×242=432(平方米),∴一共要填筑土石方432×100=43200立方米.(7分) 设原计划平均每天填筑土石方x立方米,则列方程为:43200-10xx-43200-10x2x=20,(9分)两边乘以2x,得2(43200-10x)-(43200-10x)=40x,解得x=864.经检验,x=864是原方程的根,且符合题意,∴原计划平均每天填筑土石方864立方米.(10分)第24题解图25.(1)解:在Rt△ABC中,∠BAC=60°,AC=23,∴AB=2AC=4 3.(1分)∵点H是AC中点,∴AH =12AC = 3.(2分) ∵AD ⊥AB ,∴∠DAH =90°-60°=30°.∵DH ⊥AC ,∴在Rt △ADH 中,cos30°=AH AD, ∴AD =AH cos30°=332=2,(3分) ∴BD =22+(43)2=213.(4分)(2)证明:连接AF ,如解图①.第25题解图①在Rt △ABD 中,F 为BD 中点,∴DF =AF ,∴∠FDA =∠F AD .∵∠BAC =60°,AE 平分∠BAC ,∴∠CAE =∠BAE =30°,由(1)知∠DAH =30°,∴∠DAE =∠CAE +∠CAD =30°+30°=60°. (5分)∵DH ⊥AC ,∴∠ADH =60°=∠DAE ,又∵AD =AD ,∠AHD =∠AED ,∴△AHD ≌△DEA (AAS),∴DH =AE .(6分)∵∠FDA =∠F AD ,∠ADH =∠DAE ,∴∠FDH =∠F AE ,(7分)∴△FDH ≌△F AE (SAS),∴HF =EF . (8分)(3)解:△CEF 是等边三角形.(9分)证明:取AB 的中点M ,连接FM 、CM ,如解图②,第25题解图②∵F 为BD 的中点,M 为AB 的中点,∴FM ∥AD 且FM =12AD . 由(2)知,∠CAE =30°,且在Rt △ADE 中,AE =12AD , ∴AE =MF .在Rt △ABC 中,M 为AB 中点,∴AM =CM .∵∠MAC =60°,∴△ACM 为等边三角形,(10分)∴AC =CM ,∠AMC =∠ACM =60°.∵∠AMF =90°,∴∠CMF =90°-60°=30°=∠CAE ,∴△CAE ≌△CMF (SAS),(11分)∴CE =CF ,∠ACE =∠MCF ,∴∠ECF =∠ECM +∠MCF =∠ECM +∠ACE =60°,∴△CEF 为等边三角形.(12分)26.(1)解:∵y =-34x 2+3x +33=-34(x -2)2+43, ∴C (2,43).(1分)当y =0时,即0=-34x 2+3x +33,解得x 1=6,x 2=-2, ∴ B (6,0),A (-2,0).(2分)设直线BC 的解析式为y =kx +b ,代入B (6,0),C (2,43),得⎩⎨⎧0=6k +b 43=2k +b, ∴⎩⎨⎧k =-3b =63, ∴y =-3x +6 3.(4分)(2)解:∵E (m ,0),∴M (m ,-3m +63),E ′(m ,-34m 2+3m +33), ∴E ′M =(-34m 2+3m +33)-(-3m +63) =-34m 2+23m -3 3. ∵F (m +2,0),∴N (m +2,-3(m +2)+63),F ′(m +2,-34(m +2)2+3(m +2)+33), ∴F ′N =[-34(m +2)2+3(m +2)+33]-[-3(m +2)+63] =-34(m +2)2+23(m +2)-33=-34m 2+3m ,(5分) ∴E ′M +F ′N =(-34m 2+23m -33)+(-34m 2+3m )=-32(m -3)2+323. ∴当m =3时,ME ′+NF ′的值最大.此时E ′(3,1543),F ′(5,743).