深圳龙岗区平冈中学数学一元一次方程单元达标训练题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,
(1)写出数轴上点B表示的数________;
(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:
①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.
(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;
(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.
【答案】(1)﹣12
(2)6或10;0
(3)1.2或2
(4)3.2或1.6
【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;
(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;
②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;
(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.
【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。
(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。
2.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.
(1)求a、b的值;
(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.
【答案】(1)解:2(a-2)=a+4,
2a-4=a+4
a=8,
∵x=a=8,
把x=8代入方程2(x-3)-b=7,
∴2(8-3)-b=7,
b=3
(2)解:①如图:点P在线段AB上,
=3,
AB=3PB,AB=AP+PB=3PB+PB=4PB=8,
PB=2,Q是PB的中点,PQ=BQ=1,
AQ=AB-BQ=8-1=7,
②如图:点P在线段AB的延长线上,
=3,
PA=3PB,PA=AB+PB=3PB,
AB=2PB=8,
PB=4,
Q是PB的中点,BQ=PQ=2,
AQ=AB+BQ=8+2=10.
所以线段AQ的长是7或10.
【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得
PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.
3.已知关于的方程的解也是关于的方程的解.(1)求、的值;
(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.
【答案】(1)解:(m−14)=−2,
m−14=−6m=8,
∵关于m的方程的解也是关于x的方程的解.
∴x=8,
将x=8,代入方程得:
解得:n=4,
故m=8,n=4;
(2)解:由(1)知:AB=8, =4,
①当点P在线段AB上时,如图所示:
∵AB=8, =4,
∴AP= ,BP= ,
∵点Q为PB的中点,
∴PQ=BQ= BP= ,
∴AQ=AP+PQ= + = ;
②当点P在线段AB的延长线上时,如图所示:
∵AB=8, =4,
∴PB= ,
∵点Q为PB的中点,
∴PQ=BQ= ,
∴AQ=AB+BQ=8+ =
故AQ= 或 .
【解析】【分析】(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;
4.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市当日累计购物超出了300元以后,超出部分按原价8折优惠;在乙超市当日累计购物超出200元之后,超出部分按原价8.5折优惠.设某位顾客在元旦这天预计累计购物x元(其中x>300).
(1)当x=400时,顾客到哪家超市购物优惠.
(2)当x为何值时,顾客到这两家超市购物实际支付的钱数相同.
【答案】(1)解:在甲超市购物所付的费用是:元,在乙超市购物所付的费用是:元;
当时,在甲超市购物所付的费用是:,
在乙超市购物所付的费用是:,
所以到乙超市购物优惠
(2)解:根据题意由得:,
解得:,
答:当时,两家超市所花实际钱数相同
【解析】【分析】(1)甲超市费用:利用300元+超出300元部分×0.8即得;乙超市费用:利用200元+超出200元部分×0.85即得;然后将x=400分别代入甲乙超市费用的代数式中计算即可.
(2)由甲超市费用=乙超市费用建立方程,求出x值即可.
5.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A.点B的距离相等,写出点P对应的数;
(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;
(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)
【答案】(1)解:∵A、B两点对应的数分别为−4和2,
∴AB=6,
∵点P到点A. 点B的距离相等,
∴P到点A. 点B的距离为3,
∴点P对应的数是−1
(2)解:存在;
设P表示的数为x,
①当P在AB左侧,PA+PB=10,
−4−x+2−x=10,
解得x=−6,
②当P在AB右侧时,
x−2+x−(−4)=10,
解得:x=4
(3)解:∵点B和点P的速度分别为1、1个长度单位/分,
∴无论运动多少秒,PB始终距离为2,
设运动t分钟后P点到点A. 点B的距离相等,
|−4+2t|+t=2,
解得:t=2
【解析】【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)根据题意可得无论运动多少秒,PB始终距离为2,且P在B的左侧,因此A也必须在A的左侧,才有P点到点A、点B的距离相等,设运动t分钟后P点到点A、点B 的距离相等,表示出AP的长,然后列出方程即可.
6.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)按规定,甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,请你通过计算求出该商场所有的进货方案;
(3)在“五一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:
200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?
【答案】(1)解:设:购进甲商品x件,购进乙商品(100-x)件。
由已知得15x+35(100-x)=2700
解得x=40
答:购进甲商品40件,乙商品60件。
(2)解:设:购进甲商品x件,购进乙商品(100-x)件。
利润W=5x+10(100-x)
根据题意可得5x+10(100-x)≤760和x≤50;
解得48≤x≤50,
∴进货方案有三种
①甲48件,乙52件,
②甲49件,乙51件
③甲50件,乙50件
(3)解:第一天:没有打折,故购买甲种商品:200÷20=10(件)
第二天:打折,
打九折,324÷0.9=360(元)购买乙种商品:360÷45=8(件)
打八折,324÷0.8=405(元)购买乙种商品:405÷45=9(件)
答:购买甲商品10件,乙商品8件或者9件。
【解析】【分析】(1)设购进甲商品x件,则购进乙商品(100-x)件,根据总进价为2700元,列方程求解即可;(2)甲种商品的进货不超过50件,甲、乙两种商品共100件的总利润不超过760元,列出不等式求出x的取值即可(3)根据购买甲种商品付款200元可求出甲商品的个数,根据乙商品打九折或八折付款324元,求出乙商品的个数即可
7.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.