(6分) 延长E ′F ′交y 轴于R 点,如解图①,则R 满足|RF ′-RE ′|最大,即在y 轴上取异于R 的任一点R ′,连接R ′F ′、R ′E ′,则|R ′F ′-R ′E ′|<E ′F ′=|RF ′-RE ′|,即R 使|RF ′-RE ′|最大.设直线E ′F ′的解析式为y =ax +b (a ≠0),代入E ′(3,1543),F ′(5,743),得第26题解图① ⎩⎨⎧1543=3a +b743=5a +b, 解得⎩⎪⎨⎪⎧a =-3b =2743, ∴y =-3x +2743. 当x =0时,y =2743, ∴R (0,2743). 作F ′K ⊥EM 于点K ,如解图①,则F ′K =2,E ′K =1543-743=23, ∴E ′F ′=22+(23)2=4, ∴|RF ′-RE ′|的最大值为4,此时点R (0,2734).(8分) (3)解:∵对y =-34x 2+3x +33,当x =0时,y =33, ∴W (0,33).∵点Q ′到x 轴、AW 的距离相等,∴点Q ′在∠WAB 的平分线上或在∠WAB 补角的平分线上.第26题解图②(ⅰ)当点Q ′在∠WAB 的平分线上时,如解图②,作∠WAB 的平分线AL .过Q 点作x 轴的平行线交AW 于S 点,交AL 于T 点,交PG 于V 点.当点Q ′与点T 重合时,点Q ′为符合题意的点.∵PG ⊥x 轴,∴SV ⊥PG ,∴在等边△PGQ 中,PV =12PG =3, ∴S 、T 点的纵坐标都为3,V (92,3). 设直线AW 的解析式为y =mx +n (m ≠0),代入(-2,0),(0,33),得⎩⎨⎧0=-2m +n 33=n ,∴⎩⎪⎨⎪⎧m =332n =33, ∴直线AW 的解析式为y =323x +3 3. 当y =3时,即3=323x +33,得x =-43, ∴S (-43,3),SV =92+43=356. 作SZ ⊥x 轴于Z 点,如解图②,则AZ =2-43=23,SZ =3, ∴AS =(3)2+(23)2=313. ∵AL 平分∠WAB ,∴∠WAL =∠LAB .∵SV ∥x 轴,∴∠STA =∠LAB ,∴∠WAT =∠STA ,∴ST =SA =313,∴点T 到CD 的距离为SV -ST -DP =356-313-(92-2)=10-313.(9分) 显然点Q ′与点T 重合时,点Q ′为符合题意的点,此时△Q ′P ′G ′与△ADC 重合部分是一个等边三角形,10-313为这个等边三角形的高线. 这个等边三角形的边长为10-313×233, 所以S =12×10-313×233×10-313=1313-209327.(10分) (ⅱ)当点Q ′在∠WAB 的补角的平分线上时,如解图③,作∠WAB 的补角的平分线AL .过点Q 作x 轴的平行线交AW 于S 点,交AL 于T 点,交PG 于V 点.当点Q ′与点T 重合时,点Q ′为符合题意的点.第26题解图③同(ⅰ),SV =356,SA =ST =313, ∴TV =356+313, 在Rt △PQV 中,∠VPQ =60°,PV =3,∴QV =3PV =3.∴△PGQ 向左平移的距离为TQ =356+313-3=176+313, ∴AP ′=2+92-(176+313)=113-313, 点P ′的横坐标为-2+(113-313)=53-313.(11分) 可以求得直线AC 的解析式为y =3x +23,且∠CAB =60°,则直线P ′G ′与直线AC 的交点纵坐标为3(53-313)+23=3(2+53-313)<23=PG , ∴点G ′在直线AC 之上.∵∠CAB =60°,∠AP ′T =30°,∴AC ⊥P ′T ,∴重叠部分是一个含有60°的直角三角形.∵AP ′=113-313, ∴阴影部分直角三角形的两直角边为32AP ′、32AP ′, ∴S =338AP ′2=338(113-313)2=763-119312. (12分)。

2015年考研数学一真题及答案解析

2015年考研数学一真题及答案解析

2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。

因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=xy ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13xe -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑nnn na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。

工程数学自考试题及答案

工程数学自考试题及答案

工程数学自考试题及答案一、单项选择题(每题2分,共20分)1. 下列哪项是线性方程组的解?A. 解存在且唯一B. 解不存在C. 解有无穷多个D. 无解答案:A2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行数或列数D. 矩阵的元素个数答案:C3. 微分方程的解是下列哪一项?A. 函数B. 数值C. 矩阵D. 向量答案:A4. 泰勒级数展开的中心点是?A. 0B. 1C. 任意点D. 函数的零点答案:C5. 傅里叶级数是用于什么?A. 函数的近似B. 函数的精确表示C. 函数的积分D. 函数的微分答案:A6. 线性代数中,向量空间的基是什么?A. 一组线性无关的向量B. 一组线性相关的向量C. 一组向量D. 一组标量答案:A7. 拉普拉斯变换是用于解决什么问题?A. 微分方程B. 积分方程C. 代数方程D. 线性方程组答案:A8. 欧拉公式是用于解决什么问题?A. 微分方程B. 积分方程C. 代数方程D. 线性方程组答案:A9. 概率论中,随机变量的期望值是什么?A. 随机变量的平均值B. 随机变量的中位数C. 随机变量的众数D. 随机变量的方差答案:A10. 泊松分布适用于描述什么?A. 连续型随机变量B. 离散型随机变量C. 正态分布的随机变量D. 二项分布的随机变量答案:B二、填空题(每题2分,共20分)1. 如果一个线性方程组有唯一解,则该方程组是_________的。

答案:相容2. 矩阵的对角线元素之和称为矩阵的_________。

答案:迹3. 微分方程的通解是包含_________的解。

答案:任意常数4. 泰勒级数展开的公式是_________。

答案:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + ...5. 傅里叶级数的公式是_________。

答案:f(x) = a0/2 + Σ[an*cos(nπx/L) + bn*sin(nπx/L)]6. 向量空间的基有_________个向量。

2015年全国各地高考数学试题及解答分类汇编大全(16 随机变量及其分布)

2015年全国各地高考数学试题及解答分类汇编大全(16 随机变量及其分布)

2015年全国各地高考数学试题及解答分类汇编大全(16概率、随机变量及其分布)一、选择题:1. (2015湖南理)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )A.2386B.2718C.3413D.4772 附:若2(,)XN μσ,则6826.0)(=+≤<-σμσμX P ,9544.0)22(=+≤<-σμσμX P【答案】C.【考点定位】1.正态分布;2.几何概型.【名师点睛】本题主要考查正态分布与几何概型等知识点,属于容易题,结合参考材料中给出的数据,结合正态分布曲线的对称性,再利用几何概型即可求解,在复习过程中,亦应关注正态分布等相对冷门的知识点的基本概念.2.(2015全国新课标Ⅰ卷理)投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】试题分析:根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A. 考点:独立重复试验;互斥事件和概率公式3. (2015湖北理)设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥【答案】C考点:正态分布密度曲线.4.(2015山东理)已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( ) (附:若随机变量ξ服从正态分布()2,Nμσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=。

2015年高考数学—概率(解答+答案)

2015年高考数学—概率(解答+答案)

2015年高考数学—概率(解答+答案)1.(2015新课标Ⅰ文数(19)(本小题满分12分))某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。

x ry u r w u r821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()iii w w y y =--∑46.6 563 6.8 289.8 1.6 1469 108.8表中w 1 x 1, ,w u r =1881i w =∑1(Ⅰ)根据散点图判断,y a bx =+与y c x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z=0.2y-x 。

根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?+u的斜率和附:对于一组数据(u1 v1),(u2 v2)…….. (u n v n),其回归线v=αβ截距的最小二乘估计分别为:2.(2015新课标II文数18.(本小题满分12分))某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表。

A地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表(1)在答题卡上作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:估计哪个地区的满意度等级为不满意的概率大?说明理由频率/5060708090100 满意度评分405060708090满意度评分100 频率/3.(2015安徽文数17.(本小题满分12分))某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),...,[80,90),[90,100](Ⅰ)求频率分布图中a的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60)的受访职工中,随机抽取2人,求此2人评分都在[40,50)的概率.4.(2015北京文数(17)(本小题13分))某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买。