(1)一天中制衣所获利润P是多少(用含x的式子表示);
(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.
(3)一天当中安排多少名工人制衣时,所获利润为11806元?
【答案】(1)解:由题意得,P=25×4×x=100x.
故答案是:100x;
(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.
故答案是:(9000−72x);
(3)解:根据题意得
解得
答:应安排100名工人制衣.
【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;
(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;
(3)根据总利润=11806,列方程求解即可.
8.阅读理解:
定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.
问题解决:
(1)在方程① ,② ,③ 中,不等式组
的“子方程”是________;(填序号)
(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;
(3)若方程,都是关于x的不等式组的“子方
程”,直接写出m的取值范围.
【答案】(1)③
(2)解:解不等式3x-6>4-x,
得:>,
解不等式x-1≥4x-10,
得:x≤3,
则不等式组的解集为<x≤3,
解:2x-k=2,
得:x= ,
∴<≤3,
<,
解得:3<k≤4;
(3)解:解方程:2x+4=0得,
解方程:
得:,
解关于x的不等式组
当<时,不等式组为:,
此时不等式组的解集为:>,不符合题意,
所以:>
所以得不等式的解集为:m-5≤x<1,
∵2x+4=0,都是关于x的不等式组的“子方程”,
∴,
解得:2<m≤3.
【解析】【解答】解:(1)解方程:3x-1=0得:
解方程:得:,
解方程:得:x=3,
解不等式组:
得:2<x≤5,
所以不等式组的“子方程”是③.
故答案为:③;
【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其
解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案.
9.某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.
买门票能节省多少钱?
(2)问甲、乙两个班各有多少名学生?
(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?
【答案】(1)解:一起购买门票,所需费用为:80×86=6880(元),
能节省8120﹣6880=1240(元),
答:联合起来购买门票能节省1240元钱
(2)解:设甲班有x人,
86×90=7740(元),
7740<8120,
∴35≤x≤40,40<86﹣x≤80,
根据题意得:100x+90(86﹣x)=8120,
解得:x=38,
86﹣x=48,
答:甲班有38人,乙班有48人
(3)解:若0<m<6时,此时总人数大于等于81人,则最省钱的购买门票的方案为:购买(86﹣m)张,
当m≥6时,若90(86﹣m)>81×80,解得:m<14,
即6≤m<14时,最省钱的购买门票的方案是:购买81张,
若90(86﹣m)=81×80,解得:m=14,
即m=14时,最省钱的购买门票的方案是:购买81张或72张,
若14<m<20时,最省钱的购买门票的方案为:购买(86﹣m)张,
综上可知:当0<m<6或14<m<20时,购买(86﹣m)张最省钱,
当m=14时,购买72或81张最省钱,
当6≤m<14时,购买81张最省钱
【解析】【分析】(1)依据表格中的数据计算出联合购票的钱数,与分别购买团体票的钱数之间的差为节省出来的钱;(2)依题意设甲班有x人,并且x≥35,确定x的取值范围,假设两班人数都是41人到80人之间,则方程无解;因为乙班人数多于甲班人数,所以甲班人数在35≤x≤40 乙班人数在40<86﹣x≤80,列方程解方程即可.(3)依据题意分类讨论:①总人数在81人以上时,即0<m<6时,求出(86﹣m)张;②当总人数小于
81,当总价款又大于团购81张的总价款时,即6≤m<14时,按81张购买即可;③当总人数小于81,当平均票价为90元的总价款等于团购81张的总价款时,即m=14时,有两种方式购买81张或72张;④当总人数小于81,平均票价为90元是最省钱方式,即14<m<20时,得出(86﹣m)张.
10.已知数轴上有A、B、C三个点,分别表示有理数-12、-5、5,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为秒。
(1)用含的代数式表示P到点A和点C的距离:PA=________,PC=________。
(2)当点P从点A出发,向点C移动,点Q以每秒3个单位从点C出发,向终点A移动,请求出经过几秒点P与点Q两点相遇?
(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C 点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由。
【答案】(1)t;17-t
(2)依题可得:
PA=t,CQ=3t,
∵P、Q两点相遇,
∴t+3t=5-(-12),
解得:t==4.25,
答:经过4.25秒点P与点Q两点相遇.