2015年全国大学生数学建模竞赛A题

2015年全国大学生数学建模竞赛A题

太阳影子定位(一)摘要根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。

本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。

直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。

但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。

我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。

众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。

我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。

影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。

问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。

根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。

再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。

我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。

对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。

关键字:太阳影子轨迹Matlab曲线拟合(二)问题重述确定视频拍摄地点和拍摄日期是视频数据分析的重要方面,太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

《工程数学》期末考试试卷附答案

《工程数学》期末考试试卷附答案

《工程数学》期末考试试卷附答案一、单项选择题 (每小题3分,共15分)1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。

A. 全部击中 B. 至少有一发击中 C. 必然击中 D. 击中3发2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。

A. X 和Y 独立。

B. X 和Y 不独立。

C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。

A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。

B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( ) A. 对于任意的μ, P 1=P 2 B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正 确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)二、填空题 (每空3分,共15分)1. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。

2.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。

3.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正 常工作的概率为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉大学2015 —2016学年度第 一 学期
《工程随机数学》试卷(A )
电子信息 学院 专业 班 学号 姓名 分数 1. (本题10分)将a ,b ,c 三个字母之一输入信道,输出为原字母的概率为p ,而输出为其他一字母的概率都是(1-p)/2,今将字母串aaaa,bbbb,cccc 之一输入信道,三者输入的概率分别为p1, p2, p3 (p1+p2+p3=1),已知输出为abcb ,问输入的是aaaa 的概率是多少?(设信道传输各个字母的工作是相互独立的。


解: 以A ,B ,C 分别表示事件“输入aaaa ”,“输入bbbb ”,“输入cccc ”,以D 表示事件“输出abcb ”。

由全概率公式和贝叶斯公式有
1
123
()(|)(|)()(|)(|)(|)P AD P D A p P A D P D P D A p P D B p P D C p =
=
++ 这里 31(|)(
)2p P D A p -=,221(|)()2p P D B p -=,3
1(|)()2
p P D C p -= 带入上式 3
13223123
11
22
132
1(
)2(|)111()()()222(1)2131p p p P A D p p p p p p p p p p p p p p p pp p p p p
-=
---++-==
--+++- 2. (本题10分)设随机变量~(0,1)X U 。

(1) 求 2
21Y X =+的概率密度。

(2)求(),()D x D y
解:(1)由于2211Y X =+≥,故当1y <时,()0Y f y =. 当1y ≥ 时,
2()()(21)(Y X F y P Y y P X y P X F =≤=+≤=≤= 两边关于y 求导得
1
()
0,
Y X
y
f y f
else

==

3.(本题15分)二维随机变量(X,Y)的联合密度函数为
2,01
(,)
0,.
cx y x y
f x y
else
⎧≤≤≤
=⎨

(1)确定常数c;(2)分析并判断X和Y是否相互独立?(3)求Z X Y
=+的概率密度。

解:(1)由于区域积分=1得15
c=
11
224
000
1,11,15
3
y c
cx ydxdy cx ydxdy y dy c
Ω
====
⎰⎰⎰⎰
,得
(2) 122224
15
()15()155
2
y
X Y
x
f x x ydy x x f y x ydx y
====
⎰⎰
(1-),
显然(,)()()
X Y
f x y f x f y
≠⋅
(3) 24
5
()(,)15()
4
z
X Y
f z f x z x dx x z x dx z

+-∞
=-=-=
⎰⎰
4.(本题15分)某复杂系统由100个相互独立的部件所组成,在运行期间每个部
件损坏的概率为0.1,为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率?(,
5987
.0
)
25
.0(=
Φ,
6915
.0
)5.0(=
Φ,
8413
.0
)0.1(=
Φ
,
9332
.0
)5.1(=
Φ9525
.0
)
67
.1(=
Φ,,
9772
.0
)0.2(=
Φ,
9938
.0
)5.2(=
Φ9987
.0
)3(=
Φ)解:(1) 此为100重贝努利事件,~(100,0.9)
X b,求概率(85)
P X≥,
近似服从标准正态分布。

555
(85)}1()()0.9525
333
P X P P
≥=≥=≥-=-Φ-=Φ=
5. .(本题10分)设是取自正态总体的简单随机样本,且
解:由921,...,,X X X 是取自正态总体
X
的简单随机样本,即9212,...,),,(~X X X N X σμ相互独
立,),(~2σμN X i ,即2)(,)(σμ==i i X D X E
因而
∑∑======9
7
2611)(31)(,)(61)(i i i i Y E Y E X E Y E μμ