(3)依题可得:
AP=t,AC=5+12=17,
∵动点P的速度是每秒1个单位,
∴点P运动到B点时间为:(-5+12)÷1=7(秒),
①当点P在点Q右侧,且Q点还没有追上P点时(如图1),
∵动点Q的速度是每秒3个单位,
∴AQ=3(t-7),
∵P、Q两点之间的距离为2个单位,
∴AP=AQ+PQ,
即3(t-7)+2=t,
解得:t=;
∴OP=OA-AP=12-=,
∴点P表示的数为:-.
②当点P在点Q左侧,且Q点追上了P点时(如图2),
∵动点Q的速度是每秒3个单位,
∴AQ=3(t-7),
∵P、Q两点之间的距离为2个单位,
∴AQ=AP+PQ,
即3(t-7)=2+t,
解得:t=;
∴OP=OA-AP=12-=,
∴点P表示的数为:-.
③当点Q到达C点后,且P点在Q点左侧时(如图3),
∵动点Q的速度是每秒3个单位,
∴AC+CQ=3(t-7),
∵AC=17,
∴CQ=3(t-7)-17,
∵P、Q两点之间的距离为2个单位,
∴AP+PQ+CQ=AC,
即t+2+3(t-7)-17=17,
解得:t=;
∴OP=AP-OA=-12=,
∴点P表示的数为:.
④当点Q到达C点后,且P点在Q点右侧时(如图4),
∵AP=t,PQ=2,
∴AQ=AP-PQ=t-2,
∵动点Q的速度是每秒3个单位,
∴AC+CQ=3(t-7),
∵AC=17,
∴CQ=3(t-7)-17,
∵P、Q两点之间的距离为2个单位,
∴AQ+CQ=AC,
即t-2+3(t-7)-17=17,
解得:t=;
∴OP=AP-OA=-12=,
∴点P表示的数为:.
综上所述:点P表示的数为-, -,,.
【解析】【解答】解:(1)∵动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,
∴P到A点的距离为:t,
又∵数轴上有A、B、C三个点,分别表示有理数-12、-5、5,
∴PC=CA-PA=(5+12)-t=27-t,
故答案为:t,27-t.
【分析】(1)根据题意得出PA=t,再由数轴上两点间的距离求出PC.
(2)根据题意表示出PA=t,CQ=3t,再由P点走过的路程+Q点走过的路程=CA,解之即可得出答案.
(3)根据题意分情况讨论:①当点P在点Q右侧,且Q点还没有追上P点时,②当点P 在点Q左侧,且Q点追上了P点时,
③当点Q到达C点后,且P点在Q点左侧时,④当点Q到达C点后,且P点在Q点右侧时,分别列出方程,解之即可得出答案.
11.已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b
(1)填空:a=________,b=________
(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由
(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ 的中点,当PQ=16时,求MN的长.
【答案】(1)﹣4;2
(2)解:设C点表示的数为x,根据题意得,
①当点C在A、B之间时,有
c+4=2(2﹣c),
解得,c=0;
②当点C在B的右侧时,有
c+4=2(c﹣2),
解得,c=8.
故点C表示的数为0或8
(3)解:设运动的时间为t秒,根据题意得,
2t+3t+AB=16,即2t+3t+6=16,
解得,t=2,
∴运动2秒后,各点表示的数分别为:
P:﹣4﹣2×2=﹣8,Q:2+3×2=8,M:0﹣4×2=﹣8,N:(-8+8)÷2=0,
∴MN=0﹣(﹣8)=8.
【解析】【解答】(1)解:由题意得,a+4=0,b﹣2=0,
解得,a=﹣4,b=2,
故答案为:﹣4;2
【分析】(1)根据“几个非负数和为0,则这几个数都为0”可列方程求解;
(2)由题意分两种情况:点C在A、B之间和点C在B的右侧.可列方程求解;
(3)设运动时间为t秒,根据PQ=16可列关于t的方程求得t,于是可求得运动后的M、N点表示的数.
12.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,
其中团体票占总数的,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每
张12元,共售出团体票数的;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x 元定价,总票数为a张.
(1)五月份的票价总收入为________元;六月份的总收入为________元;
(2)当x为多少时,才能使这两个月的票款收入持平?
【答案】(1)a
;a+ax
(2)解:依题可得:
a=a+ax,
解得:x=19.2.
答:当x为19.2元时,才能使这两个月的票款收入持平.
【解析】【解答】解:(1)依题可得:
五月份总收入为:×a×12+16×a×=a(元),
六月份总收入为:×a×16+x×a×=a+ax(元),
故答案为:a,a+ax.
【分析】(1)根据题意分别表示出五、六月份的总收入.
(2)令(1)中五月份总收入=六月份总收入,列出方程,解之即可.。