,
3
1
)(91)31()(,61
)(361)61()(,0)()()(2979722616112121σσμμ∑∑∑∑===========-=-=-i i i i i i i i X D X D Y D X D X D Y D Y E Y E Y Y E

,2
1
3161)()()(2222121σσσ=+=+=-Y D Y D Y Y D
因而
)2
,
0(~2
21σN Y Y -

)1,0(~2
2
1N Y Y σ
-
922
112627892712111(...),(),(),
632)
,i i Y X X X Y X X X S X Y Y Y Z Z S
==+++=++=--=
∑试问统计量服从什么分布?
129
,,...,X X X
时)(可知)(,)时(∑∑==-=-=97i 2
2i 222
2n 1i i 21),1-n (~1-n 1-n 1Y X S S X X S χσ
)2(~222
2
χσ
S
由1Y ,2Y 及2S 均是1X ,2X ,...,9X 的函数且1X ,2X ,...,9X 相互独立,可知1Y ,1Y 及2S 也相互独立,进而21Y Y -与2S 也相互独立。


)1,0(~2
2
1N Y Y σ
-,
)2(~222
2
χσS
可知
)2(~)
(22
22212
2
2
1t S
Y Y S Y Y -=
-σ,即)2(~t Z 6. (本题10分)设1X ,2X ,...,n X 为总体的一个样本,1x ,2x ,...,n x 为一相应的样本值。

求下面总体函数未知参数的矩估计量和最大似然估计值。

⎩⎨
⎧>=+-其他,0,)()1(c x x c x f θθθ
其中0>c 为已知参数,1>θ,θ为未知参数。

解:
(1) 求一个未知参数的矩估计量首先求总体X 的数学期望,然后令总体数学期望等于样本均
值,解方程,得未知参数的 矩估计量。

1
)1(|)11()(11)1(-=
--=-===-∞
++-∞
+-+-+∞

⎰θθθθθθθθθ
θθθ
θθθθc c c x c dx
x c dx
x c x X E c
c
C
对样本的一组观察值1x ,2x ,...,n x ,得样本均值x 。

令x c
=-1θθ,解得 c
x x -=∧θ,即为θ的矩估计值 那么c
X X -=∧
θ为θ的矩估计量。

其中∑==n i i X n X 11是随机变量,表示对样本的不同观察值,它
的取值不同,所以c
X X
-=

θ是随机变量。

(2)对样本的一组观察值1x ,2x ,...,n x ,似然函数为
)1(11
)
1()()(+-==+-∏∏==θθ
θθ
θθθn
i i n n n
i i
x c x c L )(c x i >
两边去对数 ∑=+-+=n
i i x c n n L 1
ln )1(ln ln )(ln θθθθ
对θ求倒数
0ln ln )(ln 1
=-+=∑=n
i i x c n n
d L θθθ 得θ的最大似然估计值为 ∑=∧
-=
n
i i
c
n x n
1
ln ln θ
θ的最大似然估计量为 ∑=∧
-=
n
i i
c
n X
n
1
ln ln θ
7. (本题15分)已知总体,未知,是总体的一个样本
(1)就μ是否大于已知数μ0,求假设检验的拒绝域,显著性水平为α;
(2)若样本容量为20,样本均值等于3100,样本标准差等于170,α等于0.01,判断μ>μ0=3000是否成立?
0.005(19) 2.861t =, 0.01(18) 2.552t =,0.005(18) 2.878t =,
0.01(19) 2.54t =,851.32)19(025.02=χ
解: (1)
以其无偏
估计——样本标准差S 代替,则
设H 0成立,由t 分布可构造小概率事件
由此可得拒绝域为
(2)

8. (本题15分)设
(1)证明
为平稳随机序列;
(2)求该平稳随机序列的功率谱密度。

解:(1)
(2)
该平稳序列的相关函数可表示为
则由维纳-辛钦定理,其功率谱密度为。

相关文档
最新文档